Combining Hydrologic Analysis and Life Cycle Assessment Approaches to Evaluate Sustainability of Water Infrastructure: Uncertainty Analysis
Abstract
:1. Introduction
2. Methodology
2.1. The Goal and Scope of Uncertainty Analysis
2.2. Integrated Hydrologic Analysis and LCA Framework
2.2.1. Hydrologic Model
2.2.2. LCA Model
2.3. Uncertainty Analysis Procedure
2.3.1. Selected Parameters
2.3.2. Uncertainty Analysis Technique
2.3.3. Interpreting the Results
2.4. Details of the Case Study Application
3. Results
3.1. Hydrologic Analysis Results
3.2. uWISE Analysis Results
3.3. Model Validation and Discussion
4. Conclusions
- As explained in Section 2.1, assessing the LCIA characterization factor uncertainty was beyond the scope of this study. Particularly for ETW results, this could introduce a systematic uncertainty as discussed by Rosenbaum et al. [59] and Wender et al. [60]. However, this limitation may not impact the overall conclusion of the present study drawn from simultaneous GWP and ETW results. Since this limitation could introduce uncertainty regarding the relative significance of different contributors to the aquatic eco-toxicity scores, we suggest a follow up study to focus on aquatic eco-toxicity impacts of RWH incorporating the characterization factors.
- Other sources of uncertainty, i.e., model structural and decision uncertainties, may be studied to provide insight into the overall status of uncertainty of the integrated framework. Such an analysis may identify the areas where the results’ reliability can be improved, and, thus, advance the integration of hydrologic and LCA models for urban water infrastructure assessment.
- Other urban drainage infrastructures, e.g., separate sewer systems, detention basins, and pervious pavements may be studied in the future to understand their optimal LCA-based design with a consideration of the existing uncertainties.
- A broader hydrologic representation of the urban drainage system can be considered a follow up study, including water quality simulation modules.
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- U.S. EPA. Greening CSO Plans: Planning and Modeling Green Infrastructure for Combined Sewer Overflow (CSO) Control; EPA-832-R-14-001; EPA: Washington, DC, USA, 2014.
- Guo, Y. Hydrologic design of urban flood control detention ponds. J. Hydrol. Eng. 2001, 6, 472–479. [Google Scholar] [CrossRef]
- Haan, C.; Barfield, B.; Hayes, J. Design Hydrology and Sedimentology for Small Catchments; Academic Press: San Diego, CA, USA, 1994. [Google Scholar]
- Hsu, M.; Chen, S.; Chang, T. Inundation simulation for urban drainage basin with storm sewer system. J. Hydrol. 2000, 234, 21–37. [Google Scholar] [CrossRef] [Green Version]
- Flynn, K.; Traver, R. Green infrastructure life cycle assessment: A bio-infiltration case study. Ecol. Eng. 2013, 55, 9–22. [Google Scholar] [CrossRef]
- Ghimire, S.R.; Johnston, J.; Ingwersen, W.; Hawkins, T. Life Cycle Assessment of domestic and agricultural rainwater harvesting systems. Environ. Sci. Technol. 2014, 48, 4069–4077. [Google Scholar] [CrossRef]
- Stokes, J.; Horvath, A.R. Life-cycle assessment of urban water provision: Tool and case study in California. J. Infrastruct. Syst. 2011, 17, 15–24. [Google Scholar] [CrossRef]
- Vineyard, D.; Ingwersen, W.; Hawkins, R.; Xue, X.; Demeke, B.; Shuster, W. Comparing green and grey infrastructure using life cycle cost and environmental impact: A rain garden case study in Cincinnati, OH. J. Am. Water Resour. Assoc. 2015. [Google Scholar] [CrossRef]
- Gao, H.; Zhou, C.; Li, F.; Han, B.; Li, X. Economic and environmental analysis of five Chinese rural toilet technologies based on the economic input–output life cycle assessment. J. Clean. Prod. 2017, 163, 379–391. [Google Scholar] [CrossRef]
- ISO (International Organization for Standardization). Environmental Management—Life Cycle Assessment—Requirements and Guidelines; ISO 14044; ISO: Geneva, Switzerland, 2006. [Google Scholar]
- Zhou, Q. A review of sustainable urban drainage systems considering the climate change and urbanization impacts. Water 2014, 6, 976–992. [Google Scholar] [CrossRef]
- De Sousa, M.; Montalto, F.; Spatari, S. Using life cycle assessment to evaluate green and grey combined sewer overflow control strategies. J. Ind. Ecol. 2012, 16, 901–913. [Google Scholar] [CrossRef]
- Wang, R.; Eckelman, M.; Zimmerman, J. Consequential environmental and economic life cycle assessment of green and gray Stormwater infrastructures for combined sewer systems. Environ. Sci. Technol. 2013, 47, 11189–11198. [Google Scholar] [CrossRef]
- Petit-Boix, A.; Devkota, J.; Phillips, R.; Vargas-Parra, M.V.; Josa, A.; Gabarrell, X.; Rieradevall, J.; Apul, D. Life cycle and hydrologic modeling of rainwater harvesting in urban neighborhoods: Implications of urban form and water demand patterns in the US and Spain. Sci. Total Environ. 2018, 621, 434–443. [Google Scholar] [CrossRef]
- Lucas, W. Design of integrated bioinfiltration-detention urban retrofits with design storm and continuous simulation methods. J. Hydrolog. Eng. 2010, 15, 486–498. [Google Scholar] [CrossRef]
- Ghimire, S.R.; Johnston, J. Impacts of domestic and agricultural rainwater harvesting systems on watershed hydrology: A case study in the Albemarle-Pamlico river basins (USA). Ecohydrol. Hydrobiol. 2015, 13, 159–171. [Google Scholar] [CrossRef]
- Shadeed, S.; Lange, J. Rainwater harvesting to alleviate water scarcity in dry conditions: A case study in Faria Catchment, Palestine. Water Sci. Eng. 2010, 3, 132–143. [Google Scholar] [CrossRef]
- Devkota, J.; Burian, S.; Tavakol-Davani, H.; Apul, D. Introducing demand to supply ratio as a new metric for understanding life cycle greenhouse gas (GHG) emissions from rainwater harvesting systems. J. Clean. Prod. 2017, 163, 274–284. [Google Scholar] [CrossRef]
- Malinowski, P.A.; Stillwell, A.S.; Wu, J.S.; Schwarz, P.M. Energy-water nexus: Potential energy savings and implications for sustainable integrated water management in urban areas from rainwater harvesting and gray-water reuse. J. Water Resour. Plan. Manag. 2015, 141, A4015003. [Google Scholar] [CrossRef]
- Morales-Pinzon, T.; Rieradevall, J.; Gasol, C.; Gabarrell, X. Modelling for economic cost and environmental analysis of rainwater harvesting systems. J. Clean. Prod. 2015, 87, 613–626. [Google Scholar] [CrossRef]
- Vargas-Parra, M.; Villalba, G.; Gabarrell, X. Applying exergy analysis to rainwater harvesting systems to assess resource efficiency. Resour. Conserv. Recycl. 2013, 72, 50–59. [Google Scholar] [CrossRef]
- Vieira, A.; Beal, C.; Ghisi, E.; Stewart, R. Energy intensity of rainwater harvesting systems: A review. Renew. Sustain. Energy. Rev. 2014, 34, 225–242. [Google Scholar] [CrossRef] [Green Version]
- Philadelphia’s Green City Clean Waters Program. Concurrent II: Stormwater and Water Treatment. Engineering Sustainability 2015: Innovation and the Triple Bottom Line. 2015. Available online: http://www.usgbc.org/education/sessions/engineering-sustainability-2015-innovation-and-triple-bottom-line/concurrent-ii-s (accessed on 18 December 2015).
- Yoshida, H.; Clavreul, J.; Scheutz, C.; Christensen, T. Influence of Data Collection Schemes on the Life Cycle Assessment of a Municipal Wastewater Treatment Plant. Water Res. 2014, 56, 292–303. [Google Scholar] [CrossRef]
- Weidema, B.; Bauer, C.; Hischier, R.; Mutel, C.; Nemecek, T.; Reinhard, J.; Vadenbo, C.; Wernet, G. Overview and Methodology—Data Quality Guideline for the Ecoinvent Database; Version 3; Swiss Centre for Life Cycle Inventories: St. Gallen, Switzerland, 2013. [Google Scholar]
- Harder, R.; Holmquist, H.; Molander, S.; Svanstrom, M.; Peters, G. Review of Environmental Assessment Case Studies Blending Elements of Risk Assessment and Life Cycle Assessment. Environ. Sci. Technol. 2015, 49, 13083–13093. [Google Scholar] [CrossRef] [PubMed]
- Baker, J.; Lepech, M. Treatment of Uncertainties in Life Cycle Assessment. In Proceedings of the 10th International Congress on Structural Safety and Reliability, Osaka, Japan, 13–17 September 2009. [Google Scholar]
- U.S. EPA. Environmental and Cost Life Cycle Assessment of Disinfection Options for Municipal Wastewater Treatment; EPA 600/R-14/377; EPA: Washington, DC, USA, 2014.
- Cowell, S.; Fairman, R.; Lofstedt, R. Use of Risk Assessment and Life Cycle Assessment in Decision Making: A Common Policy Research Agenda. Risk Anal. 2002, 22, 879–894. [Google Scholar] [CrossRef] [PubMed]
- Huijbregts, M. Application of uncertainty and variability in LCA—Part I: A general framework for the analysis of uncertainty and variability in life cycle assessment. Int. J. Life Cycle Assess. 1998, 3, 273–280. [Google Scholar] [CrossRef]
- Huijbregts, M. Application of uncertainty and variability in LCA—Part II: Dealing with parameter uncertainty and uncertainty due to choices in life cycle assessment. Int. J. Life Cycle Assess. 1998, 3, 343–351. [Google Scholar] [CrossRef]
- Heijungs, R.; Huijbregts, A. A review of approaches to treat uncertainties in LCA. In Proceedings of the 2nd Biennial Meeting of the International Environmental Modelling and Software Society (iEMSs), Manno, Switzerland, 1 June 2004; pp. 332–339. [Google Scholar]
- Dones, R.; Heck, T.; Emmenegger, M.; Jungbluth, N. Life cycle inventories for the nuclear and natural gas energy systems, and examples of uncertainty analysis. Int. J. Life Cycle Assess. 2005, 10, 10–23. [Google Scholar] [CrossRef]
- Grant, T. Inclusion of uncertainty in LCA. In Proceedings of the Fourth Australian Conference on Life Cycle Assessment—Sustainability Measures for Decision Support, Sydney, NSW, Australia, 23–25 February 2005. [Google Scholar]
- Sonneman, G.; Schuhmacher, M.; Castells, F. Uncertainty assessment by a Monte Carlo simulation in a life cycle inventory of electricity produced by a waste incinerator. J. Clean. Prod. 2003, 11, 279–292. [Google Scholar] [CrossRef]
- Andrae, A.; Moller, P.; Anderson, J.; Liu, J. Uncertainty estimation by Monte Carlo simulation Applied to Life Cycle Inventory of cordless phones and microscale metallization processes. IEEE Trans. Electron. Packag. Manuf. 2004, 27, 206–217. [Google Scholar] [CrossRef]
- Basset-Mens, C.; Werf, H.M.G.; Durand, P.; Leterme, P. Implications of uncertainty and variability in the Life Cycle Assessment of pig farming systems. In Proceedings of the Transactions of the 2nd Biennial Meeting of the International Environmental Modelling and Software Society (iEMSs), Manno, Switzerland, 1 July 2004. [Google Scholar]
- Ferret, R.; Mendoza, G.; Castilla, M. The influence of agricultural data uncertainty in the life cycle assessment of biodegradable hydraulic lubricants. In Proceedings of the 2nd Biennial Meeting of the International Environmental Modelling and Software Society (iEMSs), Eibar, Spain, 14–17 June 2004. [Google Scholar]
- Contadini, J. Life Cycle Assessment of Fuel Cell Vehicles—Dealing with Uncertainties; Application of Uncertainties in LCA; UC Davis: Davis, CA, USA, 2002. [Google Scholar]
- Zhang, Y.; Vidakovic, B. Uncertainty Analysis in Using Markov Chain Model to Predict Roof Life Cycle Performance; Georgia Institute of Technology: Lyon, France, 2005. [Google Scholar]
- Hongxiang, C.; Wei, C. Uncertainty analysis by Monte Carlo simulation in a Life Cycle Assessment of water-saving project in green buildings. Inf. Technol. J. 2013, 12, 2593–2598. [Google Scholar] [CrossRef] [Green Version]
- Niero, M.; Pizzol, M.; Bruun, H.G.; Thomsen, M. Comparative life cycle assessment of wastewater treatment in Denmark including sensitivity and uncertainty analysis. J. Clean. Prod. 2014, 68, 25–35. [Google Scholar] [CrossRef]
- Ciroth, A.; Fleischer, G.; Steinbach, J. Uncertainty calculation in life cycle assessments—A combined model of simulation and approximation. Int. J. Life Cycle Assess. 2004, 9, 216–226. [Google Scholar] [CrossRef]
- Guo, M.; Murphy, R.J. LCA data quality: Sensitivity and uncertainty analysis. Sci. Total Environ. 2012, 435, 230–243. [Google Scholar] [CrossRef] [PubMed]
- Hung, M.; Ma, H. Quantifying system uncertainty of life cycle assessment based on Monte Carlo simulation. Int. J. Life Cycle Assess. 2009, 14, 19–27. [Google Scholar] [CrossRef]
- Burian, S.J.; Jones, D. National assessment of rainwater harvesting as a stormwater best management practice: Challenges, needs, and recommendations. In Proceedings of the 2010 International Low Impact Development Conference, ASCE, Reston, VA, USA, 11–14 April 2010. [Google Scholar]
- Jones, M.; Hunt, W. Performance of rainwater harvesting systems in the southeastern United States. Resour. Conserv. Recycl. 2010, 54, 623–629. [Google Scholar] [CrossRef]
- Mehrabadi, M.H.; Saghafian, B.; Fashi, F. Assessment of residential rainwater harvesting efficiency for meeting non-potable water demands in three climate conditions. Resour. Conserv. Recycl. 2013, 73, 86–93. [Google Scholar] [CrossRef]
- Sample, D.; Liu, J. Optimizing rainwater harvesting systems for the dual purposes of water supply and runoff capture. J. Clean. Prod. 2014, 75, 174–194. [Google Scholar] [CrossRef]
- Steffen, J.; Jensen, M.; Pomeroy, C.; Burian, S. Water supply and stormwater management benefits of residential rainwater harvesting in U.S. cities. J. Am. Water Resour. Assoc. 2013, 49, 810–824. [Google Scholar] [CrossRef]
- Tavakol-Davani, H.; Burian, S.J.; Devkota, J.; Apul, D. Performance and Cost Based Comparison of Green and Gray Infrastructure to Control Combined Sewer Overflows. J. Sustain. Water Built Environ. 2015, 2, 04015009. [Google Scholar] [CrossRef]
- Thomas, R.; Kirisits, M.; Lye, D.; Kinney, K. Rainwater harvesting in the United States: A survey of common system practices. J. Clean. Prod. 2014, 75, 166–173. [Google Scholar] [CrossRef]
- Gerber, S.; Rubel, O.; Bremer, P.; Pascucci, V.; Whitaker, R. Morse-smale regression. J. Comput. Graph. Stat. 2013, 22, 193–214. [Google Scholar] [CrossRef] [PubMed]
- Maljovec, D.; Wang, B.; Rosen, P.; Alfonsi, A.; Pastore, G.; Rabiti, C.; Pascucci, V. Rethinking sensitivity analysis of nuclear simulations with topology. In Proceedings of the IEEE Pacific Visualization Symposium, Taipei, Taiwan, 19–22 April 2016. [Google Scholar]
- Cellura, M.; Longo, S.; Mistretta, M. Sensitivity analysis to quantify uncertainty in life cycle assessment: The case study of an Italian tile. Renew. Sustain. Energy Rev. 2011, 15, 4697–4705. [Google Scholar] [CrossRef]
- Dotto, C.; Mannina, G.; Kleidorfer, M.; Vezzaro, L.; Henrichs, M.; McCarthy, D.; Freni, G.; Rauch, W.; Deletic, A. Comparison of different uncertainty techniques in urban stormwater quantity and quality modeling. Water Res. 2012, 46, 2545–2558. [Google Scholar] [CrossRef] [PubMed]
- Leta, O.T.; Nossent, J.; Velez, C.; Shrestha, N.K.; Griensven, A.; Bauwens, W. Assessment of the different sources of uncertainty in a SWAT model of the River Senne (Belgium). Environ. Model. Softw. 2015, 68, 129–146. [Google Scholar] [CrossRef]
- Loucks, D.; Van Beek, E. Water Resources Systems Planning and Management. An Introduction to Methods, Models and Applications; UNESCO Publishing: Paris, France, 2005; ISBN 92-3-103998-9. [Google Scholar]
- Rosenbaum, R.K.; Bachmann, T.M.; Gold, L.S.; Huijbregts, M.A.; Jolliet, O.; Juraske, R.; Koehler, A.; Larsen, H.F.; MacLeod, M.; Margni, M.; et al. USEtox—The UNEP-SETAC toxicity model: recommended characterisation factors for human toxicity and freshwater ecotoxicity in life cycle impact assessment. Int. J. Life Cycle Assess. 2008, 13, 532. [Google Scholar] [CrossRef] [Green Version]
- Wender, B.A.; Prado, V.; Fantke, P.; Ravikumar, D.; Seager, T.P. Sensitivity-based research prioritization through stochastic characterization modeling. Int. J. Life Cycle Assess. 2018, 23, 324–332. [Google Scholar] [CrossRef] [Green Version]
- Tavakol-Davani, H.; Burian, S.J.; Butler, D.; Sample, D.; Devkota, J.; Apul, D. Combining Hydrologic Analysis and Life Cycle Assessment Approaches to Evaluate Sustainability of Water Infrastructure. J. Irrig. Drain. Eng. 2018, 144, 05018006. [Google Scholar] [CrossRef]
- Rossman, L. Storm Water Management Model User’s Manual: Volume I—Hydrology; U.S. Environmental Protection Agency: Cincinnati, OH, USA, 2015.
- Chang, N.B.; Lu, J.W.; Chui, T.F.M.; Hartshorn, N. Global policy analysis of low impact development for stormwater management in urban regions. Land Use Policy 2018, 70, 368–383. [Google Scholar] [CrossRef]
- Barrios, R.; Siebel, M.; Van Der Helm, A.; Bosklopper, K.; Gijzen, H. Environmental and financial life cycle impact assessment of drinking water production at Waternet. J. Clean. Prod. 2008, 16, 471–476. [Google Scholar] [CrossRef]
- Bonton, A.; Bouchard, C.; Barbeau, B.; Jedrzejak, S. Comparative life cycle assessment of water treatment plants. Desalination 2012, 284, 42–54. [Google Scholar] [CrossRef]
- Ghimire Santosh, R.; John, M.; Johnston, W.W.; Sarah, S. Life cycle assessment of a commercial rainwater harvesting system compared with a municipal water supply system. J. Clean. Prod. 2017, 151, 74–86. [Google Scholar] [CrossRef]
- Roushdi, M.; El-Hawary, A.; Mahgoub, M. Environmental Improvement of Alexandria’s Wastewater Treatment Plants using Life Cycle Assessment Approach. Glob. NEST J. 2012, 14, 450–459. [Google Scholar] [CrossRef]
- PE International. Gabi Database. 2014. Available online: http://www.pe-international.com (accessed on 17 July 2014).
- Bare, J. TRACI 2.0: the tool for the reduction and assessment of chemical and other environmental impacts 2.0. Clean Technol. Environ. Policy 2011, 13, 687–696. [Google Scholar] [CrossRef]
- Florida Rainwater Harvesting Initiative. Rainwater Harvesting with Cisterns. Florida Water StarSM. 2009. Available online: http://floridawaterstar.com/pdfs/RWH_Guide_2009-10.pdf (accessed on 18 October 2014).
- Sanjuan-Delmas, D.; Petit-Boix, A.; Gasol, C.; Villalba, G.; Suarez-Ojeda, M.; Gabarrell, X.; Josa, A.; Rieradevall, J. Environmental assessment of different pipelines for drinking water transport and distribution network in small to medium cities: A case from Betanzos, Spain. J. Clean. Prod. 2014, 66, 588–598. [Google Scholar] [CrossRef] [Green Version]
- Hamby, D. A comparison of sensitivity analysis techniques. Health Phys. 1995, 68, 195–204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zahmatkesh, Z.; Karamouz, M.; Nazif, S. Uncertainty based modeling of rainfall-runoff: Combined differential evolution adaptive Metropolis (DREAM) and K-means clustering. Adv. Water Resour. 2015, 83, 405–420. [Google Scholar] [CrossRef]
- Chilton, J.; Maidment, G.; Marriott, D.; Francis, A.; Tobias, G. Case study of a rainwater recovery system in a commercial building with a large roof. Urban Water 2000, 1, 345–354. [Google Scholar] [CrossRef]
- Lash, D.; Ward, S.; Kershaw, T.; Butler, D.; Eames, M. Robust rainwater harvesting: Probabilistic tank sizing for climate change adaptation. J. Water Clim. Chang. 2014, 5, 526–539. [Google Scholar] [CrossRef] [Green Version]
- Matos, C.; Santos, C.; Pereira, S.; Bentes, I.; Imteaz, M. Rainwater storage tank sizing: Case study of a commercial building. Int. J. Sustain. Built Environ. 2013, 2, 109–118. [Google Scholar] [CrossRef] [Green Version]
- Ward, S.; Memon, F.A.; Butler, D. Rainwater harvesting: Model-based design evaluation. Water Sci. Technol. 2010, 61, 85–96. [Google Scholar] [CrossRef]
- Campisano, A.; Butler, D.; Ward, S.; Burns, M.J.; Friedler, E.; DeBusk, K.; Fisher-Jeffes, L.N.; Ghisi, E.; Rahman, A.; Furumai, H.; et al. Urban rainwater harvesting systems: Research, implementation and future perspectives. Water Res. 2017, 115, 195–209. [Google Scholar] [CrossRef]
- Avellaneda, P.M.; Jefferson, A.J.; Grieser, J.M.; Bush, S.A. Simulation of the cumulative hydrological response to green infrastructure. Water Resour. Res. 2017, 53, 3087–3101. [Google Scholar] [CrossRef]
- Metropolis, N.; Ulam, S. The Monte Carlo method. J. Am. Stat. Assoc. 1949, 44, 335–341. [Google Scholar] [CrossRef]
- Elishakoff, I.; van Manen, S.; Vermeulen, P.G.; Arbocz, J. First-order second moment analysis of the buckling of shells with random imperfections. AIAA J. 1987, 25, 1113–1117. [Google Scholar] [CrossRef] [Green Version]
- Metropolis, N.; Rosenbluth, A.; Rosenbluth, M.; Teller, A.; Teller, E. Equation of state calculations by fast computing machines. J. Chem. Phys. 1953, 21, 1087–1092. [Google Scholar] [CrossRef] [Green Version]
- Hastings, W. Monte Carlo sampling methods using markov chains and their applications. Biometrika 1970, 57, 97–109. [Google Scholar] [CrossRef]
- Vrugt, J.; Ter Braak, C.; Diks, C.; Robinson, B.; Hyman, J.; Higdon, D. Accelerating Markov Chain Monte Carlo simulation by differential evolution with self-adaptive randomized subspace sampling. Int. J. Nonlinear Sci. Numer. Simul. 2009, 10, 273–290. [Google Scholar] [CrossRef]
- Cowles, M.K.; Carlin, B.P. Markov Chain Monte Carlo convergence diagnostics: A comparative review. J. Am. Stat. Assoc. 1996, 91, 883–904. [Google Scholar] [CrossRef]
- Gelman, A.; Shirley, K. Inference from Simulations and Monitoring Convergence. In Handbook of Markov Chain Monte Carlo; CRC Press: London, UK, 2011; pp. 163–174. [Google Scholar]
- HTCondor. 2015. Available online: https://research.cs.wisc.edu/htcondor/ (accessed on 17 July 2014).
- Tavakol-Davani, H.E.; Tavakol-Davani, H.; Burian, S.J.; McPherson, B.J.; Barber, M.E. Green infrastructure optimization to achieve pre-development conditions of a semiarid urban catchment. J. Environ. Sci. 2019, 5, 1157–1171. [Google Scholar] [CrossRef]
- Tavakol-Davani, H.E.; Tavakol-Davani, H.; Burian, S.J. Evolutionary Optimization of Green Infrastructure by High Throughput Computing. In Proceedings of the 2019 World Environmental and Water Resources Congress, ASCE, Pittsburgh, PA, USA, 19–23 May 2019. [Google Scholar] [CrossRef]
- U.S. Climate Data. Climate Toledo—Ohio. Available online: http://www.usclimatedata.com/climate/toledo/ohio/united-states/usoh0953 (accessed on 17 July 2014).
- City of Toledo. Flow Characterization Study Report; Toledo Waterways Initiative: Toledo, OH, USA, 2005. [Google Scholar]
- Tavakol-Davani, H. Watershed-Scale Life Cycle Assessment of Rainwater Harvesting Systems to Control Combined Sewer Overflows. Ph.D. Thesis, University of Utah, Salt Lake City, UT, USA, 2016. [Google Scholar]
- AREIS. Auditor’s Real Estate Information System; CD-ROM; AREIS: Toledo, OH, USA, 2014. [Google Scholar]
- City of Toledo. Toledo Waterways Initiative; Toledo Waterways Initiative: Toledo, OH, USA, 2014; Available online: http://www.toledowaterwaysinitiative.com/ (accessed on 17 July 2014).
- Nasseri, M.; Tavakol-Davani, H.; Zahraie, B. Performance assessment of different data mining methods in statistical downscaling of daily precipitation. J. Hydrol. 2013, 492, 1–14. [Google Scholar] [CrossRef]
- Tavakol-Davani, H.; Nasseri, M.; Zahraie, B. Improved statistical downscaling of daily precipitation using SDSM platform and data-mining methods. Int. J. Climatol. 2013, 33, 2561–2578. [Google Scholar] [CrossRef]
- Tavakol-Davani, H.E.; Goharian, E.; Hansen, C.H.; Tavakol-Davani, H.; Apul, D.; Burian, S.J. How does climate change affect combined sewer overflow in a system benefiting from rainwater harvesting systems? Sustain. Cities Soc. 2016, 27, 430–438. [Google Scholar] [CrossRef] [Green Version]
- Sinha, P.; Mann, M.E.; Fuentes, J.D.; Mejia, A.; Ning, L.; Sun, W.; He, T.; Obeysekera, J. Downscaled rainfall projections in south Florida using self-organizing maps. Sci. Total Environ. 2018, 635, 1110–1123. [Google Scholar] [CrossRef]
Phase | Component | Input Quantity | Input | Energy | GWP | ETW |
---|---|---|---|---|---|---|
Unit | (kwh) | (k CO2 e) | (CTU eco) (5) | |||
Construction | Concrete (pad) | 0.23 | m3 | 190.6 | 60.3 | 64.6 |
Cistern (galvanized steel) | 100.5 | kg | 799.5 | 272.5 | −243.4 (2) | |
Pump | 13.9 | kg | 39.9 | 12.5 | −14.8 (2) | |
PVC pipes | 14.8 | kg | 304.1 | 42.0 | 3.0 | |
Materials transportation (1) | 66,926.1 | kg-km | 19.7 | 4.9 | 2.9 | |
Operation (3) | Pump energy | 864 | MJ | 864 | 599.6 | 22.4 |
Potable water treatment (4) | −3799.21 | m3 | −13,221.3 | −1534.9 | −11,017.7 | |
CSOs (4) | −2840.18 | m3 | - | - | −73,560.8 | |
Combined sewage treatment (4) | 3284.22 | m3 | 10,443.8 | 1913.9 | 20,567.4 | |
Maintenance | Cistern and pump replacement ‡ | Mixed | - | 1887.2 | 634.5 | −589.2 (2) |
Sub-Model | Component | Uncertainty Type | Data Source |
---|---|---|---|
Hydrologic | Rainfall (R). Illustrated as a part of water fluxes in Figure 1 | Input parameter | Sampled from a normal distribution for annual rainfall depth (Figure S1) |
Combined network water fluxes (e.g., Dry Weather Flow, groundwater flow) | Input parameter | Measured data | |
Capacity (C) of RWH (referred to as water infrastructure in Figure 1) | Input parameter | Sampled from a gamma distribution (Figure S1). | |
RWH release rate | Model parameter | Toilet flushing demand data for a typical residential building [51] | |
Sub watershed characteristics (e.g., slope, imperviousness, roughness, infiltration capacity) | Model parameters | Measured data | |
Conveyance network characteristics (e.g., details of pipes, regulators, pumps, outfalls) | Model parameters | Measured data | |
LCA | Materials and energy requirement for construction and maintenance phase of RWH | Input parameter | Table 1 |
Materials and energy requirements for performance phase of RWH | Input parameter | Hydrologic model output | |
GWP impacts for per unit of CSD (GWPCSD)—referred to LCA output in Figure 1 | Model parameter | Sampled from a lognormal distribution (Figure S1) | |
ETW impacts for per unit CSO (ETWCSO)—referred to LCA output in Figure 1 | Model parameter | Sampled from a lognormal distribution (Figure S1) |
Function (F) | Variable (X) | Unit | Portion of Uncertainty Propagated by X (%) | |||
---|---|---|---|---|---|---|
GWP | R | cm | 0.9 | 165.9 | 152.0 | 86.1% |
C | m3 | 0.7 | 24.3 | 12.5 | 7.1% | |
GWPCSD | k CO2 e/m3 | 8.5 | 0.2 | 12.1 | 6.8% | |
ETW | R | cm | 66.6 | 165.9 | 736,617.1 | 94.4% |
C | m3 | −38.7 | 24.3 | 36,366.4 | 4.7% | |
ETWCSO | CTU eco/m3 | −5.6 | 242.8 | 7524.3 | 0.9% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tavakol-Davani, H.; Rahimi, R.; Burian, S.J.; Pomeroy, C.A.; McPherson, B.J.; Apul, D. Combining Hydrologic Analysis and Life Cycle Assessment Approaches to Evaluate Sustainability of Water Infrastructure: Uncertainty Analysis. Water 2019, 11, 2592. https://doi.org/10.3390/w11122592
Tavakol-Davani H, Rahimi R, Burian SJ, Pomeroy CA, McPherson BJ, Apul D. Combining Hydrologic Analysis and Life Cycle Assessment Approaches to Evaluate Sustainability of Water Infrastructure: Uncertainty Analysis. Water. 2019; 11(12):2592. https://doi.org/10.3390/w11122592
Chicago/Turabian StyleTavakol-Davani, Hassan, Reyhaneh Rahimi, Steven J. Burian, Christine A. Pomeroy, Brian J. McPherson, and Defne Apul. 2019. "Combining Hydrologic Analysis and Life Cycle Assessment Approaches to Evaluate Sustainability of Water Infrastructure: Uncertainty Analysis" Water 11, no. 12: 2592. https://doi.org/10.3390/w11122592
APA StyleTavakol-Davani, H., Rahimi, R., Burian, S. J., Pomeroy, C. A., McPherson, B. J., & Apul, D. (2019). Combining Hydrologic Analysis and Life Cycle Assessment Approaches to Evaluate Sustainability of Water Infrastructure: Uncertainty Analysis. Water, 11(12), 2592. https://doi.org/10.3390/w11122592