New Approach to Improve the Soil Water Balance Method for Evapotranspiration Estimation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site, Climate, and Soil Properties
2.2. Evapotranspiration Measurement
2.2.1. Eddy Covariance
2.2.2. Bowen Ratio System
2.2.3. Soil Water Balance
2.3. Available Energy Analysis
2.4. Comparison during Observation Periods
3. Results
3.1. Residual Method
3.2. EC and BREB Comparison
3.3. Soil Water Balance and Capillary Rise
3.4. Estimated Evapotranspiration
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fisher, J.B.; Melton, F.; Middleton, E.; Hain, C.; Anderson, M.; Allen, R.; McCabe, M.F.; Hook, S.; Baldocchi, D.; Townsend, P.A.; et al. The future of evapotranspiration: Global requirements for ecosystem functioning, carbon and climate feedbacks, agricultural management, and water resources. Water Resour. Res. 2017, 53, 2618–2626. [Google Scholar] [CrossRef]
- Reyes-González, A.; Kjaersgaard, J.; Trooien, T.; Hay, C.; Ahiablame, L. Comparative Analysis of METRIC Model and Atmometer Methods for Estimating Actual Evapotranspiration. Int. J. Agron. 2017, 2017, 3632501. [Google Scholar] [CrossRef]
- Fidantemiz, Y.F.; Jia, X.; Daigh, A.L.M.; Hatterman-Valenti, H.; Steele, D.D.; Niaghi, A.R.; Simsek, H. Effect of water table depth on soybean water use, growth, and yield parameters. Water 2019, 11, 931. [Google Scholar] [CrossRef]
- Verstraeten, W.W.; Veroustraete, F.; Feyen, J. Assessment of evapotranspiration and soil moisture content across different scales of observation. Sensors 2008, 8, 70–117. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Kang, S.; Li, F.; Zhang, L. Comparison of three evapotranspiration models to Bowen ratio-energy balance method for a vineyard in an arid desert region of northwest China. Agric. For. Meteorol. 2008, 148, 1629–1640. [Google Scholar] [CrossRef]
- Dragoni, D.; Schmid, H.P.; Grimmond, C.S.B.; Loescher, H.W. Uncertainty of annual net ecosystem productivity estimated using eddy covariance flux measurements. J. Geophys. Res. Atmos. 2007, 112. [Google Scholar] [CrossRef]
- Amatya, D.M.; Irmak, S.; Gowda, P.; Sun, G.; Nettles, J.E.; Douglas-Mankin, K.R. Ecosystem evapotranspiration: Challenges in measurements, estimates, and modeling. Trans. ASABE 2016, 59, 555–560. [Google Scholar]
- Allen, R.G.; Pereira, L.S.; Howell, T.A.; Jensen, M.E. Evapotranspiration information reporting: I. Factors governing measurement accuracy. Agric. Water Manag. 2011, 98, 899–920. [Google Scholar] [CrossRef]
- Gebler, S.; Hendricks Franssen, H.-J.; Pütz, T.; Post, H.; Schmidt, M.; Vereecken, H. Actual evapotranspiration and precipitation measured by lysimeters: A comparison with eddy covariance and tipping bucket. Hydrol. Earth Syst. Sci. 2015, 19, 2145–2161. [Google Scholar] [CrossRef]
- Gong, J.; Shurpali, N.J.; Kellomäki, S.; Wang, K.; Zhang, C.; Salam, M.M.A.; Martikainen, P.J.; Imukova, K.; Ingwersen, J.; Hevart, M.; et al. Comparing different methods for determining forest evapotranspiration and its components at multiple temporal scales. Agric. For. Meteorol. 2016, 13, 595–605. [Google Scholar]
- Wilson, K.; Goldstein, A.; Falge, E.; Aubinet, M.; Baldocchi, D.; Berbigier, P.; Bernhofer, C.; Ceulemans, R.; Dolman, H.; Field, C.; et al. Energy balance closure at FLUXNET sites. Agric. For. Meteorol. 2002, 113, 223–243. [Google Scholar] [CrossRef]
- Consoli, S.; Vanella, D. Mapping crop evapotranspiration by integrating vegetation indices into a soil water balance model. Agric. Water Manag. 2014, 143, 71–81. [Google Scholar] [CrossRef]
- Irmak, S.; Kilic, A.; Chatterjee, S. On the Equality Assumption of Latent and Sensible Heat Energy Transfer Coefficients of the Bowen Ratio Theory for Evapotranspiration Estimations: Another Look at the Potential Causes of Inequalities. Climate 2014, 2, 181–205. [Google Scholar] [CrossRef]
- Ohmura, A. Objective criteria for rejecting data for Bowen ratio flux calculations. J. Appl. Meteorol. 1982, 21, 595–598. [Google Scholar] [CrossRef]
- Perez, P.J.; Castellvi, F.; Ibañez, M.; Rosell, J.I. Assessment of reliability of Bowen ratio method for partitioning fluxes. Agric. For. Meteorol. 1999, 97, 141–150. [Google Scholar] [CrossRef]
- Watanabe, K.; Yamamoto, T.; Yamada, T.; Sakuratani, T.; Nawata, E.; Noichana, C.; Sributta, A.; Higuchi, H. Changes in seasonal evapotranspiration, soil water content, and crop coefficients in sugarcane, cassava, and maize fields in Northeast Thailand. Agric. Water Manag. 2004, 67, 133–143. [Google Scholar] [CrossRef]
- Brotzge, J.A.; Crawford, K.C. Examination of the Surface Energy Budget: A Comparison of Eddy Correlation and Bowen Ratio Measurement Systems. J. Hydrometeorol. 2003, 4, 160–178. [Google Scholar] [CrossRef]
- Kolars, K.; Jia, X.; Steele, D.D.; Scherer, T.F. A soil water balance model for subsurface water management. Appl. Eng. Agric. 2019, 35, 633–646. [Google Scholar] [CrossRef]
- Ragab, R.A.; Amer, F. Estimating water table contribution to the water supply of maize. Agric. Water Manag. 1986, 11, 221–230. [Google Scholar] [CrossRef]
- Wallender, W.W.; Grimes, D.W.; Henderson, D.W.; Stromberg, L.K. Estimating the Contribution of a Perched Water Table to the Seasonal Evapotranspiration of Cotton. Agron. J. 1979, 71, 1056–1060. [Google Scholar] [CrossRef]
- Prathapar, S.A.; Robbins, C.W.; Meyer, W.S.; Jayawardane, N.S. Models for estimating capillary rise in a heavy clay soil with a saline shallow water table. Irrig. Sci. 1992, 13, 1–7. [Google Scholar] [CrossRef]
- Prathapar, S.A.; Meyer, W.S. Measurement and estimation of capillary upflow from watertables under maize on irrigated soils. Aust. J. Soil Res. 1993, 31, 119–130. [Google Scholar] [CrossRef]
- Niaghi, A.R.; Jia, X.; Steele, D.D.; Scherer, T.F. Drainage water management effects on energy flux partitioning, evapotranspiration, and crop coefficients of corn. Agric. Water Manag. 2019, 225, 105760. [Google Scholar] [CrossRef]
- Doran, J.W.; Jones, A.J.; Arshad, M.A.; Lowery, B.; Grossman, B. Physical Tests for Monitoring Soil Quality. In Methods for Assessing Soil Quality; SSSA Special Publication 49; Soils Science Society of Amercia: Madison, WI, USA, 1996. [Google Scholar]
- Gee, G.; Or, D. Methods of Soil Analysis; SSSA Book Series 5.4; Soils Science Society of Amercia: Madison, WI, USA, 2002. [Google Scholar]
- Niaghi, A.R.; Jia, X. Determination of Grass Evapotranspiration Rates and Crop Coefficients Using Eddy Covariance Method in Eastern North Dakota. In Proceedings of the World Environmental and Water Resources Congress, American Society of Civil Engineers, Reston, VA, USA, 21–25 May 2017; pp. 468–483. [Google Scholar]
- ASABE Standards. EP505: Measurement and Reporting Practices for Automatic Agricultural Weather Station; ASABE Standards: St. Joseph, MI, USA, 2004. [Google Scholar]
- Jia, X.; Dukes, M.D.; Jacobs, J.M.; Haley, M. Impact of weather station fetch distance on reference evapotranspiration calculation. In Proceedings of the Restoring Our Natural Habitat. In Proceedings of the 2007 World Environmental and Water Resources Congress, Tampa, FL, USA, 15–19 May 2007. [Google Scholar]
- Niaghi, A.R.; Jia, X.; Scherer, T.; Steele, D. Measurement of unirrigated turfgrass evapotranspiration rate in the red river valley. Vadose Zone J. 2019, 18, 1–37. [Google Scholar] [CrossRef]
- Campbell Scientific Inc. Q-7.1 Net Radiometer; Campbell Scientific Inc.: Logan, UT, USA, 1996; Volume 5. [Google Scholar]
- Guderle, M.; Hildebrandt, A. Using measured soil water contents to estimate evapotranspiration and root water uptake profiles—A comparative study. Hydrol. Earth Syst. Sci. 2015, 19, 409–425. [Google Scholar] [CrossRef]
- Roy, D.; Jia, X.; Steele, D.D.; Lin, D. Development and Comparison of Soil Water Release Curves for Three Soils in the Red River Valley. Soil Sci. Soc. Am. J. 2018, 82, 568–577. [Google Scholar] [CrossRef]
- Malek, E. Comparison of the Bowen ratio-energy balance and stability-corrected aerodynamic methods for measurement of evapotranspiration. Theor. Appl. Climatol. 1993, 48, 167–178. [Google Scholar] [CrossRef]
- Imukova, K.; Ingwersen, J.; Hevart, M.; Streck, T. Energy balance closure on a winter wheat stand: Comparing the eddy covariance technique with the soil water balance method. Biogeosciences 2016, 13, 63–75. [Google Scholar] [CrossRef]
- Schmid, H.P. Experimental design for flux measurements: Matching scales of observations and fluxes. Agric. For. Meteorol. 1997, 87, 179–200. [Google Scholar] [CrossRef]
- Grare, L.; Lenain, L.; Melville, W.K. The influence of wind direction on Campbell scientific CSAT3 and Gill R3-50 sonic anemometer measurements. J. Atmos. Ocean. Technol. 2016, 33, 2477–2497. [Google Scholar] [CrossRef]
- Dugas, W.A.; Fritschen, L.J.; Gay, L.W.; Held, A.A.; Matthias, A.D.; Reicosky, D.C.; Steduto, P.; Steiner, J.L. Bowen ratio, eddy correlation, and portable chamber measurements of sensible and latent heat flux over irrigated spring wheat. Agric. For. Meteorol. 1991, 56, 1–20. [Google Scholar] [CrossRef]
- Moore, C.J. Frequency response corrections for eddy correlation systems. Bound. Layer Meteorol. 1986, 37, 17–35. [Google Scholar] [CrossRef]
- Leuning, R.; van Gorsel, E.; Massman, W.J.; Isaac, P.R. Reflections on the surface energy imbalance problem. Agric. For. Meteorol. 2012, 156, 65–74. [Google Scholar] [CrossRef]
- Shi, T.T.; Guan, D.X.; Wu, J.B.; Wang, A.Z.; Jin, C.J.; Han, S.J. Comparison of methods for estimating evapotranspiration rate of dry forest canopy: Eddy covariance, Bowen ratio energy balance, and Penman-Monteith equation. J. Geophys. Res. Atmos. 2008, 113, 1–15. [Google Scholar] [CrossRef]
- Barr, A.G.; King, K.M.; Gillespie, T.J.; Den Hartog, G.; Neumann, H.H. A comparison of bowen ratio and eddy correlation sensible and latent heat flux measurements above deciduous forest. Bound. Layer Meteorol. 1994, 71, 21–41. [Google Scholar] [CrossRef]
- Todd, R.W.; Evett, S.R.; Howell, T.A. The Bowen ratio-energy balance method for estimating latent heat flux of irrigated alfalfa evaluated in a semi-arid, advective environment. Agric. For. Meteorol. 2000, 103, 335–348. [Google Scholar] [CrossRef]
- Hupet, F.; Vanclooster, M. Intraseasonal dynamics of soil moisture variability within a small agricultural maize cropped field. J. Hydrol. 2002, 261, 86–101. [Google Scholar] [CrossRef]
- Feddes, R.A.; Raats, P.A.C. Parameterizing the soil–water–plant root system. Wagening. Front. Ser. 2004, 6, 95–141. [Google Scholar]
- Li, Y.; Fuchs, M.; Cohen, S.; Cohen, Y.; Wallach, R. Water uptake profile response of corn to soil moisture depletion. Plant Cell Environ. 2002, 25, 491–500. [Google Scholar] [CrossRef]
Layer | Sand | Silt | Clay |
---|---|---|---|
cm | Percent | ||
0–30 | 1.1 | 61.7 | 37.2 |
30–60 | 0.5 | 71.8 | 27.8 |
60–90 | 1.0 | 50.5 | 48.6 |
90–120 | 1.2 | 65.2 | 33.7 |
Observation | OP1 | OP2 | OP3 | OP4 | OP5 | OP6 |
---|---|---|---|---|---|---|
Period | 20–25 May | 20–28 June | 14–18 July | 10–18 August | 7–19 September | 14–17 October |
Stage | Initial | Development | Reproductive | Tasseling | Maturity | Harvesting |
Average climate data | ||||||
T, °C | 23.0 (6.0) * | 25.1 (3.7) | 24.3 (4.0) | 24.8 (5.6) | 21.0 (5.9) | 3.4 (3.6) |
U, m/s | 3.2 (1.9) | 1.9 (0.9) | 1.2 (0.5) | 1.2 (0.6) | 2.0 (0.9) | 2.4 (0.6) |
VPD, kPa | 1.7 (1.0) | 1.4 (0.7) | 1.3 (0.6) | 1.3 (0.8) | 1.1 (0.8) | 0.3 (0.2) |
Rainfall, mm | 0.8 | 0 | 1.3 | 1 | 3.3 | 0.2 |
Energy, W/m2 | ||||||
Rn | 246 (79) | 313 (28) | 390 (70) | 322 (48) | 233 (79) | 148 (75) |
G | 35 (45) | 63 (15) | 57 (57) | 44 (12) | 31 (14) | 6 (9) |
H_BREB | 158 (84) | 94 (14) | 87 (38) | 69 (45) | 82 (35) | 94 (65) |
H_EC | 89 (23) | 66 (12) | 68 (22) | 77 (19) | 75 (27) | 70 (38) |
LE_BREB | 63 (21) | 156 (18) | 246 (43) | 208 (56) | 120 (54) | 46 (15) |
LE_EC | 126 (36) | 184 (23) | 230 (41) | 189 (33) | 124 (53) | 65 (39) |
β _BREB | 2.3 (0.3) | 0.5 (0.1) | 0.3 (0.1) | 0.4 (0.4) | 0.7 (0.5) | 1.8 (1.1) |
β_EC | 0.8 (0.3) | 0.4 (0.1) | 0.3 (0.2) | 0.4 (0.1) | 0.7 (0.3) | 1.3 (0.9) |
Observation Period | OP1 | OP2 | OP3 | OP4 | OP5 | OP6 | |
---|---|---|---|---|---|---|---|
Date | 20–25 May | 20–28 June | 14–18 July | 10–18 August | 7–19 September | 14–17 October | |
Stage | Initial | Development | Reproductive | Tasseling | Maturity | Harvesting | |
Rainfall, mm | 0.8 | 0 | 1 | 1 | 3.3 | 0 | |
Capillary rise, mm | - | - | 1.2 ± 0.2 | 4.1 ± 0.5 | 2.6 ± 0.1 | - | |
Water table depth, cm | −184.6 | −184.5 | −184.4 | −187.4 | −189.4 | 183.6 | |
Average ET, mm/day | |||||||
ET reference | 5.2 ± 1.2 * | 5.2 ± 0.6 | 5.3 ± 0.8 | 4.5 ± 1.1 | 4.1 ± 1.6 | 1.8 ± 0.5 | |
ET by EC | 2.5 ± 0.8 | 3.7 ± 0.5 | 4.6 ± 0.8 | 3.5 ± 0.6 | 2.1 ± 0.9 | 0.9 ± 0.6 | |
Total | 15.3 (0.85) ** | 33.2 (0.89) | 22.9 (0.48) | 32.7 (0.50) | 27.4 (0.33) | 4.3 (0.31) | |
ET by BREB | 1.9 ± 0.6 | 3.7 ± 0.6 | 4.7 ± 0.7 | 3.5 ± 0.9 | 2.1 ± 0.9 | 0.9± 0.3 | |
Total | 11.1 | 28.8 | 22.6 | 33.1 | 26.1 | 3.7 | |
SWB +non capillary effect | daily | 0 ± 2.7 | - | 1.5 ± 4.7 | 0.2 ± 2.9 | 0.2 ± 4.5 | 0 ± 3.1 |
24:00–4:00 | 1.3 ± 1.0 | - | 6.2 ± 2.2 | 2.6 ± 1.3 | 3.2 ± 3.4 | 1.6 ± 0.9 | |
4:00 | 1.6 ± 2.0 | - | 5.5 ± 2.2 | 2.6 ± 1.3 | 3.2 ± 3.4 | 1.1 ± 1.1 | |
24:00–2:00 | 0.6 ± 0.4 | - | 2.7 ± 1.6 | 1.2 ± 0.5 | 1.7 ± 1.0 | 0.7 ± 0.6 | |
SWB with capillary effect | daily | 0 ± 2.7 | - | 2.1 ± 4.6 | 4.2 ± 2.8 | 2.8 ± 4.5 | 0 ± 3.1 |
24:00–4:00 | 1.3 ± 1.0 | - | 5.2 ± 0.8 | 4.3 ± 0.9 | 3.2 ± 1.7 | 1.6 ± 0.9 | |
4:00 | 1.6 ± 2.0 | - | 5.2 ± 0.8 | 4.3 ± 0.8 | 3.2 ± 1.7 | 1.1 ± 1.1 | |
24:00–2:00 | 0.6 ± 0.4 | - | 4.5 ± 1.3 | 4.1 ± 0.5 | 3.4 ± 1.0 | ± 0.6 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rashid Niaghi, A.; Jia, X. New Approach to Improve the Soil Water Balance Method for Evapotranspiration Estimation. Water 2019, 11, 2478. https://doi.org/10.3390/w11122478
Rashid Niaghi A, Jia X. New Approach to Improve the Soil Water Balance Method for Evapotranspiration Estimation. Water. 2019; 11(12):2478. https://doi.org/10.3390/w11122478
Chicago/Turabian StyleRashid Niaghi, Ali, and Xinhua Jia. 2019. "New Approach to Improve the Soil Water Balance Method for Evapotranspiration Estimation" Water 11, no. 12: 2478. https://doi.org/10.3390/w11122478
APA StyleRashid Niaghi, A., & Jia, X. (2019). New Approach to Improve the Soil Water Balance Method for Evapotranspiration Estimation. Water, 11(12), 2478. https://doi.org/10.3390/w11122478