Use of 222Rn and δ18O-δ2H Isotopes in Detecting the Origin of Water and in Quantifying Groundwater Inflow Rates in an Alarmingly Growing Lake, Ethiopia
Abstract
:1. Introduction
1.1. Background
1.2. Damages Caused by Lake Beseka Water Level Rise and Chemistry Changes
1.3. Site Characterization
1.3.1. Geology and Hydrogeology
1.3.2. Hydrology, Chemistry and Irrigation Development
2. Methodology: Theoretical Description
2.1. 222Rn in Lake-Groundwater Interaction Studies
2.2. δ18O-δ2H in Lake-Groundwater Interaction Studies
3. Data requirements, Sampling and Analysis
3.1. 222Rn and δ18O-δ2H in Waters
3.2. 222Rn in Diffusive Flux
3.3. Lake Geometry (Bathymetry, Mean Depth, Area)
3.4. Timing of 222Rn and δ18O-δ2H Data Collection
4. Results and Discussion
4.1. Causes of Lake Level Rise: 222Rn Evidence
4.2. Cause of Lake Level Rise: δ18O-δ2H Evidence
4.3. Quantifying Rate of Groundwater Inflow-222Rn Balance Method
4.4. Sensitivity Analysis
4.5. Mitigation and Water Resources Implication
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wood, R.B.; Tailing, J.F. Chemical and algal relationships in a salinity series of Ethiopian inland waters. Hydrobiologia 1988, 158, 29–67. [Google Scholar] [CrossRef]
- Alemayehu, T.; Ayenew, T.; Kebede, S. Hydrogeochemical and lake level changes in the Ethiopian Rift. J. Hydrol. 2006, 11, 290–300. [Google Scholar] [CrossRef]
- Asfaw, L. Environmental hazard from fissures in the Main Ethiopian Rift. J. Afr. Earth Sci. 1998, 27, 481–490. [Google Scholar] [CrossRef]
- Williams, F.M.; Williams, M.A.J.; Aumento, F. Tensional fissures and crustal extension rates in the northern part of the Main Ethiopian Rift. J. Afr. Earth Sci. 2003, 38, 183–197. [Google Scholar] [CrossRef]
- Kebede, S.; Travi, Y.; Asrat, A.; Alemayehu, T.; Ayenew, T.; Tessema, Z. Groundwater origin and flow along selected mountain-valley transects in Ethiopian rift volcanic aquifers. Hydrogeol. J. 2009. [Google Scholar] [CrossRef]
- Belay, E.A. Growing Lake with Growing Problems: Integrated Hydrogeological Investigation on Lake Beseka, Ethiopia. Ph.D. Thesis, University of Bonn, Bonn, Germany, 2010. [Google Scholar]
- Goerner, A.; Jolie, E.; Gloaguen, R. Non-climatic growth of the saline Lake Beseka, Main Ethiopian Rift. J. Arid Environ. 2009, 73, 287–295. [Google Scholar] [CrossRef]
- Tessema, Z. Hydrochemical and Water Balance Approach in the Study of High Water Level Rise of Lake Beseka. Master’s Thesis, University of Birmingham, Edgbaston, UK, 1998. [Google Scholar]
- Ayenew, T. Environmental implications of changes in the levels of lakes in the Ethiopian Rift since 1970. Reg. Environ. Chang. 2004, 4, 192–204. [Google Scholar] [CrossRef]
- MoWIE. Assessment and Evaluation of the Causes for Beseka Lake Level Rise and Designing Mitigation Measures Part II: Study for Medium-and Long-Term Solutions, Main Report; Ministry of Water Irrigation and Energy: Addis Ababa, Ethiopia, 2014. [Google Scholar]
- Dincer, T. The use of oxygen-18 and deuterium concentrations in the water balance of lakes. Water Resour. Res. 1968, 4, 1289–1305. [Google Scholar] [CrossRef]
- Zuber, A. On the environmental isotope method for determining the water balance components of some lakes. J. Hydrol. 1983, 61, 409–427. [Google Scholar] [CrossRef]
- Krabbenhoft, D.P.; Bowser, C.J.; Anderson, M.P.; Valley, J.W. Estimating groundwater exchange with lakes. 1. The stable isotope mass balance method. Water Resour. Res. 1990, 26, 2445–2453. [Google Scholar] [CrossRef]
- Yi, Y.; Brock, B.E.; Falcone, M.D.; Wolfe, B.B.; Edwards, T.W.D. A coupled isotope tracer method to characterize input water to lakes. J. Hydrol. 2008, 350, 1–13. [Google Scholar] [CrossRef]
- Kebede, S.; Travi, Y.; Rozanski, K. The δ18O and δ2H enrichment of Ethiopian lakes. J. Hydrol. 2010, 365, 173–182. [Google Scholar] [CrossRef]
- Cook, P.G.; Wood, C.; White, T.; Simmons, C.T.; Fass, T.; Brunner, P. Groundwater inflow to a shallow, poorly-mixed wetland estimated from a mass balance of radon. J. Hydrol. 2008, 354, 213–226. [Google Scholar] [CrossRef]
- Dimova, N.T.; Burnett, W.C.; Chanton, J.P.; Corbett, J.E. Application of radon-222 to investigate groundwater discharge into small shallow lakes. J. Hydrol. 2013, 486, 112–122. [Google Scholar] [CrossRef]
- Kebede, E.; Gebremariam, Z.; AhlgrenI, I. The Ethiopian Rift Valley lakes: chemical characteristics of a salinity-alkalinity series. Hydrobiologia 1994, 288, 1–12. [Google Scholar] [CrossRef]
- Pitwell, L.R. Analysis of Ethiopian and other natural waters. UNWMO 1971, 301, 2–31. [Google Scholar]
- Talling, J.F.; Talling, I.B. The chemical composition of African lake waters. Int. Rev. Gesamten Hydrobiol. 1965, 50, 421–463. [Google Scholar] [CrossRef]
- FAO. Coping with Water Scarcity, the Role of Agriculture. Developing a Water Audit for Awash River Basin; SYNTHESIS REPORT GCP/INT/072/ITA; FAO: Addis Ababa, Ethiopia, 2013; p. 46. [Google Scholar]
- Schmidt, A.; Gibson, J.; Santose, I.; Schubert, M. The contribution of groundwater discharge to the overall water budget of two typical Boreal lakes in Alberta/Canada estimated from a radon mass balance. Hydrol. Earth Syst. Sci. 2010, 11, 79–89. [Google Scholar] [CrossRef] [Green Version]
- Peterson, R.N.; Burnett, W.C.; Taniguchi, M.; Chen, J.; Santos, I.R.; Ishitobi, T. Radon and radium isotope assessment of submarine groundwater discharge in the Yellow River delta, China. J. Geophys. Res. 2008, 113, C09021. [Google Scholar] [CrossRef]
- Kluge, T.; von Rohden, C.; Sonntag, P.; Lorenz, S.; Wieser, M.; Aeschbach-Hertig, W.; Ilmbe, J. Localizing and quantifying groundwater inflow into lakes using high-precision 222Rn profile. J. Hydrol. 2012, 450, 70–81. [Google Scholar] [CrossRef]
- Schmidt, A.; Schlueter, M.; Melles, M.; Schubert, M. Continuous and discrete on-site detection of radon-222 in ground-and surface waters by means of an extraction module. Appl. Radiat. Isot. 2008, 6, 1939–1944. [Google Scholar] [CrossRef] [PubMed]
- Burnett, W.C.; Bokuniewicz, H.; Huettel, M.; Moore, W.S.; Taniguchi, M. Groundwater and porewater inputs to the coastal zone. Biogeochemistry 2003, 66, 3–33. [Google Scholar] [CrossRef]
- Gat, J.R.; Levy, Y. Isotope hydrology of island sabkhas in the Bardawil area, Sinai. Limnol. Oceanogr. 1978, 23, 841–850. [Google Scholar] [CrossRef]
- Gonfiantini, R. Environmental isotopes in lake studies. In Handbook of Environmental Isotope Geochemistry; Fritz, P., Fontes, J.C., Eds.; Elsevier: New York, NY, USA, 1986; Volume 13, pp. 113–168. [Google Scholar]
- Craig, H.; Lupton, J.E.; Horowiff, R.M. Isotope Geochemistry and Hydrology of Geothermal Waters in the Ethiopian Rift Valley; Scripps Institute of Oceanography University of California: San Diego, CA, USA, 1977. [Google Scholar]
- Bretzler, A.; Osenbrück, K.; Gloaguen, R.; Ruprecht, J.S.; Kebede, S.; Stadler, S. Groundwater origin and flow dynamics in active rift systems—A multi-isotope approach in the Main Ethiopian Rift. J. Hydrol. 2011, 402, 274–289. [Google Scholar] [CrossRef]
- Kebede, S.; Travi, Y.; Stadler, S. Groundwaters of the Central Ethiopian Rift: diagnostic trends in trace elements, δ18O, and major elements. Environ. Earth Sci. 2010, 61, 1641–1655. [Google Scholar] [CrossRef]
- Mamo, S.; Yokota, S. Estimation of Koka reservoir leakage by hydrogeological and isotope techniques. In Proceedings of the Eighth International Congress International Association for Engineering Geology and the Environment, Vancouver, BC, Canada, 21–25 September 1998. [Google Scholar]
- Halcrow, S.W.; Partners Ltd. Masterplan for the Development of Surface Water Resources in the Awash Basin; Ministry of Water Resources: Addis Ababa, Ethiopia, 1989.
- Perry, C. Accounting for water use: Terminology and implications for saving water and increasing production. Agric. Water Manag. 2011, 98, 1840–1846. [Google Scholar] [CrossRef]
Farm | Start Date | Farm Size (ha) | Uptake (m3/s) | Conveyance Loss (m3/s) | Distribution Loss (m3/s) | Field Level Water Application Loss (m3/s) | Net Seepage Loss (m3/s) |
---|---|---|---|---|---|---|---|
Main-Metahara- | 1965 | 8000 | 6.02 | - | - | 0.60 | 1.41 |
Abadir-Metahara | 1968 | 3500 | 3.51 | - | - | 0.35 | 1.06 |
Nura Hira | 1970 | 3740 | 2.55 | - | - | - | 1.02 |
Fentale | 2007 | 4520 * | 4.61 | 1.2 | 0.3 | 1.3 | 2.81 |
Variable | Unit | Explanation |
---|---|---|
G | m3/day | Groundwater inflow rate |
S | m3/day | Surface water inflow from channelized and overland flows |
P | m/day | Depth of precipitation on the lake |
Q | m/day | Aggregate water loss to surface and groundwater outflows |
AL | m2 | Lake Area, m2 |
E | m/day | Depth of evaporation from lake surface |
Ab | m2 | Area of Lake bottom surface contributing 222Rn flux via diffusive pathways from sediments |
V | m3 | Lake volume |
λ | day−1 | 222Rn decay constant |
k | mday−1 | Gas exchange velocity (wind speed and temperature turbulent degassing rate) |
F | Bq/m2/day | Diffusive 222Rn flux from lake bottom sediments, F is computed as in [16,22,23] taking into consideration the lowest 222Rn content in the lake corresponds to the sources from diffusive flux only where all the parameters except the diffusive flux F are known |
CL | Bq/L | Mean 222Rn activity in the lake |
CG | Bq/L | Mean 222Rn activity in inflowing groundwater obtained from measurement in a borehole |
CS | Bq/L | Mean 222Rn activity in inflowing runoff |
Code | UTM, East | UTM, North | Mean Bq/m3 | Highest Bq/m3 | Lowest Bq/m3 |
---|---|---|---|---|---|
LBRn-12 | 593,967 | 982,945 | 241 | 336 | 97.7 |
BARn-1 | 596,605 | 973,681 | 3910 | 6290 | 1600 |
LBRn-19 | 594,903 | 981,620 | 54 | 86.3 | 18.9 |
LBRn-OL | 600,000 | 982,426 | 31 | 44.7 | 12.6 |
LBRn-CO | 594,663 | 975,450 | 294 | 549 | 124 |
LBRn-11 | 592,610 | 981,505 | 798 | 1200 | 138 |
LBRn-14′ | 596,650 | 983,509 | 35 | 38.4 | 31.5 |
LBRn-13 | 594,748 | 984,042 | 453 | 641 | 104 |
LBRn-21 | 599,118 | 983,737 | 18 | 29.6 | 9.44 |
LBRn-3 | 594,651 | 975,441 | 191 | 231 | 158 |
LBRn-9 | 591,564 | 979,251 | 2060 | 2670 | 864 |
LBRn-20 | 597,419 | 982,370 | 41 | 48 | 10 |
LBRn-5 | 591,653 | 976,332 | 2340 | 3620 | 684 |
LBRn-17 | 598,483 | 980,546 | 34 | 51.1 | 9.44 |
LBRn-14 | 596,809 | 983,113 | 27 | 38.9 | 18.9 |
LBRn-15 | 599,385 | 982,689 | 22 | 34 | 12 |
Variable | Unit | Value and Source |
---|---|---|
S | m3/day | 81,500 |
P | m/day | 0.00151, meteorology station |
E | m/day | 0.00548, meteorology station |
Q | m/day | Aggregate water loss to surface and groundwater outflows (not required in Equation (3)) |
AL | m2 | 49,000,000 (excluding the area of the island) |
Ab | m2 | 49,000,000 |
V | m2 | 243,000,000 (estimated from bathymetric survey [10]) |
λ | day−1 | 222Rn decay constant |
k | mday−1 | 0.16 [16] |
F | Bq/m2/day | 5.78 |
CL | Bq/L | 0.4 (mean of 222Rn in central and northern part of the lake) |
CG | Bq/L | 3.9 (measured in a borehole in Abadir farm) |
CS | Bq/L | 0 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kebede, S.; Zewdu, S. Use of 222Rn and δ18O-δ2H Isotopes in Detecting the Origin of Water and in Quantifying Groundwater Inflow Rates in an Alarmingly Growing Lake, Ethiopia. Water 2019, 11, 2591. https://doi.org/10.3390/w11122591
Kebede S, Zewdu S. Use of 222Rn and δ18O-δ2H Isotopes in Detecting the Origin of Water and in Quantifying Groundwater Inflow Rates in an Alarmingly Growing Lake, Ethiopia. Water. 2019; 11(12):2591. https://doi.org/10.3390/w11122591
Chicago/Turabian StyleKebede, Seifu, and Samson Zewdu. 2019. "Use of 222Rn and δ18O-δ2H Isotopes in Detecting the Origin of Water and in Quantifying Groundwater Inflow Rates in an Alarmingly Growing Lake, Ethiopia" Water 11, no. 12: 2591. https://doi.org/10.3390/w11122591
APA StyleKebede, S., & Zewdu, S. (2019). Use of 222Rn and δ18O-δ2H Isotopes in Detecting the Origin of Water and in Quantifying Groundwater Inflow Rates in an Alarmingly Growing Lake, Ethiopia. Water, 11(12), 2591. https://doi.org/10.3390/w11122591