The Application of Different Biological Remediation Strategies to PCDDs/PCDFs Contaminated Urban Sediments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Urban Sediments and Soils
2.2. Pot Experiment Design
- Natural attenuation—uncontaminated soil was mixed with fresh urban sediments, and no plants or bacterial inoculants were added;
- Phytoremediation—uncontaminated soil was mixed with fresh urban sediments and T. patula L. or F. arundinacea Schreb. were planted;
- Rhizobacterial inoculation—uncontaminated soil was mixed with fresh urban sediments and S. costaricanus RP92 or M. niastensis P87 were added, no plants were grown;
- Rhizobacteria-assisted phytoremediation—using both the studied plants and bacterial strains (Figure 1).
2.3. Soil Analyses
2.3.1. Determination of Physico-Chemical Parameters
2.3.2. Determination of PCDD/PCDF Concentrations
2.3.3. Phytotoxicity Analysis
2.4. Plant Analyses
2.4.1. Determination of Protein Content
2.4.2. Determination of Chlorophyll Content
2.5. Statistical Analysis
3. Results and Discussion
3.1. The Physico-Chemical Properties and PCDD/PCDF Concentrations in Soil, Urban Sediments and Sediment-Amendment Soil
3.2. The Effects of Urban Sediment Amendment and Applied Remediation Strategies on Soil Phytotoxicity and PCDD/PCDF Concentrations
3.3. The Effects of Urban Sediment Amendments and Applied Remediation Strategies on the Biomass and Physiological Parameters of T. patula L. and F. arundinacea
Author Contributions
Funding
Conflicts of Interest
References
- Foster, G.D.; Roberts, E.C., Jr.; Gruessner, B.; Velinsky, D.J. Hydrogeochemistry and transport of organic contaminants in an urban watershed of Chesapeake Bay (USA). Appl. Geochem. 2000, 15, 901–915. [Google Scholar] [CrossRef]
- Im, S.H.; Kannan, K.; Matsuda, M.; Giesy, J.P.; Wakimoto, T. Sources and distribution of polychlorinated dibenzo-p-dioxins and dibenzofurans in sediment from Masay Bay, Korea. Environ. Toxicol. Chem. 2002, 21, 245–252. [Google Scholar] [CrossRef] [PubMed]
- Jartun, M.; Ottesen, R.T.; Steinnes, E.; Volden, T. Runoff of particle bound pollutants from urban impervious surfaces studied by analysis of sediments from stormwater traps. Sci. Total. Environ. 2008, 396, 147–163. [Google Scholar] [CrossRef] [PubMed]
- Krishnappan, B.G.; Marsalek, J. Modelling of flocculation and transport of cohesive sediment from an on-stream stormwater detention pond. Water Res. 2002, 36, 3849–3859. [Google Scholar] [CrossRef]
- Urbaniak, M.; Zieliński, M.; Ligocka, D.; Zalewski, M. A comparative analysis of selected Persistent Organic Pollutants (POPs) in reservoirs of different types of anthropopression—Polish and Ethiopian studies. Fresenius Environ. Bull. 2010, 19, 2710–2718. [Google Scholar]
- Urbaniak, M.; Kiedrzyńska, E.; Zalewski, M. The role of a lowland reservoir in the transport of micropollutants, nutrients and the suspended particulate matter along the river continuum. Hydrol. Res. 2010, 43, 400–411. [Google Scholar] [CrossRef]
- Urbaniak, M.; Zieliński, M.; Kaczkowski, Z.; Zalewski, M. Spatial distribution of PCDDs, PCDFs and dl-PCBs along the cascade of urban reservoirs. Hydrol. Res. 2012, 44, 614–630. [Google Scholar] [CrossRef]
- Urbaniak, M.; Kiedrzyńska, E.; Zieliński, M.; Tołoczko, W.; Zalewski, M. Spatial distribution and reduction of PCDD/PCDF Toxic Equivalents along the three shallow lowland reservoirs. Environ. Sci. Pollut. Res. 2014, 21, 4441–4452. [Google Scholar] [CrossRef]
- Urbaniak, M.; Kiedrzyńska, E.; Kiedrzyński, M.; Zieliński, M.; Grochowalski, A. The role of hydrology in the polychlorinated dibenzo-p-dioxin and dibenzofuran distributions in a lowland river. J. Environ. Qual. 2015, 44, 1171–1182. [Google Scholar] [CrossRef]
- Urbaniak, M.; Tygielska, A.; Krauze, K.; Mankiewicz-Boczek, J. Effects of Stormwater and Snowmelt Runoff on ELISA-EQ Concentrations of PCDD/PCDF and Triclosan in an Urban River. PLoS ONE 2016, 11, 0151756. [Google Scholar] [CrossRef]
- Wagner, I.; Zalewski, M. Ecohydrology as a Basis 1 for the Sustainable City Strategic Planning—Focus on Lodz, Poland. Rev. Environ. Sci. Bio/Technol. 2009, 8, 209–217. [Google Scholar] [CrossRef]
- Wagner, I.; Zalewski, M. System solutions in urban water management: The Lodz (Poland) perspective. In Water Sensitive Cities; Howe, C., Mitchel, C., Eds.; IWA Publishing: London, UK, 2011; pp. 231–245. [Google Scholar]
- European Parliament, Council of the European Union. Directive of the European Parliament and the Council 2013/39/EC of 12 August 2013 Amending Directive 2000/60/EC and 2008/105/EC in Respect of Priority Substances in the Field of Water Policy. 2013. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2013:226:0001:0017:EN:PDF (accessed on 19 September 2019).
- Briggs, G.G.; Bromilow, R.H.; Evans, A.A. Relationships between lipophilicity and root uptake and translocation of non-ionised chemicals by barley. Pestic. Sci. 1982, 13, 495–504. [Google Scholar] [CrossRef]
- Agnello, A.; Bagard, M.; Van Hullebusch, E.; Esposito, G.; Huguenot, D. Comparative bioremediation of heavy metals and petroleum hydrocarbons co-contaminated soil by natural attenuation, phytoremediation, bioaugmentation and bioaugmentation-assisted phytoremediation. Sci. Total. Environ. 2016, 563, 693–703. [Google Scholar] [CrossRef] [PubMed]
- Huguenot, D.; Bois, P.; Cornu, J.Y.; Jezeguel, K.; Lollier, M.; Lebeau, T. Remediation of sediment and water contaminated by copper in small-scaled constructed wetlands: Effect of bioaugmentation and phytoextraction. Environ. Sci. Pollut. Res. 2015, 22, 721–732. [Google Scholar] [CrossRef] [PubMed]
- Glick, B.R. Using soil bacteria to facilitate phytoremediation. Biotechnol. Adv. 2010, 28, 367–374. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Li, X.; Li, P.; Li, F.; Zhang, L.; Zhou, Q. Evaluation of Plant–Microorganism Synergy for the Remediation of Diesel Fuel Contaminated Soil. Bull. Environ. Contam. Toxicol. 2008, 81, 19–24. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.; Afzal, M.; Iqbal, S.; Khan, Q.M. Plant–bacteria partnerships for the remediation of hydrocarbon contaminated soils. Chemosphere 2013, 90, 1317–1332. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Zhou, Q.; Xu, Y.; Wang, L.; Liang, X. Phytoremediation for co-contaminated soils of benzo[a]pyrene (B[a]P) and heavy metals using ornamental plant Tagetes patula. J. Hazard. Mater. 2011, 186, 2075–2082. [Google Scholar] [CrossRef] [PubMed]
- Suresh, B.; Bais, H.; Raghavarao, K.; Ravishankar, G.; Ghildyal, N. Comparative evaluation of bioreactor design using Tagetes patula L. hairy roots as a model system. Process. Biochem. 2005, 40, 1509–1515. [Google Scholar] [CrossRef]
- Vasudevan, P.; Kashyap, S.; Sharma, S. Tagetes: A multipurpose plant. Bioresour. Technol. 1997, 62, 29–35. [Google Scholar] [CrossRef]
- Cruz-Fernandes, A.; Tomasini-Compocosio, A.; Perez-Flores, L.J.; Fernandez-Perrino, F.J.; Gutierrez-Rojas, M. Inoculation of seed-borne fungus in the rhizosphere of Festuca arundinacea promotes hydrocarbon removal and pyrene accumulation in roots. Plant Soil 2013, 362, 261–270. [Google Scholar] [CrossRef]
- Xiao, N.; Liu, R.; Jin, C.; Dai, Y. Efficiency of five ornamental plant species in the phytoremediation of polycyclic aromatic hydrocarbon (PAH)-contaminated soil. Ecol. Eng. 2015, 75, 384–391. [Google Scholar] [CrossRef]
- Balseiro-Romero, M.; Gkorezis, P.; Kidd, P.S.; Vangronsveld, J.; Monterroso, C. Enhanced degradation of diesel in the rhizosphere of Lupinus luteus after inoculation with diesel degrading and PGP bacterial strains. J. Environ. Qual. 2016, 45, 924–932. [Google Scholar] [CrossRef] [PubMed]
- Becerra-Castro, C.; Kidd, P.; Prieto-Fernández, Á.; Weyens, N.; Acea, M.; Vangronsvel, J. Endophytic and rhizoplane bacteria associated with Cytisus striatus growing on hexachlorocyclohexane-contaminated soil: Isolation and characterisation. Plant Soil 2011, 340, 413–433. [Google Scholar] [CrossRef]
- Becerra-Castro, C.; Monterroso, C.; Prieto-Fernandez, A.; Rodríguez-Lamas, L.; Loureiro-Viñas, M.; Acea, M.; Kidd, P. Pseudometallophytes colonising Pb/Zn mine tailings: A description of the plant–microorganism–rhizosphere soil system and isolation of metal-tolerant bacteria. J. Hazard. Mater. 2012, 217, 350–359. [Google Scholar] [CrossRef] [PubMed]
- Szklarek, S.; Wagner, I.; Jurczak, T.; Zalewski, M. Sequential Sedimentation-Biofiltration System for the purification of a small urban river (the Sokolowka, Lodz) supplied by stormwater. J. Environ. Manag. 2018, 205, 201–208. [Google Scholar] [CrossRef]
- Negussie, Y.Z.; Urbaniak, M.; Szklarek, S.; Lont, K.; Gągała, I.; Zalewski, M. Efficiency analysis of two sequential biofiltration systems in Poland and Ethiopia—The pilot study. Ecohydrol. Hydrobiol. 2012, 12, 271–285. [Google Scholar] [CrossRef]
- Mergeay, M.; Nies, D.; Schlegel, H.G.; Gerits, J.; Charles, P.; Van Gijsegem, F. Alcaligenes eutrophus CH34 is a facultative chemolithotroph with plasmid-bound resistance to heavy metals. J. Bacteriol. 1985, 162, 328–334. [Google Scholar] [Green Version]
- Polish Committee for Standardization. Emission from Stationary Sources. Determination of PCDD/PCDF Mass Concentration. PRT 3: Identification and Quantification; PN-EN 1948-3; PKN: Warsaw, Poland, 2006. (In Polish) [Google Scholar]
- EPA. Method 1613, Tetra through Octa chlorinated dioxins and furans by Isotope dilution HRGC/HRMS; Revision B; US EPA: Washington, DC, USA, 1994.
- Van den Berg, M.; Birnbaum, L.S.; Denison, M.; De Vito, M.; Farland, W.; Feeley, M.; Fiedler, H.; Hakansson, H.; Hanberg, A.; Haws, L.; et al. The 2005 World Health Organization Re-evaluation of Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds. Toxicol. Sci. 2006, 93, 223–241. [Google Scholar] [CrossRef]
- Van den Berg, M. The 2005 WHO re-evaluation of toxic equivalency factors for dioxin like compounds—Implications for risk assessment and limitations of the concept. Toxicol. Letters 2006, 164, S55–S56. [Google Scholar] [CrossRef]
- Phytotoxkit, Seed Germination and Early Growth Microbiotest with Higher Plants; MicroBioTest Inc.: Nazareth, Belgium, 2004.
- Persoone, G.; Maršálek, B.; Blinova, I.; Torokne, A.; Zarina, D.; Manusadžianas, L.; Nalecz-Jawecki, G.; Tofan, L.; Stepanova, N.; Tothova, L.; et al. A practical and user-friendly toxicity classification system with microbiotests for natural waters and wastewaters. Environ. Toxicol. 2003, 18, 395–402. [Google Scholar] [CrossRef] [PubMed]
- Bradford, M.M. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Porra, R.; Thompson, W.; Kriedemann, P. Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: Verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim. Et Biophys. Acta (Bba)—Bioenerg. 1989, 975, 384–394. [Google Scholar] [CrossRef]
- Toth, G.; Jones, A.; Montanarella, L. LUCAS Topsoil Survey Methodology. Data and Results; JRC Technical Reports; Publications Office of the European Union: Luxembourg, 2013. [Google Scholar]
- MacDonald, D.; Ingersoll, C.; Berger, T. Development and evaluation of consensus- based sediment development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Arch. Environ. Contam. Toxicol. 2000, 39, 20–31. [Google Scholar] [CrossRef] [PubMed]
- Baran, A.; Tarnawski, M. Phytotoxkit/Phytotestkit and Microtox® as tools for toxicity assessment of sediments. Ecotoxicol. Environ. Saf. 2013, 98, 19–27. [Google Scholar] [CrossRef]
- Chen, Y.; Zhu, G.; Tian, G.; Zhou, G.; Luo, Y.; Wu, S. Phytotoxicity of dredged sediment from urban canal as land application. Environ. Pollut. 2002, 117, 233–241. [Google Scholar] [CrossRef]
- Czerniawska-Kusza, I.; Kusza, G. The potential of the Phytotoxkit microbiotest for hazard evaluation of sediments in eutrophic freshwater ecosystems. Environ. Monit. Assess. 2011, 179, 113–121. [Google Scholar] [CrossRef]
- Sun, M.; Fu, D.; Teng, Y.; Shen, Y.; Luo, Y.; Li, Z.; Christie, P. In situ phytoremediation of PAH-contaminated soil by intercropping alfalfa (Medicago sativa L.) with tall fescue (Festuca arundinacea Schreb.) and associated soil microbial activity. J. Soils Sediments 2011, 11, 980–989. [Google Scholar] [CrossRef]
- Siciliano, S.D.; Germida, J.J.; Banks, K.; Greer, C.W. Changes in microbial community composition and function during a polyaromatic hydrocarbon phytoremediation field trial. Appl. Environ. Microbiol. 2003, 69, 483–489. [Google Scholar] [CrossRef]
- Macek, T.; Macková, M.; Káš, J. Exploitation of plants for the removal of organics in environmental remediation. Biotechnol. Adv. 2000, 18, 23–34. [Google Scholar] [CrossRef]
- Kuiper, I.; Lagendijk, E.L.; Bloemberg, G.V.; Lugtenberg, B.J.J. Rhizoremediation: A Beneficial Plant-Microbe Interaction. Mol. Plant-Microbe Interact. 2004, 17, 6–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lugtenberg, B.J.; Dekkers, L.; Bloemberg, G.V. Molecular determinants of rhizosphere colonization by Pseudomonas. Ann. Rev. Phytopathol. 2001, 39, 461–490. [Google Scholar] [CrossRef] [PubMed]
- Whipps, J.M. Carbon economy. In The Rhizosphere; Lynch, J.M., Ed.; Wiley: New York, NY, USA, 1990; pp. 59–97. [Google Scholar]
- Ahemad, M.; Kibret, M. Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective. J. King Saud Univ. Sci. 2014, 26, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Puga-Freitas, R.; Blouin, M. A review of the effects of soil organisms on plant hormone signalling pathways. Environ. Exp. Bot. 2015, 114, 104–116. [Google Scholar] [CrossRef]
- Firdaus-e-Bareen; Nazir, A. Metal decontamination of tannery solid waste using Tagetes patula in association with saprobic and mycorrhizal fungi. Environmentalist 2010, 30, 45–53. [Google Scholar] [CrossRef]
- Camp, P.J.; Huber, S.C.; Burke, J.J.; Moreland, D.E. Biochemical Changes that Occur during Senescence of Wheat Leaves. Plant Physiol. 1982, 70, 1641–1646. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romanova, A.K.; Semenova, G.A.; Ignat’ev, A.R.; Novichkova, N.S.; Fomina, I.R. Biochemistry and cell ultrastructure changes during senescence of Beta vulgaris L. leaf. Protoplasma 2016, 253, 719–727. [Google Scholar] [CrossRef]
- Girondé, A.; Poret, M.; Etienne, P.; Trouverie, J.; Bouchereau, A.; Le Cahérec, F.; Leport, L.; Orsel, M.; Niogret, M.-F.; Deleu, C.; et al. A profiling approach of the natural variability of foliar N remobilization at the rosette stage gives clues to understand the limiting processes involved in the low N use efficiency of winter oilseed rape. J. Exp. Bot. 2015, 66, 2461–2473. [Google Scholar] [CrossRef] [Green Version]
- Nath, K.; Phee, B.-K.; Jeong, S.; Lee, S.Y.; Tateno, Y.; Allakhverdiev, S.I.; Lee, C.-H.; Gil Nam, H. Age-dependent changes in the functions and compositions of photosynthetic complexes in the thylakoid membranes of Arabidopsis thaliana. Photosynth. Res. 2013, 117, 547–556. [Google Scholar] [CrossRef]
Compound | Urban Sediment | Uncontaminated Soil | Urban Sediment Amended Soil |
---|---|---|---|
Soil pH | 7.15 | 6.65 | 7.21 |
OC (g kg−1) | 108 | 11.0 | 19.9 |
Sum of 17 PCDDs/PCDFs (ng kg−1) | 2170 | 24.8 | 236 |
TEQ PCDDs/PCDFs (ng TEQ kg−1) | 8.8 | 0.3 | 2.1 |
Mg (mg kg−1) | 7040 | 403 | 1030 |
Ca (mg kg−1) | 42,300 | 1020 | 5440 |
Fe (mg kg−1) | 32,000 | 3170 | 6140 |
Zn (mg kg−1) | 821 | 16.1 | 111 |
Cr (mg kg−1) | 62.2 | 5.7 | 10.7 |
Cd (mg kg−1) | 1.2 | 0.05 | 0.19 |
Ba (mg kg−1) | 282 | 28.5 | 51.2 |
Pb (mg kg−1) | 90.1 | 6.5 | 14.9 |
Cu (mg kg−1) | 117 | 2.7 | 15.2 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Urbaniak, M.; Wyrwicka, A.; Siebielec, G.; Siebielec, S.; Kidd, P.; Zieliński, M. The Application of Different Biological Remediation Strategies to PCDDs/PCDFs Contaminated Urban Sediments. Water 2019, 11, 1962. https://doi.org/10.3390/w11101962
Urbaniak M, Wyrwicka A, Siebielec G, Siebielec S, Kidd P, Zieliński M. The Application of Different Biological Remediation Strategies to PCDDs/PCDFs Contaminated Urban Sediments. Water. 2019; 11(10):1962. https://doi.org/10.3390/w11101962
Chicago/Turabian StyleUrbaniak, Magdalena, Anna Wyrwicka, Grzegorz Siebielec, Sylwia Siebielec, Petra Kidd, and Marek Zieliński. 2019. "The Application of Different Biological Remediation Strategies to PCDDs/PCDFs Contaminated Urban Sediments" Water 11, no. 10: 1962. https://doi.org/10.3390/w11101962
APA StyleUrbaniak, M., Wyrwicka, A., Siebielec, G., Siebielec, S., Kidd, P., & Zieliński, M. (2019). The Application of Different Biological Remediation Strategies to PCDDs/PCDFs Contaminated Urban Sediments. Water, 11(10), 1962. https://doi.org/10.3390/w11101962