A Modeling Approach for Assessing Groundwater Resources of a Large Coral Island under Future Climate and Population Conditions: Gan Island, Maldives
Abstract
:1. Introduction
2. Methods
2.1. Study Area: Gan Island, Republic of Maldives
2.2. Model Development
2.2.1. SUTRA Modeling Code
2.2.2. Construction of the Gan Island SUTRA Model
2.2.3. Simulating Groundwater Pumping
2.2.4. Baseline Model
2.3. Model Calibration
2.4. Estimating Future Groundwater Supply
2.4.1. Simulating the Effect of Future Rainfall Patterns
2.4.2. Simulating the Effect of Future Groundwater Pumping
2.4.3. Simulating the Effect of Future Sea Level Rise
2.4.4. Summary of Future Scenario Simulations
3. Results and Discussion
3.1. General Model Results
3.2. Impact of Future Scenarios on Groundwater Supply
3.2.1. Impact of Rainfall and Population Growth
3.2.2. Impact of Sea Level Rise
4. Summary and Conclusions
- If only future rainfall is accounted for, then groundwater supply on Gan Island will increase by about 20%.
- If future rainfall patterns are similar to historical patterns, then population growth rates of 2 and 9% will result in a groundwater supply decrease of 8 and 44%, respectively.
- If future rainfall patterns coincide with those predicted by global climate models, then a population growth rate of 2% will result in an increase in groundwater supply of approximately 12%, whereas a growth rate of 9% will result in a decrease in groundwater supply of approximately 24%.
- If sea level rise occurs at estimated rates of 20 cm from 2012 to 2050, then a population growth rate of 2% likely will result in a 6% loss in groundwater supply, whereas a population growth rate of 9% may result in a supply decreased by up to 42%.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Statistic Criterions | Formula | Weighting Factor |
---|---|---|
Mean Relative Error (MRE) | 1.0 | |
Standard Deviation Relative Error (SDR) | 1.0 | |
Normalized Root Mean Square Error (NRMSE) | 1.0 | |
Correlation Coefficient (Corr) | Calculation in Matlab | 1.0 |
Brier Score (BS) | 0.5 | |
Skill Score (S score) | 0.5 | |
Kendall Slope (Kendall Slope) | Calculated in Pro-UCL | 1.0 |
GCM | Mean RE (mm) | Std RE | NRMSE | Corr | BS | S Score | Kendal Slope (mm/year) | Total Score |
---|---|---|---|---|---|---|---|---|
CESM1-CAM5 | 0.09 | 0.26 | 1.33 | 0.33 | 3.69 | 111 | −0.002 | 34.5 |
MIROC5 | −0.12 | −0.22 | 0.97 | 0.47 | 4.33 | 104 | 0.0023 | 39 |
IPSL-CM5A-LR | 0.19 | −0.21 | 1.04 | 0.43 | 3.93 | 102 | 0.0007 | 42.5 |
CCSM4 | −0.14 | 0.02 | 1.08 | 0.46 | 3.95 | 104 | 0.0046 | 43 |
GFDL-ESM2G | 0.01 | 0.17 | 1.34 | 0.24 | 4.07 | 109 | 0.0022 | 43.5 |
GISS-E2-R p1 | 0.07 | 0.42 | 1.46 | 0.31 | 3.97 | 105 | −0.0033 | 53 |
NorESM1-ME | −0.12 | 0.25 | 1.41 | 0.24 | 3.63 | 108 | 0.0034 | 57.5 |
IPSL-CM5A-MR | 0.25 | 0.16 | 1.37 | 0.29 | 4.35 | 110 | 0.0054 | 64 |
GISS-E2-R p2 | 0.08 | 0.41 | 1.44 | 0.33 | 4.49 | 96 | 0.004 | 64.5 |
HadGEM2-ES | 0.25 | 0.52 | 1.39 | 0.53 | 6.03 | 88 | −0.0002 | 67.5 |
NorESM1-M | −0.06 | 0.45 | 1.57 | 0.22 | 4.75 | 99 | 0.0028 | 74 |
GFDL-CM3 | 0.14 | 0.57 | 1.45 | 0.45 | 4.93 | 95 | 0.0029 | 75 |
GISS-E2-R p3 | 0.12 | 0.54 | 1.61 | 0.27 | 4.93 | 95 | −0.0011 | 75 |
FIO-ESM | 0.03 | 0.30 | 1.49 | 0.19 | 3.83 | 101 | 0.0062 | 75.5 |
GISS-E2-H p1 | 0.16 | 0.55 | 1.68 | 0.22 | 3.35 | 108 | 0.0018 | 79 |
MIROC-ESM | 0.43 | −0.04 | 1.49 | 0.20 | 4.63 | 93 | −0.0025 | 79.5 |
MIROC-ESM-CHEM | 0.43 | −0.14 | 1.46 | 0.17 | 4.79 | 85 | −0.001 | 81.5 |
MRI-CGCM3 | 0.23 | 0.90 | 1.71 | 0.49 | 4.99 | 90 | 0.0031 | 93.5 |
GISS-E2-H p2 | 0.27 | 0.49 | 1.65 | 0.25 | 4.57 | 96 | 0.0056 | 98 |
GFDL-ESM2M | 0.26 | 0.86 | 1.78 | 0.42 | 4.93 | 113 | 0.0105 | 102 |
CSIRO-Mk3-6-0 | 0.59 | 0.49 | 1.77 | 0.46 | 5.81 | 75 | 0.0051 | 103 |
bcc-csm1-1 | −0.11 | 0.69 | 1.83 | 0.15 | 11.15 | 100 | −0.0083 | 113 |
GISS-E2-H p3 | 0.31 | 0.68 | 1.86 | 0.21 | 4.01 | 99 | 0.0121 | 118.5 |
HadGEM2-AO | 0.85 | 0.85 | 1.79 | 0.42 | 4.99 | 91 | 0.0109 | 119 |
References
- Beswick, R. Water Supply and Sanitation, A Strategy and Plan for the Republic of Maldives, Parts 1 & 2; Report for Ministry of Health; Republic of Maldives: Indian Ocean, South Asia, 2000.
- Falkland, T. Report on Groundwater Investigations in Northern Development Region (ADB Regional Development Project; Republic of Maldives Ministry of Planning and National Development: Male, Republic of Maldives, 2001.
- Ministry of Planning, Human Resources and Environment, Government of Maldives. MPHRE Fifth National Development Plan 1997–2000; PostTsunami Environmental Assessment: Male, Maldives, 1998; Volume II.
- Roy, P.; Connell, J. Climatic Change and the Future of Atoll States. J. Coast. Res. 1991, 7, 1057–1075. [Google Scholar]
- Carpenter, C.; Stubbs, J.; Overmars, M. Proceedings of the Pacific Regional Consultation on Water in Small Island Countries, Sigatoka, Fiji Islands, 29 July–3 August 2002; ADB and SOPAC: Suva, Fiji, 2002. [Google Scholar]
- White, I.; Falkland, T.; Metutera, T.; Metai, E.; Overmars, M.; Perez, P.; Dray, A. Climatic and Human Influences on Groundwater in Low Atolls. Vadose Zone J. 2007, 6, 581–590. [Google Scholar] [CrossRef] [Green Version]
- White, I.; Falkland, T. Management of freshwater lenses on small Pacific islands. Hydrogeol. J. 2010, 18, 227–246. [Google Scholar] [CrossRef]
- Yamamoto, L.; Esteban, M. Atoll Island States and International Law; Springer: Berlin, Germany, 2013. [Google Scholar]
- Bailey, R.; Jenson, J.; Olsen, A. Estimating the ground water resources of atoll islands. Water 2010, 2, 1–27. [Google Scholar] [CrossRef]
- Ayers, J.F.; Vacher, H.L. Hydrogeology of an atoll island: A conceptual model from detailed study of a Micronesian example. Groundwater 1986, 24, 185–198. [Google Scholar] [CrossRef]
- Yamano, H.; Kayanne, H.; Yamaguchi, T.; Kuwahara, Y.; Yokoki, H.; Shimazaki, H.; Chikamori, M. Atoll island vulnerability to flooding and inundation revealed by historical reconstruction: Fongafale Islet, Funafuti Atoll, Tuvalu. Glob. Planet. Chang. 2007, 57, 407–416. [Google Scholar] [CrossRef]
- Terry, J.P.; Falkland, A.C. Responses of atoll freshwater lenses to storm-surge overwash in the Northern Cook Islands. Hydrogeol. J. 2010, 18, 749–759. [Google Scholar] [CrossRef]
- Chui, T.F.M.; Terry, J.P. Modeling fresh water lens damage and recovery on atolls after storm-wave washover. Groundwater 2012, 50, 412–420. [Google Scholar] [CrossRef]
- Presley, T.K. Effects of the 1998 Drought on the Freshwater Lens in the Laura Area, Majuro Atoll, Republic of the Marshall Islands; Scientific Investigations Report; Geological Survey (U.S.): Reston, VA, USA, 2005; p. 50.
- Barkey, B.; Bailey, R. Estimating the impact of drought on groundwater resources of the Marshall Islands. Water 2017, 9, 41. [Google Scholar] [CrossRef]
- Babu, R.; Park, N.; Yoon, S.; Kula, T. Sharp Interface Approach for Regional and Well Scale Modeling of Small Island Freshwater Lens: Tongatapu Island. Water 2018, 10, 1636. [Google Scholar] [CrossRef]
- van der Velde, M.; Green, S.R.; Vanclooster, M.; Clothier, B.E. Sustainable development in small island developing states: Agricultural intensification, economic development, and freshwater resources management on the coral atoll of Tongatapu. Ecol. Econ. 2007, 61, 456–468. [Google Scholar] [CrossRef]
- Dickinson, W.R. Pacific atoll living: How long already and until when. GSA Today 2009, 19, 4–10. [Google Scholar] [CrossRef]
- Rankey, E.C. Nature and stability of atoll island shorelines: Gilbert Island chain, Kiribati, equatorial Pacific. Sedimentology 2011, 58, 1831–1859. [Google Scholar] [CrossRef]
- Bailey, R.T.; Khalil, A.; Chatikavanij, V. Estimating transient freshwater lens dynamics for atoll islands of the Maldives. J. Hydrol. 2014, 515, 247–256. [Google Scholar] [CrossRef] [Green Version]
- Storlazzi, C.D.; Gingerich, S.B.; van Dongeren, A.; Cheriton, O.M.; Swarzenski, P.W.; Quataert, E.; Voss, C.I.; Field, D.W.; Annamalai, H.; Piniak, G.A.; et al. Most atolls will be uninhabitable by the mid-21st century because of sea-level rise exacerbating wave-driven flooding. Sci. Adv. 2018, 4, eaap9741. [Google Scholar] [CrossRef] [Green Version]
- Hay, J.E. Climate Risk Profile for the Maldives; National Disaster Management Center: Maldives, Republic of Maldives, 2006. Available online: http://ndmc.gov.mv/assets/Uploads/Climate-Risk-Profile-for-the-Maldives-Final-Report-2006.pdf. (accessed on 5 January 2019).
- Sovacool, B.K. Perceptions of climate change risks and resilient island planning in the Maldives. Mitig. Adapt. Strateg. Glob. Chang. 2012, 17, 731–752. [Google Scholar] [CrossRef]
- Peinhardt, K.A. Climate Change Vulnerabilities: Case Studies of the Maldives and Kenya. Honor Scholar Thesis, University of Connecticut, Sotrrs, CT, USA, 2014. [Google Scholar]
- Bailey, R.T.; Barnes, K.; Wallace, C.D. Predicting Future Groundwater Resources of Coral Atoll Islands: Predicting future groundwater resources of coral atoll islands. Hydrol. Process. 2016, 30, 2092–2105. [Google Scholar] [CrossRef]
- Voss, C.I.; Provost, A.M. SUTRA: A Model for Saturated-Unsaturated, Variable-Density Groundwater flow with Solute or Energy Transport; USGS Water-Resources Investigations Report, 02-4231; US Geological Survey: Reston, VA, USA, 2010.
- Langevin, C.D.; Thorne, D.T., Jr.; Dausman, A.M.; Sukop, M.C.; Guo, W. SEAWAT Version 4: A Computer Program for Simulation of Multi-Species Solute and Heat Transport; U.S. Geological Survey: Reston, VA, USA, 2008.
- Comte, J.-C.; Join, J.-L.; Banton, O.; Nicolini, E. Modelling the response of fresh groundwater to climate and vegetation changes in coral islands. Hydrogeol. J. 2014, 22, 1905–1920. [Google Scholar] [CrossRef] [Green Version]
- Deng, C.; Bailey, R.T. Assessing groundwater availability of the Maldives under future climate conditions. Hydrol. Process. 2017, 31, 3334–3349. [Google Scholar] [CrossRef]
- Alsumaiei, A.A.; Bailey, R.T. Quantifying threats to groundwater resources in the Republic of Maldives Part I: Future rainfall patterns and sea-level rise. Hydrol. Process. 2018, 32, 1137–1153. [Google Scholar] [CrossRef]
- Post, V.E.A.; Galvis, S.C.; Sinclair, P.J.; Werner, A.D. Evaluation of management scenarios for potable water supply using script-based numerical groundwater models of a freshwater lens. J. Hydrol. 2019, 571, 843–855. [Google Scholar] [CrossRef]
- Barnett, J.; Adger, W.N. Climate Dangers and Atoll Countries. Clim. Chang. 2003, 61, 321–337. [Google Scholar] [CrossRef]
- Ibrahim, M.S.A.; Bari, M.R.; Miles, L. Water resources management in Maldives with an emphasis on desalination. Maldives Water Sanit. Auth. Rep. Male Repub. Maldives. 2002. Available online: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.113.913&rep=rep1&type=pdf (accessed on 5 January 2019).
- AFD. Sewerage System Creation in 4 Islands, Maldives Tsunami Infrastructure Rehabilitation Project, Final Report; BRL Ingénierie for Agence Française de Développement: Male, Maldives, 2007. [Google Scholar]
- Bangladesh Consultants, Ltd. Groundwater Investigations Report for L.Gan; Ministry of Housing, Transport and Environment, Republic of Maldives: Male, Maldives, 2010.
- World Health Organization. International Standards for Drinking-Water, 2nd ed.; World Health Organization: Geneva, Switzerland, 1963. [Google Scholar]
- Winston, R.B. ModelMuse: A graphical user interface for MODFLOW-2005 and PHAST; U.S. Geological Survey: Reston, VA, USA, 2009.
- Bailey, R.T.; Jenson, J.W.; Olsen, A.E. Numerical modeling of atoll island hydrogeology. Groundwater 2009, 47, 184–196. [Google Scholar] [CrossRef] [PubMed]
- Falkland, A.C. Climate, hydrology, and water resources of the Cocos (Keeling) Islands. ARB 1994, 400, 1–52. [Google Scholar] [CrossRef]
- Fu, G.; Liu, Z.; Charles, S.P.; Xu, Z.; Yao, Z. A score-based method for assessing the performance of GCMs: A case study of southeastern Australia. J. Geophys. Res. Atmospheres 2013, 118, 4154–4167. [Google Scholar] [CrossRef]
- Ministry of Environment and Construction State of the environment Maldives 2011. Male Minist. Environ. Energy: Republic of Maldives. 2011. Available online: http://www.environment.gov.mv/v1/download/386 (accessed on 5 January 2019).
- Pernetta, J.C. Impacts of climate change and sea-level rise on small island states. Glob. Environ. Chang. 1992, 2, 19–31. [Google Scholar] [CrossRef]
- Woodworth, P.L. Have there been large recent sea level changes in the Maldive Islands? Glob. Planet. Chang. 2005, 49, 1–18. [Google Scholar] [CrossRef]
Scenarios | S1 | S2 | S3 | S4 | S5 | S6 | |
---|---|---|---|---|---|---|---|
Stresses | Rainfall Change | x | x | x | |||
Conservative Pumping | x | x | |||||
Aggressive Pumping | x | x | |||||
Sea Level Rise | x | ||||||
Results | Lens Volume (106 m3) | 16.7 | 13 | 7.8 | 15.6 | 10.6 | 11.4 |
Standard Dev. | 0.73 | 0.79 | 0.53 | 0.8 | |||
% Increase from 2012 | 20% | −8% | −44% | 12% | −24% | −18% | |
Lens Thickness (m) | 7.2 | 5.6 | 4.4 | 6.8 | 5.6 | 5.7 | |
Standard Dev. | 0.22 | 0.27 | 0.26 | 0.34 | |||
% Increase from 2012 | 20% | −7% | −27% | 13% | −7% | −6% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, C.; Bailey, R. A Modeling Approach for Assessing Groundwater Resources of a Large Coral Island under Future Climate and Population Conditions: Gan Island, Maldives. Water 2019, 11, 1963. https://doi.org/10.3390/w11101963
Deng C, Bailey R. A Modeling Approach for Assessing Groundwater Resources of a Large Coral Island under Future Climate and Population Conditions: Gan Island, Maldives. Water. 2019; 11(10):1963. https://doi.org/10.3390/w11101963
Chicago/Turabian StyleDeng, Chenda, and Ryan Bailey. 2019. "A Modeling Approach for Assessing Groundwater Resources of a Large Coral Island under Future Climate and Population Conditions: Gan Island, Maldives" Water 11, no. 10: 1963. https://doi.org/10.3390/w11101963
APA StyleDeng, C., & Bailey, R. (2019). A Modeling Approach for Assessing Groundwater Resources of a Large Coral Island under Future Climate and Population Conditions: Gan Island, Maldives. Water, 11(10), 1963. https://doi.org/10.3390/w11101963