Sorption Properties of the Bottom Sediment of a Lake Restored by Phosphorus Inactivation Method 15 Years after the Termination of Lake Restoration Procedures
Abstract
:1. Introduction
- To determine the sorption characteristics of Długie Lake sediment;
- To determine whether implemented lake restoration methods influenced P adsorption by sediment;
- To determine whether the “active” layer of sediment (enriched with aluminum) produced during restoration (completed in 2003 year) still has a higher sorption capacity in relation to phosphorus.
2. Material and Methods
2.1. Lake Description
2.2. Sampling
2.3. Water Analyses
2.4. Sorption Laboratory Experiment
2.5. Estimation of Sorption Parameters
- C—phosphorus concentration after the 24-h equilibration procedure (mg dm−3);
- S—total phosphorus adsorbed by sediment (solid phase), (mg kg−1 dw);
- S0—native sorbed phosphorus
- the phosphorus pool, which was desorbed at an initial concentration of 0 mg P dm−3 (mg kg−1 dw);
- S’— phosphorus amount adsorbed during experiment, (mg kg−1 dw);
- Smax—maximum sorption capacity of sediment in the Langmuir equation (mg kg−1 dw);
- k—constant related to bonding energy in the Langmuir equation (dm3 mg−1).
- S1—maximum sorption capacity of sediment in the double Langmuir equation (type I active sites) (mg kg−1 dw);
- S2—maximum sorption capacity of sediment in the double Langmuir equation (type II active sites) (mg kg−1 dw);
- Smax2—the total sorption capacity of sediment in the double Langmuir equation (the sum of S1 and S2 maximum sorption capacities) (mg kg−1 dw)
- S, C—as in the Equation (1);
- Kf—Freundlich sorption constant (dm3 kg−1);
- 1/n—a constant which characterizes the heterogeneity of the adsorption process.
- Kd—division coefficient (dm3 kg−1);
- R—gas constant (J mol−1 K−1);
- T—temperature (K).
2.6. Sediment Analyses
3. Statistical Analysis
- Y—dependent variable (in the present research, the particular sorption characteristic in the Freundlich, Langmuir or double Langmuir model);
- B0—constant (intercept);
- B1…Bi—regression coefficients;
- X1…Xi—independent variables (bottom sediment chemical components: Si, organic matter, Fe, Al, Mn, Ca, Mg, Mn);
- Eij—residual component;
- R—multiple correlation coefficient;
- R2—multiple determination coefficient.
4. Results
4.1. Sorption Parameters
4.2. Water
4.3. Sediment Chemical Composition
4.4. Phosphorus Fractions
5. Discussion
6. Conclusions
- The double Langmuir model matched the P adsorption experimental data of Długie Lake sediment best (the highest R2 values). This fact may indicate that phosphorus adsorption in the tested sediments most likely occurs through phosphate binding at two types of active sorption sites.
- Phosphate adsorption by the investigated lake sediment during experiments was significantly connected to aluminum content in sediment, as was indicated by the multiple regression equations obtained for the following adsorption parameters: Smax, Smax2, S2, k2, 1/n and EPC0. A modification of sediment sorption capacity using aluminum coagulant probably increased the number of additional active sorption sites, as well as the second type of sites described by the double Langmuir equation.
- The fact that the theoretical sorption capacity assessed using Langmuir models is higher than S0, as well as a sum of highly mobile phosphorus fractions (NH4Cl–P + BD–P), confirm that the both kinds of sediment of Długie Lake (the “active” layer and layers created after ending restoration procedures) still should bind P.
- The relatively low amounts of phosphates, noted in the near-bottom water of Długie Lake, even in anoxia, confirm that the aluminum-modified sediment layer still can control internal P loading in the lake.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zetland, D. The End of Abundance. Economic Solutions to Water Scarcity; digital edition 1.2; Aguanomics Press: Mission Viejo, CA, USA; Amsterdam, The Netherlands, 2011. [Google Scholar]
- Zetland, D. Living with Water Scarcity; digital edition; Aguanomic Press: Mission Viejo, CA, USA; Amsterdam, The Netherlands; Vancouver, BC, Canada, 2014. [Google Scholar]
- Ahtiainen, M.; Sandman, O.; Tynni, R. Sysmäjärvi—A lake polluted by mining wastewater. Hydrobiologia 1983, 103, 303–308. [Google Scholar] [CrossRef]
- Auer, M.T.; Johnson, N.A.; Penn, M.R.; Effler, S.W. Measurement and verification of rates of sediment phosphorus release for a hypereutrophic urban lake. Hydrobiologia 1993, 253, 301–309. [Google Scholar] [CrossRef]
- Grochowska, J.; Augustyniak, R.; Łopata, M. How durable is the improvement of environmental conditions in a lake after the termination of restoration treatments. Ecol. Eng. 2017, 104, 23–29. [Google Scholar] [CrossRef]
- Grochowska, J.; Augustyniak, R.; Łopata, M.; Parszuto, K.; Tandyrak, R.; Płachta, A. From saprotrophic to clear water status: The restoration path of a degraded urban lake. Waterair Soil Pollut. 2019, 230, 94. [Google Scholar] [CrossRef]
- Hamilton, D.; Collier, K.; Quinn, J.; Howard-Williams, C. (Eds.) Lake Restoration Handbook, A New Zealand Perspective; Springer International Publishing: Berlin, Germany, 2018; 599p. [Google Scholar]
- Xu, H.; Brown, D.G.; Moore, M.R.; Currie, W.S. Optimizing spatial land management to balance water quality and economic returns in a Lake Erie watershed. Ecol. Econ. 2018, 145, 104–114. [Google Scholar] [CrossRef]
- Xu, H.; Liu, Z.; Wang, L.; Wan, H.; Jing, C.; Jiang, J.; Wu, J.; Qi, J. Trade-offs and spatial dependency of rice production and environmental consequences at community level in Southeastern China. Environ. Res. Lett. 2018, 13, 024021. [Google Scholar] [CrossRef] [Green Version]
- Baker, D.B.; Confesor, R.; Ewing, D.E.; Johnson, L.T.; Kramer, J.W.; Merryfield, B.J. Phosphorus loading to Lake Erie from the Maumee, Sandusky and Cuyahoga rivers: The importance of bioavailability. J. Great Lakes Res. 2014, 40, 502–517. [Google Scholar] [CrossRef]
- Khare, Y.; Naja, G.M.; Stainback, G.A.; Martinez, C.J.; Paudel, R.; Van Lent, T. A phased assessment of restoration alternatives to achieve phosphorus water quality targets for Lake Okeechobee, Florida, USA. Water 2019, 11, 327. [Google Scholar] [CrossRef]
- Klapper, H. Technologies for lake restoration. J. Limnol. 2003, 62 (Suppl. 1), 73–90. [Google Scholar] [CrossRef]
- Özkundakci, D.; Hamilton, D.P.; Gibbs, M.M. Hypolimnetic phosphorus and nitrogen dynamics in a small, eutrophic lake with a seasonally anoxic hypolimnion. Hydrobiology 2010. [Google Scholar] [CrossRef]
- Pan, G.; Miao, X.; Bi, L.; Zhang, H.; Wang, L.; Wang, L.; Wang, Z.; Chen, J.; Ali, J.; Pan, M.; et al. Modified Local Soil (MLS) technology for harmful algal bloom control, sediment remediation, and ecological restoration. Water 2019, 11, 1123. [Google Scholar] [CrossRef]
- Mackay, E.B.; Maberly, S.C.; Pan, G.; Reitzel, K.; Bruere, A.; Corker, N.; Douglas, G.; Egemose, S.; Hamilton, D.; Hatton-Ellis, T.; et al. Geoengineering in lakes: Welcome attraction or fatal distraction? Inland Waters 2014, 4, 349–356. [Google Scholar] [CrossRef]
- Søndergaard, M. Nutrient Dynamics in Lakes—With Emphasis on Phosphorus, Sediment and Lake Restoration. Ph.D. Thesis, National Environmental Research Institute, University of Aarhus, Aarhus, Denmark, 2007; 276p. [Google Scholar]
- Cooke, G.D.; Welch, E.B.; Peterson, S.A.; Nichols, S.A. Restoration and Management of Lakes and Reservoirs; CRC Press, Taylor & Francis Group, LLC: Boca Raton, FL, USA, 2005. [Google Scholar]
- Douglas, G.B.; Hamilton, D.P.; Robb, M.S.; Pan, G.; Spears, B.M.; Lurling, M. Guiding principles for the development and application of solid-phase phosphorus adsorbents for freshwater ecosystems. Aquat. Ecol. 2016, 50, 385–405. [Google Scholar] [CrossRef] [Green Version]
- Pan, G.; Yang, B.; Wang, D.; Chen, H.; Tian, B.; Zhang, M.; Yuan, X.; Chen, J. In-lake algal bloom removal and submerged vegetation restoration using modified local soils. Ecol. Eng. 2011, 37, 302–308. [Google Scholar] [CrossRef]
- Bryl, Ł.; Wiśniewski, R. Efekty inaktywacji fosforu w osadach dennych Jeziora Wolsztyńskiego (The effects of phosphorus inactivation in the bottom sediment of Wolsztyńskie Lake). In Ochrona i Rekultywacja Jezior (Lakes Protection and Restoration); Ryszard, W., Ed.; Polskie Zrzeszenie Inżynierów i Techników Sanitarnych (Polish Association of Civil Engineers and Technicians): Toruń, Poland, 2015; pp. 71–83. (In Polish) [Google Scholar]
- Kajak, Z. Eutrofizacja Jezior (Lakes’ Eutrophication); PWN Warszawa: Warszawa, Poland, 1979. (In Polish) [Google Scholar]
- Kajak, Z. Hydrobiologia-Limnologia (Hydrobiology-Limnology); PWN Warszawa: Warszawa, Poland, 2001. (In Polish) [Google Scholar]
- Lewandowski, J.; Schauser, I.; Hupfer, M. Long term effect of phosphorus precipitations with alum in hypereutrophic Lake Süsser See (Germany). Water Res. 2003, 37, 3194–3204. [Google Scholar] [CrossRef]
- Rydin, E. Potentially mobile phosphorus in Lake Erken sediment. Water Res. 2000, 34, 2037–2042. [Google Scholar] [CrossRef]
- Wiśniewski, R. Inaktywacja fosforanów w osadach dennych jako metoda redukcji symptomów eutrofizacji (Phosphate inactivation in the bottom sediment as a method of eutrophication symptoms reduction). Bibl. Monit. Środ. Łódź 1995, 5, 189–201. (In Polish) [Google Scholar]
- Wiśniewski, R. Zróżnicowanie stanu i stopnia degradacji jezior. Wartość diagnostyczna badań osadów (The differentiation of lakes status and degradation. The diagnostic value of sediment research). In Ochrona i Rekultywacja Jezior (Lakes’ Protection and Restoration); Wiśniewski, R., Piotrowiak, J., Eds.; Polskie Zrzeszenie Inżynierów i Techników Sanitarnych (Polish Association of Civil Engineers and Technicians): Toruń, Poland, 2007. (In Polish) [Google Scholar]
- Reitzel, K.; Jensen, H.S.; Egemose, S. pH dependent dissolution of sediment aluminum in six Danish lakes treated with aluminum. Water Res. 2013, 47, 1409–1420. [Google Scholar] [CrossRef]
- Van Hullebush, E.; Auvray, F.; Deluchat, V.; Chazal, P.; Baudu, M. Phosphorus fractionation and short-term mobility in the surface sediment of a polymictic shallow lake treated with a low dose of alum (Courtille Lake, France). Water Air Soil Pollut. 2003, 146, 75–91. [Google Scholar] [CrossRef]
- Brzozowska, R.; Gawrońska, H. Influence of a multi-year artificial aeration of a lake using destratification method on the sediment-water phosphorus exchange. Arch. Environ. Prot. 2005, 31, 71–88. [Google Scholar]
- Hongthanat, N.; Kovar, J.L.; Thompson, M.L. Sorption indices to estimate risk of soil phosphorus loss in the Rathbun Lake Watershed, Iowa. Soil Sci. 2011, 176, 237–244. [Google Scholar] [CrossRef]
- Hongthanat, N.; Kovar, J.L.; Thompson, M.L.; Russell, J.R.; Isenhart, T.M. Phosphorus source—Sink relationships of stream sediments in the Rathbun Lake watershed in southern Iowa, USA. Environ. Monit. Assess. 2016, 188, 453–467. [Google Scholar] [CrossRef] [PubMed]
- Zhou, A.M.; Tang, H.X.; Wang, D.S. Phosphorus adsorption on natural sediments: Modeling and effects of pH and sediment composition. Water Res. 2005, 39, 1245–1254. [Google Scholar] [CrossRef] [PubMed]
- Filipkowska, U. Wykorzystanie Właściwości Adsorpcyjnych Materiałów Odpadowych do Usuwania Barwników z Roztworów Wodnych (The Use of Adsorption Abilities of Waste Materials for Dye Removal from Aqueous Solutions); Wyd. Nauk. Komitetu Inżynierii Środowiska PAN: Lublin, Poland, 2011. [Google Scholar]
- Filipkowska, U.; Jóźwiak, T.; Szymczyk, P. Application of cross-linked chitosan for phosphate removal from aqueous solutions. Prog. Chem. Appl. Chitin Its Deriv. 2014, XIX, 5–14. [Google Scholar] [CrossRef]
- Jóźwiak, T.; Filipkowska, U.; Szymczyk, P.; Kuczajowska-Zadrożna, M.; Mielcarek, A. The use of cross-linked chitosan beads for nutrients (nitrate and orthophosphate) removal from a mixture of P–PO4, N–NO2 and N–NO3. Int. J. Biol. Macromol. 2017, 104, 1280–1293. [Google Scholar] [CrossRef]
- Szymczyk, P.; Filipkowska, U.; Jóźwiak, T.; Kuczajowska-Zadrożna, M. Phosphate removal from aqueous solutions by chitin and chitosan in flakes. Prog. Chem. Appl. Chitin Derivatives 2016, XXI. [Google Scholar] [CrossRef]
- Tibco Software Inc. Statistica Software Package 13.0.; Tibco Software Inc.: Palo Alto, CA USA, 2018. [Google Scholar]
- Łukawska–Matuszewska, K.; Voght, R.D.; Xie, R. Phosphorus pools and internal loading in a eutrophic lake with gradients in sediment geochemistry created by land use in the watershed. Hydrobiologia 2013, 713, 183–197. [Google Scholar] [CrossRef] [Green Version]
- Fizykochemiczne Metody Analizy w Chemii Środowiska. Cz. 2 (Physical and Chemical Analytical Methods in the Environmental Chemistry; Kosobucki, P.; Buszewski, B. (Eds.) Part. 2; Wyd. Nauk. UMK: Toruń, Poland, 2016. (In Polish) [Google Scholar]
- Zar, J.H. Biostatistical Analysis; Prentice Hall: Upper Saddle River, NJ, USA, 1984. [Google Scholar]
- Böstrom, B.; Andersen, J.M.; Fleisher, S.; Jannson, M. Exchange of phosphorus across the water-sediment interface. Hydrobiologia 1988, 170, 229–244. [Google Scholar] [CrossRef]
- Brzozowska, R. Wpływ wieloletniego sztucznego napowietrzania na przykładzie Jeziora Długiego na wymianę związków biogennych między osadami a wodą (The Influence of Multi-Year Artificial Aeration, on the Example of Długie Lake on the Nutrient Exchange between Sediment and Water. Ph.D. Thesis, UWM in Olsztyn, Olsztyn, Poland, 2003. (In Polish). [Google Scholar]
- Grochowska, J.; Brzozowska, R. Influence of different recultivation methods on durability of nitrogen compounds changes in the waters of an urban lake. Water Environ. J. 2015. [Google Scholar] [CrossRef]
- Augustyniak, R. Wpływ Czynników Fizyczno-Chemicznych i Mikrobiologicznych na Zasilanie Wewnętrzne Fosforem wód Wybranych Jezior Miejskich (The Influence of Physical, Chemical and Microbiological Factors on the Phosphorus Internal Loading to the Water of Selected Urban Lakes); Polish Academy of Sciences, Environmental Engineering Committee Publishing House: Lublin, Poland, 2018; 242p. (In Polish) [Google Scholar]
- Cyr, H.; Mc Cabe, S.K.; Nürnberg, G.K. Phosphorus sorption experiments and the potential for internal phosphorus loading in littoral areas of a stratified lake. Water Res. 2009, 43, 1654–1666. [Google Scholar] [CrossRef]
- Huang, L.; Fu, L.; Jin, C.; Gielen, G.; Lin, X.; Wang, H.; Zhang, Y. Effect of temperature on phosphorus sorption to sediments from shallow eutrophic lakes. Ecol. Eng. 2011, 37, 1515–1522. [Google Scholar] [CrossRef]
- Huang, W.; Wang, K.; Du, H.; Wang, T.; Wang, S.; Yangmao, Z.; Jiang, X. Characteristic of phosphorus sorption at the sediment–water interface in Dongting lake, a Yangtzee-connected lake. Hydrol. Res. 2016, 47 (Suppl. 1), 225–237. [Google Scholar] [CrossRef]
- Huang, W.; Chen, X.; Wang, K.; Jiang, X. Seasonal characteristics of phosphorus sorption by sediment from plain lakes with different trophic statuses. R. Soc. Open Sci. 2018, 5, 172237. [Google Scholar] [CrossRef] [PubMed]
- Pan, G.; Krom, M.D.; Herut, B. Adsorption-desorption of phosphate on airborne dust and riverborne particulates in east Mediterranean seawater. Environ. Sci. Technol. 2002, 36, 3519–3524. [Google Scholar] [CrossRef] [PubMed]
- Pan, G.; Krom, M.; Zhang, M.; Zhang, X.; Wang, L.; Dai, L.; Sheng, Y.; Mortimer, R.J.G. Impact of suspended inorganic particles on phosphorus cycling in the Yellow River (China). Environ. Sci. Tech. 2013, 47, 9685–9692. [Google Scholar] [CrossRef]
- Holford, I.C.R.; Wedderburn, R.W.M.; Mattingly, G.E.G. A Langmuir two-surface equation as a model for phosphate adsorption by soils. J. Soil Sci. 1974, 25, 242–255. [Google Scholar] [CrossRef]
- Limousin, G.; Gaudet, J.-P.; Charlet, L.; Szenknect, S.; Barthes, V.; Krimissa, M. Sorption isotherms: A review on physical bases, modeling and measurement. Appl. Geochem. 2007, 22, 249–275. [Google Scholar] [CrossRef]
- Froelich, P.N. Kinetic control of dissolved phosphate in natural rivers and estuaries: A primer on the phosphate buffer mechanism. Limnol. Oceanogr. 1988, 33, 649–668. [Google Scholar] [CrossRef]
- Bartoszek, L.; Koszelnik, P. Assessment of phosphorus retention in the bottom sediments of the Solina-Myczkowce complex of reservoirs. Rocz. Ochr. Środowiska 2016, 18, 213–230. [Google Scholar]
- Orihel, D.M.; Baulch, H.M.; Casson, N.J.; North, R.L.; Parsons, C.T.; Seckar, D.C.M.; Venkiteswaran, J.J. Internal phosphorus loading in Canadian fresh waters: A critical review and data analysis. Can. J. Fish. Aquat. Sci. 2017, 74, 2005–2029. [Google Scholar] [CrossRef]
- House, W.A.; Denison, F.H. Factors influencing the measurement of equilibrium phosphate concentrations in river sediments. Water Res. 2002, 34, 1187–1200. [Google Scholar] [CrossRef]
- James, W.F. Internal phosphorus loading contributions from deposited and resuspended sediment to the Lake of the Woods. Lake Reserv. Manag. 2017, 33, 347–359. [Google Scholar] [CrossRef]
Station | Sediment Layer | Langmuir Model | Double Langmuir Model | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Smax (mg kg−1) | k (dm3 mg−1) | R2 | S1 (mg kg−1) | k1 (dm3 mg−1) | S2 (mg kg−1) | k2 (dm3mg−1) | Smax2 (mg kg−1) | R2 | ||
St. 1 | 0–5 cm | 320.0 | 1.60 | 0.99 | 319.91 | 1.53 | 3.11 | 11.32 | 323.0 | 1.00 |
5–10 cm | 470.5 | 0.94 | 0.96 | 229.35 | 0.93 | 241.11 | 0.94 | 470.5 | 0.96 | |
10–15 cm | 497.7 | 0.62 | 0.93 | 218.30 | 1.02 | 927.69 | 0.10 | 1146.0 | 0.93 | |
15–20 cm | 325.4 | 1.61 | 0.95 | 163.36 | 1.62 | 161.97 | 1.61 | 325.3 | 0.95 | |
St. 2 | 0–5 cm | 375.9 | 1.05 | 0.98 | 534.3 | 0.24 | 106.61 | 3.47 | 640.9 | 0.99 |
5–10 cm | 458.8 | 2.39 | 0.94 | 109.8 | 32.43 | 1178.18 | 0.202 | 1288.0 | 0.99 | |
10–15 cm | 508.3 | 0.91 | 0.99 | 1212.89 | 0.08 | 224.1 | 1.92 | 1437.0 | 0.99 | |
15–20 cm | 524.2 | 0.71 | 0.97 | 16.4 | 12.65 | 601.74 | 0.501 | 618.14 | 0.98 | |
St. 3 | 0–5 cm | 269.2 | 3.74 | 0.93 | 470.3 | 0.357 | 65.86 | 27.7 | 535.9 | 0.99 |
5–10 cm | 279.0 | 2.44 | 0.95 | 98.66 | 16.04 | 2066.9 | 0.047 | 2165.6 | 0.99 | |
10–15 cm | 241.7 | 1.27 | 0.94 | 1155.6 | 0.067 | 54.7 | 12.206 | 1210.3 | 0.97 | |
15–20 cm | 254.2 | 0.94 | 0.95 | 38.2 | 20.81 | 1303.9 | 0.061 | 1342.1 | 0.98 |
Station | Sediment Layer | Freundlich Model | |||||
---|---|---|---|---|---|---|---|
1/n | Kf (dm3 kg−1) | R2 | EPC0 (mg dm−3) | S0 (mg kg−1) | ΔGads | ||
St. 1 | 0–5 cm | 0.5875 | 192.9 | 0.98 | 0.004 | 8.02 | −13.72 |
5–10 cm | 0.7545 | 239.4 | 0.95 | 0.012 | 8.32 | −13.48 | |
10–15 cm | 0.8476 | 210.2 | 0.93 | 0.011 | 4.62 | −12.92 | |
15–20 cm | 0.6840 | 222.2 | 0.93 | 0.006 | 6.36 | −13.78 | |
St. 2 | 0–5 cm | 0.4771 | 309.7 | 0.99 | 0.004 | 22.96 | −15.17 |
5–10 cm | 0.6429 | 231.9 | 0.98 | 0.027 | 22.63 | −13.32 | |
10–15 cm | 0.6090 | 183.5 | 0.98 | 0.020 | 16.81 | −12.98 | |
15–20 cm | 0.7045 | 212.0 | 0.97 | 0.033 | 19.31 | −12.93 | |
St. 3 | 0–5 cm | 0.4276 | 199.7 | 0.98 | 0.001 | 7.21 | −14.49 |
5–10 cm | 0.4712 | 187.8 | 0.98 | 0.002 | 10.53 | −14.06 | |
10–15 cm | 0.5432 | 126.9 | 0.97 | 0.059 | 27.36 | −11.23 | |
15–20 cm | 0.5898 | 116.0 | 0.97 | 0.046 | 18.92 | −11.40 |
Fitted Model Equation | R | R2 |
---|---|---|
Smax = 1.969 Fesed + 1.644 Alsed + Eij | 0.885 | 0.782 |
k—non significant | ||
S0 = 5.289 − 3.622 Sised +2.792 Fesed − 4.471 Mnsed + Eij | 0.967 | 0.935 |
1/n = 0.389 Alsed + Eij | 0.952 | 0.907 |
Kf = 1.514 + 1.063 Fesed − 1.145 Mgsed + Eij | 0.670 | 0.450 |
EPC0 = −0.463 − 0.327 Mnsed + 0.166 Mgsed + 0.14 OMsed − 0.095 Alsed + Eij | 0.924 | 0.854 |
S1—non significant | ||
k1—non significant | ||
S2 = 13.253 Alsed + Eij | 0.695 | 0.480 |
k2 = −14.566 Alsed + Eij | 0.875 | 0.767 |
Smax2 = −42.279 + 7.371 Alsed + 6.985 OMsed + 8.523 Sised + Eij | 0.965 | 0.931 |
Station | Sediment Layer | OM | Si | IC | Fe | Al | Ca | Mg | Mn | TN | % dw |
---|---|---|---|---|---|---|---|---|---|---|---|
St. 1 | 0–5 cm | 326.26 ± 12.51 | 220.61 ± 3.94 | 9.25 ± 0.61 | 22.58 ± 2.46 | 12.75 ± 0.85 | 18.40 ± 2.09 | 5.94 ± 0.51 | 0.36 ± 0.04 | 16.16 ± 0.65 | 7.58 |
5–10 cm | 311.40 ± 12.33 | 227.22 ± 3.99 | 10.08 ± 0.72 | 26.56 ± 2.54 | 13.08 ± 0.81 | 21.70 ± 2.15 | 5.18 ± 0.63 | 0.31 ± 0.03 | 15.45 ± 0.46 | 9.86 | |
10–15 cm | 305.43 ± 12.26 | 228.72 ± 4.23 | 10.19 ± 0.82 | 21.04 ± 2.02 | 14.57 ± 0.89 | 18.39 ± 2.18 | 6.10 ± 0.92 | 0.29 ± 0.03 | 15.09 ± 0.56 | 15.59 | |
15–20 cm | 296.49 ± 12.18 | 229.08 ± 4.24 | 10.72 ± 0.88 | 21.82 ± 2.08 | 12.87 ± 0.81 | 22.28 ± 2.03 | 5.10 ± 0.99 | 0.26 ± 0.03 | 14.63 ± 0.72 | 11.24 | |
St. 2 | 0–5 cm | 498.06 ± 23.77 | 137.25 ± 10.27 | 9.65 ± 0.59 | 18.91 ± 1.26 | 15.39 ± 1.53 | 17.40 ± 1.21 | 4.05 ± 1.02 | 0.28 ± 0.07 | 27.71 ± 0.72 | 3.10 |
5–10 cm | 463.74 ± 22.58 | 145.60 ± 10.83 | 9.82 ± 0.63 | 19.97 ± 1.28 | 17.33 ± 1.25 | 16.00 ± 1.15 | 5.44 ± 0.99 | 0.27 ± 0.04 | 26.29 ± 0.81 | 4.33 | |
10–15 cm | 455.18 ± 23.24 | 146.07 ± 11.03 | 10.38 ± 0.78 | 20.58 ± 1.33 | 18.90 ± 1.33 | 16.49 ± 1.18 | 6.94 ± 0.92 | 0.41 ± 0.04 | 26.97 ± 0.68 | 5.35 | |
15–20 cm | 442.68 ± 22.86 | 161.84 ± 11.26 | 8.97 ± 0.62 | 21.96 ± 1.44 | 16.16 ± 1.28 | 14.49 ± 1.03 | 8.15 ± 1.20 | 0.39 ± 0.05 | 25.99 ± 0.24 | 6.02 | |
St. 3 | 0–5 cm | 511.92 ± 13.57 | 135.29 ± 7.83 | 8.81 ± 0.25 | 15.27 ± 1.63 | 15.77 ± 1.62 | 16.11 ± 1.28 | 5.43 ± 0.51 | 0.49 ± 0.12 | 29.91 ± 1.05 | 3.48 |
5–10 cm | 511.20 ± 13.78 | 133.61 ± 7.96 | 8.86 ± 0.27 | 14.21 ± 1.28 | 18.95 ± 1.72 | 19.09 ± 1.36 | 4.30 ± 0.23 | 0.28 ± 0.09 | 29.36 ± 0.99 | 4.61 | |
10–15 cm | 502.98 ± 12.98 | 135.94 ± 8.03 | 9.24 ± 0.18 | 16.47 ± 1.33 | 16.79 ± 1.27 | 17.16 ± 1.32 | 5.34 ± 0.33 | 0.26 ± 0.06 | 29.08 ± 0.81 | 5.87 | |
15–20 cm | 482.78 ± 12.23 | 150.41 ± 8.23 | 9.31 ± 0.21 | 17.94 ± 1.81 | 15.32 ± 1.27 | 16.78 ± 1.22 | 5.00 ± 0.56 | 0.23 ± 0.09 | 27.46 ± 0.90 | 6.38 |
Station | Sediment Layer | NH4Cl–P | BD–P | NaOH–rP | NaOH–nrP | HCl–P | res–P | TP |
---|---|---|---|---|---|---|---|---|
St. 1 | 0–5 cm | 0.035 ± 0.006 | 0.136 ± 0.018 | 0.957 ± 0.006 | 1.263 ± 0.018 | 0.767 ± 0.018 | 0.628 ± 0.022 | 3.786 ± 0.210 |
5–10 cm | 0.025 ± 0.005 | 0.108 ± 0.016 | 0.893 ± 0.006 | 1.300 ± 0.012 | 0.879 ± 0.012 | 0.789 ± 0.019 | 4.129 ± 0.280 | |
10–15 cm | 0.024 ± 0.005 | 0.104 ± 0.016 | 1.028 ± 0.008 | 1.371 ± 0.011 | 1.006 ± 0.014 | 0.788 ± 0.013 | 4.186 ± 0.160 | |
15–20 cm | 0.034 ± 0.007 | 0.138 ± 0.018 | 0.924 ± 0.007 | 0.862 ± 0.012 | 1.074 ± 0.014 | 0.764 ± 0.015 | 3.796 ± 0.120 | |
St. 2 | 0–5 cm | 0.040 ± 0.003 | 0.162 ± 0.015 | 1.598 ± 0.062 | 1.948 ± 0.022 | 0.626 ± 0.015 | 0.778 ± 0.022 | 5.151 ± 0.340 |
5–10 cm | 0.045 ± 0.005 | 0.206 ± 0.016 | 2.100 ± 0.088 | 2.018 ± 0.025 | 0.882 ± 0.013 | 0.787 ± 0.030 | 6.237 ± 0.320 | |
10–15 cm | 0.042 ± 0.004 | 0.215 ± 0.018 | 2.298 ± 0.073 | 2.338 ± 0.043 | 0.921 ± 0.020 | 0.692 ± 0.018 | 6.307 ± 0.220 | |
15–20 cm | 0.040 ± 0.003 | 0.164 ± 0.013 | 0.839 ± 0.043 | 2.274 ± 0.032 | 0.836 ± 0.011 | 1.033 ± 0.015 | 5.187 ± 0.280 | |
St. 3 | 0–5 cm | 0.048 ± 0.004 | 0.137 ± 0.002 | 0.612 ± 0.007 | 1.860 ± 0.012 | 0.602 ± 0.012 | 1.164 ± 0.009 | 4.423 ± 0.130 |
5–10 cm | 0.051 ± 0.003 | 0.132 ± 0.003 | 0.735 ± 0.003 | 2.150 ± 0.014 | 0.552 ± 0.009 | 1.028 ± 0.011 | 4.572 ± 0.132 | |
10–15 cm | 0.045 ± 0.003 | 0.130 ± 0.003 | 0.659 ± 0.006 | 2.219 ± 0.010 | 0.539 ± 0.008 | 1.099 ± 0.009 | 4.768 ± 0.180 | |
15–20 cm | 0.046 ± 0.004 | 0.131 ± 0.002 | 0.650 ± 0.003 | 2.113 ± 0.011 | 0.602 ± 0.011 | 0.939 ± 0.008 | 4.481 ± 0.160 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Augustyniak, R.; Grochowska, J.; Łopata, M.; Parszuto, K.; Tandyrak, R.; Tunowski, J. Sorption Properties of the Bottom Sediment of a Lake Restored by Phosphorus Inactivation Method 15 Years after the Termination of Lake Restoration Procedures. Water 2019, 11, 2175. https://doi.org/10.3390/w11102175
Augustyniak R, Grochowska J, Łopata M, Parszuto K, Tandyrak R, Tunowski J. Sorption Properties of the Bottom Sediment of a Lake Restored by Phosphorus Inactivation Method 15 Years after the Termination of Lake Restoration Procedures. Water. 2019; 11(10):2175. https://doi.org/10.3390/w11102175
Chicago/Turabian StyleAugustyniak, Renata, Jolanta Grochowska, Michał Łopata, Katarzyna Parszuto, Renata Tandyrak, and Jacek Tunowski. 2019. "Sorption Properties of the Bottom Sediment of a Lake Restored by Phosphorus Inactivation Method 15 Years after the Termination of Lake Restoration Procedures" Water 11, no. 10: 2175. https://doi.org/10.3390/w11102175
APA StyleAugustyniak, R., Grochowska, J., Łopata, M., Parszuto, K., Tandyrak, R., & Tunowski, J. (2019). Sorption Properties of the Bottom Sediment of a Lake Restored by Phosphorus Inactivation Method 15 Years after the Termination of Lake Restoration Procedures. Water, 11(10), 2175. https://doi.org/10.3390/w11102175