Assessing the Potential for Potable Water Savings in the Residential Sector of a City: A Case Study of Joinville City
Abstract
:1. Introduction
2. Method
- Daily rainfall;
- Roof area of buildings;
- Number of dwellers per building;
- Total daily water demand per capita;
- Rainwater demand (% of daily water demand);
- Runoff coefficient;
- First flush.
2.1. Daily Rainfall
2.2. Roof Areas of Buildings
2.3. Number of Dwellers
2.4. Total Daily Water Demand
2.5. Rainwater Demand
2.6. Runoff Coefficient
2.7. First Flush
2.8. Computer Simulation
3. Results and Discussion
3.1. Daily Rainfall
3.2. Roof Area
3.3. Potential for Potable Water Savings by Using Rainwater
3.4. Rainwater Tank Capacities
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- UN. United Nations. World Population Prospects. 2017. Available online: https://population.un.org/wpp/Publications/Files/WPP2017_DataBooklet.pdf (accessed on 20 May 2018).
- Distefano, T.; Kelly, S. Are we in deep water? Water scarcity and its limits to economic growth. Ecol. Econ. 2017, 142, 130–147. [Google Scholar] [CrossRef]
- Katz, D.; Grinstein, A.; Kronrod, A. Evaluating the effectiveness of a water conservation campaign: Combining experimental and field methods. J. Environ. Manag. 2016, 180, 335–343. [Google Scholar] [CrossRef] [PubMed]
- Bouwer, H. Integrated water management: Emerging issues and challenges. Agric. Water Manag. 2000, 45, 217–228. [Google Scholar] [CrossRef]
- Garcia, X.; Pargament, D. Reusing wastewater to cope with water scarcity: Economic, social and environmental considerations for decision-making. Resour. Conserv. Recycl. 2015, 101, 154–166. [Google Scholar] [CrossRef]
- Hadadin, N.; Qaqish, M.; Akawwi, E.; Bdour, A. Water shortage in Jordan—Sustainable solutions. Desalination 2010, 250, 197–202. [Google Scholar] [CrossRef]
- Manes, K.S.; Husain, S.; Ferse, S.C.A.; Costa, M.M. Water scarcity in the Spermonde Archipelago, Sulawesi, Indonesia: Past, present and future. Environ. Sci. Policy 2012, 23, 78–84. [Google Scholar] [CrossRef]
- Wu, P.; Tan, M. Challenges for sustainable urbanization: A case study of water shortage and water environment changes in Shandong, China. Procedia Environ. Sci. 2012, 13, 919–927. [Google Scholar] [CrossRef]
- Ghisi, E.; Montibeller, A.; Schmidt, R.W. Potential for potable water savings by using rainwater: An analysis over 62 cities in southern Brazil. Build. Environ. 2006, 41, 204–210. [Google Scholar] [CrossRef]
- Lee, K.E.; Mokhtar, M.; Hanafiah, M.M.; Halim, A.A.; Badusah, J. Rainwater harvesting as an alternative water resource in Malaysia: Potential, policies and development. J. Clean. Prod. 2016, 126, 218–222. [Google Scholar] [CrossRef]
- Amos, C.C.; Rahman, A.; Gathenya, J.M. Economic analysis of rainwater harvesting systems comparing developing and developed countries: A case study of Australia and Kenya. J. Clean. Prod. 2018, 172, 196–207. [Google Scholar] [CrossRef]
- Umapathi, S.; Pezzaniti, D.; Beecham, S.; Whaley, D.; Sharma, A. Sizing of Domestic Rainwater Harvesting Systems Using Economic Performance Indicators to Support Water Supply Systems. Water 2019, 11, 783. [Google Scholar] [CrossRef]
- Leong, J.Y.C.; Chong, M.N.; Poh, P.E.; Vieritz, A.; Talei, A.; Chow, M.F. Quantification of mains savings from decentralised rainwater, greywater, and hybrid rainwater-greywater systems in tropical climatic conditions. J. Clean. Prod. 2018, 179, 946–958. [Google Scholar] [CrossRef]
- Marinoski, A.K.; Ghisi, E. Environmental performance of hybrid rainwater-greywater systems in residential buildings. Resour. Conserv. Recycl. 2019, 144, 100–114. [Google Scholar] [CrossRef]
- Rostad, N.; Foti, R.; Montalto, F.A. Harvesting rooftop runoff to flush toilets: Drawing conclusions from four major U.S. cities. Resour. Conserv. Recycl. 2016, 108, 97–106. [Google Scholar] [CrossRef]
- Li, Z.; Boyle, F.; Reynolds, A. Rainwater harvesting and greywater treatment systems for domestic application in Ireland. Desalination 2010, 260, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Abdulla, F.A.; Al-Shareef, A.W. Roof rainwater harvesting systems for household water supply in Jordan. Desalination 2009, 243, 195–207. [Google Scholar] [CrossRef]
- Villarreal, E.L.; Dixon, A. Analysis of a rainwater collection system for domestic water supply in Ringdansen, Norrköping, Sweden. Build. Environ. 2005, 40, 1174–1184. [Google Scholar] [CrossRef]
- Domènech, L.; Saurí, D. A comparative appraisal of the use of rainwater harvesting in single and multi-family buildings of the Metropolitan Area of Barcelona (Spain): Social experience, drinking water savings and economic costs. J. Clean. Prod. 2011, 19, 598–608. [Google Scholar] [CrossRef]
- Ghisi, E. Potential for potable water savings by using rainwater in the residential sector of Brazil. Build. Environ. 2006, 41, 1544–1550. [Google Scholar] [CrossRef]
- Ghisi, E.; Ferreira, D.F. Potential for potable water savings by using rainwater and greywater in a multi-storey residential building in southern Brazil. Build. Environ. 2007, 42, 2512–2522. [Google Scholar] [CrossRef]
- Santos, S.M.; De Farias, M.M.M.W.E.C. Potential for rainwater harvesting in a dry climate: Assessments in a semiarid region in northeast Brazil. J. Clean. Prod. 2017, 164, 1007–1015. [Google Scholar] [CrossRef]
- Campisano, A.; Mondica, C. Optimal sizing of storage tanks for domestic rainwater harvesting in Sicily. Resour. Conserv. Recycl. 2012, 63, 9–16. [Google Scholar] [CrossRef]
- SIMGeo. Sistema de Informações Municipais Georreferenciadas (Georeferenced Municipal Information System); SIMGeo: Joinville, Brazil, 2017. Available online: http://prefeituradigital.joinville.sc.gov.br/servico/detalhe-3-SIMGeo.html (accessed on 10 June 2017). (In Portuguese)
- Maia, B.G.O.; Klostermann, D.; Ribeiro, J.M.G.; Simm, M.; Oliveira, T.M.N.; Barros, V.G. Bacias Hidrográficas da Região de Joinville (Joinville River Basins), 2nd ed.; UNIVILLE: Joinville, Brazil, 2013; pp. 10–51. (In Portuguese) [Google Scholar]
- Ghisi, E.; Cordova, M.M. Netuno 4. Programa computacional (Netuno 4, computer programme); Federal University of Santa Catarina: Florianópolis, Brazil, 2014; Available online: http://www.labeee.ufsc.br/ (accessed on 15 September 2017). (In Portuguese)
- Sturges, H.A. The choice of a class interval. J. Am. Stat. Assoc. 1926, 153, 65–66. [Google Scholar] [CrossRef]
- SNIS. Diagnóstico dos Serviços de Água e Esgoto-2015 (Diagnosis of Water and Sewerage Services-2015); Sistema Nacional de Informações sobre Saneamento (National System about Information on Sanitation) (SNIS): Brasília, Brazil, 2016.
- Ghisi, E.; Bressan, D.L.; Martini, M. Rainwater tank capacity and potential for potable water savings by using rainwater in the residential sector of south-eastern Brazil. Build. Environ. 2007, 42, 1654–1666. [Google Scholar] [CrossRef]
- Dias, T.F.; Kalbusch, A.; Henning, E. Factors influencing water consumption in buildings in southern Brazil. J. Clean. Prod. 2018, 184, 160–167. [Google Scholar] [CrossRef]
- Peters, M.R.; Sezerino, P.H.; Melo, K.M.S.; Philippi, L.S. Potencialidade de reuso residencial utilizando fontes alternativas de água (Residential reuse potential using alternative water sources). In Proceedings of the Simpósio Ítalo-Brasileiro de engenharia sanitária e ambiental (Italian-Brazilian Symposium on sanitary and Environmental Engineering), Fortaleza, Brazil, 17–22 September 2006. (In Portuguese). [Google Scholar]
- Ghisi, E.; Oliveira, S.M. Potential for potable water savings by combining the use of rainwater and greywater in houses in southern Brazil. Build. Environ. 2007, 42, 1731–1742. [Google Scholar] [CrossRef]
- Almeida, G. Metodologia para caracterização de efluentes domésticos para fins de reúso: Estudo em Feira de Santana, Bahia (Methodology for characterization of domestic wastewater for reuse purposes: Study in Feira de Santana, Bahia). Master’s Thesis, Clean Technologies in Production Process, Federal University of Bahia, Salvador, Brazil, 2007. (In Portuguese). [Google Scholar]
- Barreto, D. Perfil do consumo residencial e usos finais da água (Residential water consumption profile and end-uses). AMB Constr. 2008, 8, 23–40. (In Portuguese) [Google Scholar]
- Marinoski, A.K.; Vieira, A.S.; Silva, A.S.; Ghisi, E. Water end-uses in low-income houses in Southern Brazil. Water 2014, 6, 1985–1999. [Google Scholar] [CrossRef]
- Associação Brasileira de Normas Técnicas (ABNT). Água de Chuva: Aproveitamento de coberturas em áreas urbanas para fins não potáveis-requisitos (Rainwater—Use of the roofs in urban areas for non-potable purposes—Requirements); Associação Brasileira de Normas Técnicas (ABNT): Rio de Janeiro, Brazil, 2007. (In Portuguese) [Google Scholar]
- Comitê de gerenciamento das bacias do Rio Cubatão e Cachoeira; Joinville daily rainfall data; CCJ: Joinville, Brazil, 2016; Available online: https://www.cubataojoinville.org.br/ (accessed on 10 may 2017). (In Portuguese)
- Lopes, V.A.R.; Marques, G.F.; Dornelles, F.; Azuara, J.M. Performance of rainwater harvesting systems under scenarios of non-potable water demand and roof area typologies using a stochastic approach. J. Clean. Prod. 2017, 148, 304–316. [Google Scholar] [CrossRef]
- Herrmann, T.; Schmida, U. Rainwater utilisation in Germany: Efficiency, dimensioning, hydraulic and environmental aspects. Urban Water J. 2000, 1, 307–316. [Google Scholar] [CrossRef]
- Martínez, A.B.; Ortega, J.M.P.; Rivera, F.N.; González, M.S.; Montoya, A.J.C.; El-Halwagi, M.M. Optimal design of rainwater collecting systems for domestic use into a residential development. Resour. Conserv. Recycl. 2014, 84, 44–56. [Google Scholar] [CrossRef]
- Walsh, T.C.; Pomeroy, C.A.; Burian, S.J. Hydrologic modeling analysis of a passive, residential rainwater harvesting program in an urbanized, semi-arid watershed. J. Hydrol. 2014, 508, 240–253. [Google Scholar] [CrossRef]
- Zhang, X.; Hu, M.; Chen, G.; Xu, Y. Urban rainwater utilization and its role in mitigating urban waterlogging problems—A case study in Nanjing, China. Water Resour. Manag. 2012, 26, 3757–3766. [Google Scholar] [CrossRef]
- Shaaban, A.J.B.; Appan, A. Utilizing rainwater for non-potable domestic uses and reducing peak urban runoff in Malaysia. In Proceedings of the International Rainwater Catchment Systems Conference, Mexico City, Mexico, 25–29 August 2003. [Google Scholar]
City | Water End-Uses | |
---|---|---|
Toilet Flushing | Washing Machine | |
Florianópolis (southern Brazil) [31] | - | 22.0 |
Florianópolis (southern Brazil) [21] | 32.8 | 12.4 |
Palhoça (southern Brazil) [32] | 28.0 | 7.2 |
Feira de Santana (northeastern Brazil) [33] | 8.0 | 13.0 |
Simões Filho (northeastern Brazil) [33] | 23.0 | 17.0 |
São Paulo (southeastern Brazil) [34] | 20.0 | 14.0 |
Florianópolis (southern Brazil) [35] | 20.0 | 14.0 |
Number of Dwellings | Roof Area (m2) | Number of Dwellings | Roof Area (m2) |
---|---|---|---|
34 | 44.09 | 58 | 575.47 |
36 | 510.35 | 64 | 569.64 |
38 | 596.78 | 71 | 915.39 |
41 | 577.59 | 84 | 721.59 |
45 | 512.99 | 88 | 657.77 |
46 | 520.50 | 93 | 1270.44 |
47 | 715.65 | 103 | 987.82 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Custódio, D.A.; Ghisi, E. Assessing the Potential for Potable Water Savings in the Residential Sector of a City: A Case Study of Joinville City. Water 2019, 11, 2074. https://doi.org/10.3390/w11102074
Custódio DA, Ghisi E. Assessing the Potential for Potable Water Savings in the Residential Sector of a City: A Case Study of Joinville City. Water. 2019; 11(10):2074. https://doi.org/10.3390/w11102074
Chicago/Turabian StyleCustódio, Diego Antônio, and Enedir Ghisi. 2019. "Assessing the Potential for Potable Water Savings in the Residential Sector of a City: A Case Study of Joinville City" Water 11, no. 10: 2074. https://doi.org/10.3390/w11102074
APA StyleCustódio, D. A., & Ghisi, E. (2019). Assessing the Potential for Potable Water Savings in the Residential Sector of a City: A Case Study of Joinville City. Water, 11(10), 2074. https://doi.org/10.3390/w11102074