Spatial and Temporal Variations in the Rainy Season Onset over the Qinghai–Tibet Plateau
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and the Partitioned Regions
2.2. Datasets
2.3. Method
2.3.1. Determining the Rainy Season Onset
2.3.2. Theil–Sen Median Trend Analysis
2.3.3. Mann–Kendall Test
2.3.4. Moving t-test
2.3.5. Cumulative Anomaly Model
3. Results
3.1. Spatial Distribution Characteristics of the Rainy Season Onset over the TP
3.2. The Multiyear Trend of the Rainy Season Onset over the TP
3.2.1. Characteristics of Onset Variations in the Rainy Season on the TP
3.2.2. Characteristics of Regional Variations in Rainy Season Onset
3.3. Differences in the Variations in the Rainy Season Onset before and after Mutation
3.3.1. Mutation Analysis
3.3.2. Differences in the Regional Variations in the Rainy Season Onset before and after Mutation
3.3.3. Differences in the Station Variations in the Rainy Season Onset before and after Mutation
4. Discussion
4.1. The Trend in the Rainy Season Onset of the Main Plateau was Advanced
4.2. The Trend in the Rainy Season Onset was Delayed in Some Regions over the TP
4.2.1. The Delayed Region South of Tibet
4.2.2. The Delayed Region in the Hengduan Mountains
4.2.3. The Delayed Region Northeast of the TP
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Li, L.; Schmitt, R.W.; Ummenhofer, C.C. The role of the subtropical North Atlantic water cycle in recent US extreme precipitation events. Clim. Dyn. 2018, 50, 1291–1305. [Google Scholar] [CrossRef]
- Tang, L.; Duan, X.; Kong, F.; Zhang, F.; Zheng, Y.; Li, Z.; Hu, S. Influences of climate change on area variation of Qinghai Lake on Qinghai-Tibetan Plateau since 1980s. Sci. Rep. 2018, 8, 3–9. [Google Scholar] [CrossRef]
- Zhang, W.; Yi, Y.; Kimball, J.S.; Kim, Y.; Song, K. Climatic controls on spring onset of the Tibetan Plateau grasslands from 1982 to 2008. Remote Sens. 2015, 7, 16607–16622. [Google Scholar] [CrossRef]
- Shen, M.; Tang, Y.; Chen, J.; Zhu, X.; Zheng, Y. Influences of temperature and precipitation before the growing season on spring phenology in grasslands of the central and eastern Qinghai-Tibetan Plateau. Agric. For. Meteorol. 2011, 151, 1711–1722. [Google Scholar] [CrossRef]
- Sun, J.; Qin, X. Precipitation and temperature regulate the seasonal changes of NDVI across the Tibetan Plateau. Environ. Earth Sci. 2016, 75, 1–9. [Google Scholar] [CrossRef]
- Yang, K.; Wu, H.; Qin, J.; Lin, C.; Tang, W.; Chen, Y. Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: A review. Glob. Planet. Chang. 2014, 112, 79–91. [Google Scholar] [CrossRef]
- Ye, J.S.; Reynolds, J.F.; Sun, G.J.; Li, F.M. Impacts of increased variability in precipitation and air temperature on net primary productivity of the Tibetan Plateau: A modeling analysis. Clim. Chang. 2013, 119, 321–332. [Google Scholar] [CrossRef]
- Bollasina, M.A.; Ming, Y.; Ramaswamy, V. Anthropogenic Aerosols and the Summer Monsoon. Science 2011, 334, 502–505. [Google Scholar] [CrossRef]
- Duan, K.; Yao, T.; Thompson, L.G. Response of monsoon precipitation in the Himalayas to global warming. J. Geophys. Res. Atmos. 2006, 111, 1–8. [Google Scholar] [CrossRef]
- Manabe, S.; Terpstra, T.B. The effect of moutains on the general circulation of the Atmosphere as Identified by Numerical Experiments. J. Atmos. Sci. 1974, 31, 3–42. [Google Scholar] [CrossRef]
- Roxy, M.K.; Ritika, K.; Terray, P.; Murtugudde, R.; Ashok, K.; Goswami, B.N. Drying of Indian subcontinent by rapid Indian ocean warming and a weakening land-sea thermal gradient. Nat. Commun. 2015, 6, 7423. [Google Scholar] [CrossRef]
- Wu, B. Weakening of Indian summer monsoon in recent decades. Adv. Atmos. Sci. 2005, 22, 21–29. [Google Scholar] [CrossRef]
- Liu, X.; Chen, B. Climatic warming in the Tibetan Plateau during recent decades. Int. J. Climatol. 2000, 20, 1729–1742. [Google Scholar] [CrossRef]
- Liu, X.; Kutzbach, J.E.; Liu, Z.; An, Z.; Li, L. The Tibetan Plateau as amplifier of orbital-scale variability of the East Asian monsoon. Geophys. Res. Lett. 2003, 30, 1–4. [Google Scholar] [CrossRef]
- Pan, B.; Li, J. Qinghai-Tibetan Plateau: A Driver and Amplifier of the global climatic change. J. Lanzhou Univ. (Nat. Sci.) 1996, 32, 108–115. [Google Scholar]
- Ma, Z.; Xu, Y.; Peng, J.; Chen, Q.; Wan, D.; He, K.; Li, H. Spatial and temporal precipitation patterns characterized by TRMM TMPA over the Qinghai-Tibetan plateau and surroundings. Int. J. Remote Sens. 2018, 39, 3891–3907. [Google Scholar] [CrossRef]
- Zhang, K.; Pan, S.; Cao, L.; Wang, Y.; Zhao, Y.; Zhang, W. Spatial distribution and temporal trends in precipitation extremes over the Hengduan Mountains region, China, from 1961 to 2012. Quat. Int. 2014, 349, 346–356. [Google Scholar] [CrossRef]
- Shi, Y.; Song, L. Spatial Downscaling of Monthly TRMM Precipitation Based on EVI and Other Geospatial Variables Over the Tibetan Plateau From 2001 to 2012. Mt. Res. Dev. 2015, 35, 180–194. [Google Scholar] [CrossRef]
- An, Z.; Kutzbach, J.E.; Prell, W.L.; Porter, S.C. Evolution of Asian monsoons an phased uplift of the Himalaya-Tibetan Plateau since Late Miocene times. Nature 2001, 411, 62–66. [Google Scholar] [CrossRef]
- Yao, T.; Thompson, L.; Yang, W.; Yu, W.; Gao, Y.; Guo, X.; Joswiak, D. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nat. Clim. Chang. 2012, 2, 663–667. [Google Scholar] [CrossRef]
- Li, L.; Yang, S.; Wang, Z.; Zhu, X.; Tang, H. Evidence of Warming and Wetting Climate over the Qinghai-Tibet Plateau. Arct. Antarct Alp. Res. 2010, 42, 449–457. [Google Scholar] [CrossRef]
- Zhou, S.; Wu, P.; Wang, C.; Han, J. Spatial distribution of atmospheric water vapour and its relationship with precipitation in summer over the Tibetan Plateau. J. Geogr. Sci. 2012, 22, 795–809. [Google Scholar] [CrossRef]
- National Meteorological Information Center of China. Available online: https://earthexplorer.usgs.gov (accessed on 20 September 2019).
- United States Geological Survey. Available online: http://data.cma.cn/data/cdcdetail/dataCode/SURF_CLI_CHN_MUL_DAY_V3.0.html (accessed on 20 September 2019).
- Fan, H.; Hu, J.; He, D. Trends in precipitation over the low latitude highlands of Yunnan, China. J. Geogr. Sci. 2013, 23, 1107–1122. [Google Scholar] [CrossRef]
- Thomas, A. The onset of the rainy season in Yunnan province, PR China and its significance for agricultural operations. Int. J. Biometeorol. 1993, 37, 170–176. [Google Scholar] [CrossRef]
- Cao, L.; Pan, S. Changes in precipitation extremes over the Three-River Headwaters region, hinterland of the Tibetan Plateau, during 1960–2012. Quat. Int. 2014, 321, 105–115. [Google Scholar] [CrossRef]
- Theil, H. A Rank-Invariant Method of Linear and Polynomial Regression Analysis, I, II, III. Nederl. Akad. Wetensch. Proc. 1950, 53, 386–392. [Google Scholar]
- Mann, H.B. Non-Parametric Test Against Trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. A new measure of rank correlation. Biometrika. 1938, 30, 91–93. [Google Scholar] [CrossRef]
- Shahid, S. Rainfall variability and the trends of wet and dry periods in Bangladesh. Int. J. Climatol. 2010, 30, 2299–2313. [Google Scholar] [CrossRef]
- Yue, S.; Pilon, P.; Cavadias, G. Power of the Mann-Kendall and Spearman’s rho tests for detecting monotonic trends in hydrological series. J. Hydrol. 2002, 259, 254–271. [Google Scholar] [CrossRef]
- Yue, S.; Wang, C.Y. The Mann-Kendall test modified by effective sample size to detect trend in serially correlated hydrological series. Water Resour. Manag. 2004, 18, 201–218. [Google Scholar] [CrossRef]
- Hamed, K.H.; Rao, A.R. A modified Mann-Kendall trend test for autocorrelated data. J. Hydrol. 1998, 204, 182–196. [Google Scholar] [CrossRef]
- Hamed, K.H. Trend detection in hydrologic data: The Mann-Kendall trend test under the scaling hypothesis. J. Hydrol. 2008, 349, 350–363. [Google Scholar] [CrossRef]
- Chen, B.; Xu, X.-D.; Yang, S.; Zhang, W.-D. On the origin and destination of atmospheric moisture and air mass over the Tibetan Plateau. Theor. Appl. Climatol. 2012, 110, 423–435. [Google Scholar] [CrossRef]
- Yu, H.; Wang, L.; Yang, R.; Yang, M.; Gao, R. Temporal and spatial variation of precipitation in the Hengduan Mountains region in China and its relationship with elevation and latitude. Atmos. Res. 2018, 213, 1–16. [Google Scholar] [CrossRef]
- Kim, S.B.; Lee, T.; Fukumori, I. The 1997–1999 abrupt change of the upper ocean temperature in the north central Pacific. Geophys. Res. Lett. 2004, 31, 1–4. [Google Scholar] [CrossRef]
- Li, R.; Min, Q.; Fu, Y. 1997/98 El Niño-induced changes in rainfall vertical structure in the east Pacific. J. Clim. 2011, 24, 6373–6391. [Google Scholar] [CrossRef]
- Kwon, M.H.; Jhun, J.G.; Ha, K.J. Decadal change in east Asian summer monsoon circulation in the mid-1990s. Geophys. Res. Lett. 2007, 34, 1–6. [Google Scholar] [CrossRef]
Station (Region) | Onset | Station (Region) | Onset | Station (Region) | Onset | Station (Region) | Onset |
---|---|---|---|---|---|---|---|
Tashikuergan (A) | 149 | Pali (C) | 135 | Changdu (F) | 150 | Ganzi (I) | 132 |
Wudaoliang (A) | 156 | Jiacha (C) | 150 | Dege (F) | 146 | Banma (I) | 134 |
Gaize (A) | 168 | Mangya (D) | 171 | Batang (F) | 146 | Seda (I) | 143 |
Anduo (A) | 158 | Lenghu (D) | 194 | Mangkang (F) | 150 | Daofu (I) | 139 |
Tuotuohe (A) | 162 | Dachaidan (D) | 140 | Milin (G) | 124 | Aba (I) | 133 |
Shiquanhe (B) | 194 | Delingha (D) | 130 | Chayu (G) | 76 | Maerkang (I) | 127 |
Bange (B) | 163 | Nuomuhong (D) | 166 | Tuole (H) | 146 | Hongyuan (I) | 128 |
Naqu (B) | 154 | Wulan (D) | 136 | Yeniugou (H) | 152 | Songpan (I) | 114 |
Shenzha (B) | 169 | Dulan (D) | 120 | Qilian (H) | 144 | Luolong (I) | 127 |
Dangxiong (B) | 155 | Chaka (D) | 140 | Gangcha (H) | 149 | Bomi (I) | 86 |
Jiali (B) | 144 | Xiaozaohuo (E) | 187 | Menyuan (H) | 134 | Basu (I) | 130 |
Pulan (C) | 78 | Geermu (E) | 171 | Wushaoling (H) | 147 | Xinlong (I) | 140 |
Lazi (C) | 164 | Zhiduo (E) | 157 | Qiabuqia (H) | 130 | Litang (I) | 147 |
Nanmulin (C) | 164 | Qumalai (E) | 152 | Xining (H) | 130 | Qianning (I) | 136 |
Rikaze (C) | 167 | Maduo (E) | 148 | Guizhou (H) | 135 | Linzhi (I) | 130 |
Nimu (C) | 159 | Qingshuihe (E) | 144 | Xinghai (H) | 137 | Zuogong (I) | 152 |
Gongga (C) | 163 | Zhongxinzhan (E) | 151 | Guinan (H) | 129 | Daocheng (I) | 157 |
Lasa (C) | 156 | Guoluo (E) | 136 | Tongde (H) | 138 | Kangding (I) | 118 |
Mozhugongka (C) | 149 | Dari (E) | 141 | Zeku (I) | 144 | Derong (I) | 163 |
Qiongjie (C) | 157 | Zaduo (F) | 146 | Tongren (I) | 124 | Deqin (I) | 103 |
Zedang (C) | 158 | Yushu (F) | 142 | Henan (I) | 134 | Jiulong (I) | 134 |
Nielamu (C) | 73 | Shiqu (F) | 144 | Jiuzhi (I) | 134 | Zhongdian (I) | 126 |
Dingri (C) | 177 | Suoxian (F) | 146 | Maqu (I) | 140 | Xiaojin (J) | 118 |
Jiangzi (C) | 163 | Biru (F) | 144 | Langmusi (I) | 140 | Muli (K) | 148 |
Langkazi (C) | 163 | Nangqian (F) | 143 | Ruoergai (I) | 134 | Gongshan (K) | 62 |
Cuona (C) | 111 | Leiwuqi (F) | 144 | Hezuo (I) | 130 | ||
Longzi (C) | 160 | Shiquluoxu (F) | 141 | Dingqing (I) | 148 |
Number of Stations | Region | Before the Mutation | After the Mutation | ||||
---|---|---|---|---|---|---|---|
Advanced | Unchanged | Delayed | Advanced | Unchanged | Delayed | ||
5 | A. Northern Tibet | 5/5 | 3/5 | 2/5 | |||
6 | B. Central Tibet | 4/6 | 2/6 | 3/6 | 2/6 | 1/6 | |
18 | C. Southern Tibet | 5/12 | 7/12 | 7/18 | 5/18 | 6/18 | |
8 | D. Qaidam Basin | 5/6 | 1/6 | 3/6 | 3/6 | ||
9 | E. Southern Qinghai | 7/7 | 5/7 | 2/7 | |||
12 | F. Changdu | 4/8 | 1/8 | 3/8 | 7/11 | 3/11 | 1/11 |
2 | G. Dawang–Chayu | 1/1 | 1/2 | 1/2 | |||
12 | H. Qilian–Qinghai Lake | 10/11 | 1/11 | 6/11 | 1/11 | 4/11 | |
31 | I. Bomi–Western Sichuan | 18/27 | 1/27 | 8/27 | 11/26 | 3/26 | 12/26 |
2 | J. Northern Yunnan | 2/2 | 1/2 | 1/2 | |||
1 | K. Sichuan | 1/1 | 1/1 | ||||
106 | Total | 61/86 | 2/86 | 23/86 | 48/95 | 14/95 | 33/95 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, Y.; Xu, J.; Huang, Y.; Zhou, Y.; Pang, Y.; Shi, Z.; Chen, X. Spatial and Temporal Variations in the Rainy Season Onset over the Qinghai–Tibet Plateau. Water 2019, 11, 1960. https://doi.org/10.3390/w11101960
Hu Y, Xu J, Huang Y, Zhou Y, Pang Y, Shi Z, Chen X. Spatial and Temporal Variations in the Rainy Season Onset over the Qinghai–Tibet Plateau. Water. 2019; 11(10):1960. https://doi.org/10.3390/w11101960
Chicago/Turabian StyleHu, Yuekai, Junfeng Xu, Yuxin Huang, Yinying Zhou, Yuwen Pang, Zhou Shi, and Xiaojun Chen. 2019. "Spatial and Temporal Variations in the Rainy Season Onset over the Qinghai–Tibet Plateau" Water 11, no. 10: 1960. https://doi.org/10.3390/w11101960
APA StyleHu, Y., Xu, J., Huang, Y., Zhou, Y., Pang, Y., Shi, Z., & Chen, X. (2019). Spatial and Temporal Variations in the Rainy Season Onset over the Qinghai–Tibet Plateau. Water, 11(10), 1960. https://doi.org/10.3390/w11101960