A Water Quality Appraisal of Some Existing and Potential Riverbank Filtration Sites in India
Abstract
:1. Introduction
2. Materials and Methods
2.1. General Sampling Strategy
2.2. Sampling and Analysis of Water for Inorganic Chemical Parameters and DOC
2.3. Water Sampling and Analyses of Organic Micropollutants
3. Results and Discussion
3.1. Inorganic Chemical Parameters
3.2. Dissolved Organic Carbon
3.3. Organic Micropollutants
4. Summary and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
OMP | Number of Samples Wherein Detected | Source Water |
---|---|---|
Iomeprol | 2 | Yamuna R. |
Naproxen | 2 | Delhi groundwater, Keetham Lake Agra |
Simazine | 2 | Yamuna R. |
Chloramphenicol | 3 | Yamuna R. |
Iopromid | 5 | Yamuna R. and RBF wells along Yamuna |
Sulfadiazine | 5 | Yamuna R. and RBF wells along Yamuna |
Ibuprofen | 6 | Scattered locations |
Acetamiprid | 7 | Mainly Yamuna region |
Atrazine | 7 | Yamuna region and Japla (Jharkhand) |
Phenazone | 8 | Yamuna and Damodar river regions |
1H-Benzotriazole | 11 | Mainly Yamuna region |
Paracetamol | 11 | Scattered locations |
Phenobarbital | 11 | Mainly Yamuna region |
Iohexol | 12 | Mainly Yamuna region |
Diuron | 13 | Mainly Yamuna region and Nainital Lake |
Diclofenac | 14 | Yamuna and Damodar river regions |
Sulfamethoxazole | 14 | Scattered locations |
Cotinine | 15 | Mainly Yamuna region, Jharkhand and Nainital |
Tolyltriazole | 15 | Mainly Yamuna region and Jharkhand |
Carbamazepine | 16 | Yamuna and Damodar river regions |
Theophylline | 17 | Scattered locations |
Triclosan | 23 | Scattered locations |
Caffeine | 41 | Ubiquitously present nearly everywhere |
Ametryne | Clofibric acid | Linuron | Atenolol |
Atrazine-desethyl | Clothianidine | Loratadine | Ciprofloxacin Ditrizoate |
Atrazine-desisopropyl | Diazepam | Primidone | Gabapentin |
Bentazone | Gemfibrozil | Propanil | Metformin |
Carbofuran | Iopamidol | Terbutryn | Metoprolol |
Chlorothiazide | Isoproturon | Trimethoprim | N,N-Dimethylsulfamide Ranitidin |
References
- Sandhu, C.; Grischek, T.; Kumar, P.; Ray, C. Potential for Riverbank filtration in India. Clean Technol. Environ. Policy 2011, 13, 295–316. [Google Scholar] [CrossRef]
- Sandhu, C.; Grischek, T. Riverbank filtration in India—Using ecosystem services to safeguard human health. Water Sci. Technol. Water Supply 2012, 12, 783–790. [Google Scholar] [CrossRef]
- Dash, R.R.; Mehrotra, I.; Kumar, P.; Grischek, T. Lake bank filtration at Nainital, India: Water-quality evaluation. Hydrogeol. J. 2008, 16, 1089–1099. [Google Scholar] [CrossRef]
- Dash, R.R.; Bhanu Prakash, E.V.P.; Kumar, P.; Mehrotra, I.; Sandhu, C.; Grischek, T. River bank filtration in Haridwar, India: Removal of turbidity, organics and bacteria. Hydrogeol. J. 2010, 18, 973–983. [Google Scholar] [CrossRef]
- Gupta, A.; Singh, H.; Ahmed, F.; Mehrotra, I.; Kumar, P.; Kumar, S.; Grischek, T.; Sandhu, C. Lake bank filtration in landslide debris: Irregular hydrology with effective filtration. Sustain. Water Resour. Manag. 2015, 1, 15–26. [Google Scholar] [CrossRef]
- Ronghang, M.; Gupta, A.; Mehrotra, I.; Kumar, P.; Patwal, P.; Kumar, S.; Grischek, T.; Sandhu, C. Riverbank filtration: A case study of four sites in the hilly regions of Uttarakhand, India. Sustain. Water Resour. Manag. 2018. [Google Scholar] [CrossRef]
- Sprenger, C.; Lorenzen, G.; Grunert, A.; Ronghang, M.; Dizer, H.; Selinka, H.-C.; Girones, R.; Lopez-Pila, J.M.; Mittal, A.K.; Szewzyk, R. Removal of indigenous coliphages and enteric viruses during riverbank filtration from highly polluted river water in Delhi (India). J. Water Health 2014, 12, 332–342. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.; Kumar, P.; Mehrotra, I.; Grischek, T. Impact of riverbank filtration on treatment of polluted river water. Environ. Manag. 2010, 91, 1055–1062. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Mehrotra, I.; Boernick, H.; Schmalz, V.; Worch, E.; Schmidt, W.; Grischek, T. Riverbank Filtration: An Alternative to Pre-chlorination. J. Indian Water Works Assoc. 2012, 50–58. [Google Scholar]
- Cady, P.; Boving, T.B.; Choudri, B.S.; Cording, A.; Patil, K.; Reddy, V. Attenuation of Bacteria at a Riverbank Filtration Site in Rural India. Water Environ. Res. 2013, 85, 2164–2175. [Google Scholar] [CrossRef]
- Boving, T.B.; Choudri, B.S.; Cady, P.; Cording, A.; Patil, K.; Reddy, V. Hydraulic and Hydrogeochemical Characteristics of a Riverbank Filtration Site in Rural India. Water Environ. Res. 2014, 86, 636–649. [Google Scholar] [CrossRef] [PubMed]
- Groeschke, M.; Frommen, T.; Taute, T.; Schneider, M. The impact of sewage-contaminated river water on groundwater ammonium and arsenic concentrations at a riverbank filtration site in central Delhi, India. Hydrogeol. J. 2017, 25, 2185–2198. [Google Scholar] [CrossRef]
- Mutiyar, P.K.; Mittal, A.K.; Pekdeger, A. Status of organochlorine pesticides in the drinking water well-field located in the Delhi region of the flood plains of river Yamuna. Drink. Water Eng. Sci. 2011, 4, 51–60. [Google Scholar] [CrossRef] [Green Version]
- Kumar, P.; Mehrotra, I.; Gupta, A.; Kumari, S. Riverbank Filtration: A sustainable process to attenuate contaminants during drinking water production. J. Sustain. Dev. Energy Water Environ. Syst. 2018, 6, 150–161. [Google Scholar] [CrossRef]
- Krishan, G.; Singh, S.; Sharma, A.; Sandhu, C.; Grischek, T.; Gosh, N.C.; Gurjar, S.; Kumar, S.; Singh, R.P.; Glorian, H.; et al. Assessment of water quality for river bank filtration along Yamuna river in Agra and Mathura. Int. J. Environ. Sci. 2016, 7, 56–67. [Google Scholar]
- Glorian, H.; Börnick, H.; Sandhu, C.; Grischek, T. Water quality monitoring in northern India for an evaluation of the efficiency of bank filtration sites. Water 2018, 10, 1804. [Google Scholar] [CrossRef]
- IS 10500. Drinking Water—Specification; Indian Standard (Second Revision); Bureau of Indian Standards: New Delhi, India, 2012.
- Grischek, T.; Ray, C. Bank filtration as managed surface—Groundwater interaction. Int. J. Water 2009, 5, 125–139. [Google Scholar] [CrossRef]
- Grischek, T.; Schoenheinz, D.; Sandhu, C. Water Resources Management and Riverbank Filtration. In Drinking Water—Source, Treatment and Distribution; Dobhal, R., Grischek, T., Uniyal, H.P., Uniyal, D.P., Sandhu, C., Eds.; Uttarakhand State Council for Science and Technology (UCOST): Dehradun, India, 2011; pp. 1–7. [Google Scholar]
- Sandhu, C. A Concept for the Investigation of Riverbank Filtration Sites for Potable Water Supply in India. Ph.D. Thesis, TU Dresden, Faculty of Environmental Sciences, HTW Dresden, Division of Water Sciences, Dresden, Germany, 2015. [Google Scholar]
- WHO. Guidelines for Drinking-Water Quality, 4th ed.; Incorporating 1st Addendum; World Health Organization: Geneva, Switzerland, 2017; ISBN 978-9241548151. [Google Scholar]
- Sandhu, C.; Grischek, T.; Ronghang, M.; Mehrotra, I.; Kumar, P.; Ghosh, N.C.; Rao, Y.R.S.; Chakraborty, B.; Patwal, P.S.; Kimothi, P.C. Overview of bank filtration in India and the need for flood-proof RBF systems. In Natural Water Treatment Systems for Safe and Sustainable Water Supply in the Indian Context—Saph Pani; Wintgens, T., Nättorp, A., Lakshmanan, E., Asolekar, S., Eds.; IWA Publishing: London, UK, 2016; pp. 17–38. ISBN 9781780407104. [Google Scholar]
- Mutiyar, P.K.; Mittal, A.K. Status of organochlorine pesticides in Ganga river basin: Anthropogenic or glacial? Drink. Water Eng. Sci. Discuss. 2012, 5, 1–30. [Google Scholar] [CrossRef]
- Huntscha, S.; Singer, H.P.; McArdell, C.S.; Frank, C.E.; Hollender, J. Multiresidue analysis of 88 polar organic micropollutants in ground, surface and wastewater using online mixed-bed multilayer solid-phase. J. Chromatogr. A 2012, 1268, 74–83. [Google Scholar] [CrossRef]
- Ullmann, M. Untersuchung zu Arzneimittelwirkstoffen bei der Uferfiltration in Indien (Investigation of Pharmaceutical Compounds during Riverbank Filtration in India). Master’s Thesis, HTW Dresden, Dresden, Germany, 2013. [Google Scholar]
- Schnitzler, H.; Börnick, H.; Ullmann, M.; Sandhu, C.; Grischek, T. Bestimmung von polaren organischen Spurenstoffen in Gewässern in Indien mittels vor-Ort-Anreicherung und LC-MS/MS (Determination of polar organic micropollutants in waters in India by on-site enrichment and LCMS/MS). In Proceedings of the Jahrestagung der Wasserchemischen Gesellschaft, Wasser, Haltern am See, Germany, 26–28 May 2014; pp. 479–483, ISBN 978-3-936028-83-6. [Google Scholar]
- Lorenzen, G.; Sprenger, C.; Taute, T.; Pekdeger, A.; Mittal, A.; Massmann, G. Assessment of the potential for bank filtration in a water-stressed megacity (Delhi, India). Environ. Earth Sci. 2010, 61, 1419–1434. [Google Scholar] [CrossRef]
- Lalwani, S.; Dogra, T.D.; Bhardwaj, D.N.; Sharma, R.K.; Murty, O.P.; Vij, A. Study on arsenic level in ground water of Delhi using hydride generator accessory coupled with atomic absorption spectrophotometer. Indian J. Clin. Biochem. 2004, 19, 135–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lapworth, D.J.; Das, P.; Shaw, A.; Mukherjee, A.; Civil, W.; Petersen, J.O.; Gooddy, D.C.; Wakefield, O.; Finlayson, A.; Krishan, G.; et al. Deep urban groundwater vulnerability in India revealed through the use of emerging organic contaminants and residence time tracers. Environ. Pollut. 2018, 240, 938–949. [Google Scholar] [CrossRef] [PubMed]
- Grischek, T.; Sandhu, C.; Ghosh, N.C.; Kimothi, P.C. A Conceptual Master Plan for RBF Water Supply in India—Science, Policy & Implementation Aspects. In Proceedings of the Indo-German Conference on Sustainability, Chennai, India, 27–28 February 2016; pp. 118–123. [Google Scholar]
Location (State) Season | Source of Water Sample | Name of SW Body | TW | pH | EC | DO | Ca2+ | Mg2+ | Na+ | K+ | Cl− | NO3− | SO42− |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Treatment | °C | - | µS/cm | mg/L | |||||||||
Dehradun (UK) non-mon. 2014 | SW | Song & Asan | 25.0 | 7.8 | n.d. | n.d. | 92 | 38 | 3.0 | 1.4 | 3.4 | 4.9 | 301 |
DW | SWA | 26.0 | 7.7 | n.d. | n.d. | 96 | 40 | 3.4 | 1.5 | 5.2 | 2.7 | 343 | |
Jammu (JK) mon. 2013 | SW | Tawi | 27.0 | 8.5 | 539 | n.d. | 26 | 5.2 | 3.9 | 1.9 | <5 | <1 | <10 |
Potentially RBF from Tawi | 21.9 | 8.3 | 591 | 4.0 | 25 | 6.7 | 2.7 | 0.8 | n.d. | <5 | <10 | ||
Mathura (UP) non-mon. 2014 | SW | Yamuna | 30.8 | 7.9 | 1700 | 6.3 | 76 | 34 | 199 | 21 | 280 | 14 | 97 |
RBF | Yamuna | 34.7 | 7.3 | 1455 | 0.1 | 69 | 29 | 161 | 17 | 215 | 4.4 | 69 | |
DW (RBF, small RO) | 38.2 | 6.4 | 150 | 1.1 | 2 | 0.6 | 17 | 1.7 | 15 | <1 | <5 | ||
Agra (UP) non-mon. 2014 | SW | Yamuna | 29.6 | 8.8 | 1665 | 18.5 | 77 | 35 | 206 | 21 | 290 | 22 | 92 |
DW | SWA | 30 | 7.5 | 1645 | 0.1 | 73 | 33 | 199 | 20 | 279 | 13 | 97 | |
GW (private well) | 28.5 | 6.8 | 3400 | 3.3 | 121 | 116 | 372 | 5.1 | 661 | 74 | 353 | ||
Bhopal (MP) non-mon. 2014 | SW | Bhopal L. | 29.6 | 8.1 | 337 | 7.1 | 19 | 7.6 | 11 | 2.8 | 0.2 | n.d. | <5 |
DW | SWA | 30.4 | 8.1 | 257 | 7.2 | 22 | 8.2 | 12 | 2.5 | 12 | <1 | 7.2 | |
Daltonganj (JH) non-mon. 2014 | SW | N. Koel | 27.7 | 7.6 | 251 | 5.0 | 22 | 6.7 | 17 | 2.2 | 5.3 | <1 | 6.8 |
RBF | N. Koel | 31.2 | 7.6 | 272 | 5.2 | 22 | 5.9 | 15 | 2.0 | 5.9 | <1 | 8.0 | |
DW | RBF-CT | 30.3 | 7.9 | 255 | 6.9 | 23 | 6.9 | 18 | 2.5 | 7.1 | <1 | 9.1 | |
Japla (JH) non-mon. 2014 | SW | Son | 32.8 | 8.6 | 172 | 8.1 | 16 | 5.1 | 9.0 | 2.1 | 5.9 | <1 | 11 |
RBF | Son | 32.0 | 8.5 | 177 | 7.5 | 17 | 5.2 | 9.7 | 7.2 | 9.5 | <1 | 13 | |
DW | RBF-CT | 30.6 | 8.3 | 193 | 7.0 | 17 | 4.9 | 9.3 | 2.1 | 5.3 | <1 | 10 | |
Ray Bazaar (JH) non-mon. 2014 | SW | Saphi | 37.6 | 8.6 | 253 | 8.8 | 23 | 6.9 | 17 | 2.4 | 8.8 | <1 | 14 |
RBF | Saphi | 26.8 | 7.2 | 313 | 4.4 | 29 | 8.1 | 19 | 3.4 | 11 | 1.2 | 14 | |
DW | RBF-CT | 29.2 | 7.9 | 325 | 7.1 | 30 | 7.8 | 19 | 3.8 | 12 | 1.1 | 17 | |
Gumla (JH) non-mon. 2014 | SW | Nagpheri | 31.0 | 8.2 | 131 | 8.1 | 12 | 3.0 | 9.5 | 1.8 | 5.5 | <1 | <5 |
RBF | Nagpheri | 30.5 | 7.5 | 135 | 5.6 | 12 | 3.0 | 9.6 | 2.0 | 5.5 | <1 | <5 | |
DW | RBF-CT | 30.3 | 7.3 | 141 | 6.9 | 14 | 2.7 | 8.5 | 2.3 | 5.2 | 1.3 | 8.4 | |
Dhanbad/ Jamadoba (JH) non-mon. 2014 | SW | Damodar | 34.6 | 8.9 | 347 | 11.8 | 27 | 12 | 20 | 6.3 | 15 | 2.1 | 60 |
DW | SWA | 34.6 | 8.1 | 371 | 7.9 | 26 | 13 | 20 | 6.3 | 15 | 3.0 | 61 | |
Gaya (B) mon. 2013 | SW | Falgu | 36.0 | 9.2 | 185 | 8.1 | 18 | 5.3 | 7.8 | 2.9 | 6.2 | <1 | <10 |
RBF | Falgu | 32.0 | 7.9 | 155 | n.d. | 62 | 17 | 11 | 1.9 | <5 | <1 | <10 | |
Anakapalli (AP) mon. 2013 | SW | Sarada | 31.5 | 9.0 | 398 | 12.5 | 20 | 18 | 35 | 4.5 | 35 | <1 | 17 |
RBF | Sarada | 30.7 | 8.1 | 540 | 7.1 | 25 | 17 | 29 | 5.6 | 33 | <1 | 17 | |
Ahmedabad (GJ) mon. 2013 | SW | Sabarmati | 30.1 | 9.2 | 558 | 9.6 | 20 | 8 | 6.5 | 1 | 6.1 | <1 | <10 |
DW | CT- RBF/DIS | 29.8 | 9.1 | 611 | 12.7 | 21 | 7.6 | 6.2 | 1 | 6.4 | < 1 | <10 |
Element | Source Water | Dissolved Concentration (mg/L) * | Location and Description |
---|---|---|---|
Fe | GW | 0.7–11 | Delhi (central), handpumps on Yamuna River east bank |
RBF | 2 | Mathura (only in monsoon 2013) | |
SW | 0.3–1.4 | Agra, Keetham Lake water intake for Mathura and Yamuna River | |
Mn | SW, RBF, GW | 0.2–0.6 | Delhi (central), Yamuna River, handpumps on river east bank and 5 RBF RCW |
RBF | 0.6–1 | Mathura, in monsoon 2013 and non-monsoon 2014 | |
GW | 0.3 | Mathura, hand pump near RBF well, in monsoon 2013 | |
GW | 1.3 | Gaya, mixed sample from various vertical wells within Falgu riverbed downstream of city possibly also receiving wastewater, in monsoon 2013 | |
RBF and DW | 0.4–0.9 | Ray Bazaar, RBF RCW (0.9 mg/L) within riverbed and subsequently conventionally treated DW (0.4 mg/L), in non-monsoon 2014 | |
SW | 0.2 | Chas (Bokaro–Dhanbad area, Jharkhand), Garga River at confluence with Damodar River, receiving substantial amount of wastewater from Bokaro Steel City | |
RBF | 0.2–0.3 | Nainital, vertical wells numbers 2 and 4 | |
As | SW | 30 µg/L | Koelwar, Son River water near sand mining site within riverbed |
GW | 44–66 µg/L | Delhi, hand pumps on Yamuna riverbank | |
GW | 20 µg/L | Mathura, hand pumps on Yamuna riverbank near RBF well, in monsoon 2013 | |
RBF | 32 µg/L | Mathura, RBF RCW within Yamuna riverbed, in non-monsoon 2014 only | |
Al | SW | 30–40 µg/L | Coastal Andhra Pradesh, Godavari, Sarada and Thatpudi rivers |
DW | 278 µg/L | Bhopal, conventionally treated drinking water from PHED DW plant |
Location, River | Source of Sample/n | 1H-Benzotriazole | Acetamiprid | Atrazine | Carbamazepine | Chloramphenicol | Cotinine | Diclofenac | Diuron | Ibuprofen | Iohexol | Iomeprol | Iopromide | Naproxen | Paracetamol | Phenazone | Phenobarbital | Simazine | Sulfadiazine | Sulfamethoxazole | Theophylline | Tolyltriazole | Triclosan |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Limit of detection | 30 | 10 | 10 | 30 | 30 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 30 | |
Delhi (central), Yamuna | SW/2 | 285/320 | 39.0/49.9 | 145/153 | 143/145 | 129 (1) | d. | 413 (1) | 418 (1) | d. | 457/465 | 26.7/30.8 | 52.3/54.9 | n.d. | d. | d. & 12.2 | 220/371 | 10.5/10.8 | 127/179 | d. | d. | 245/253 | d. |
GW/2 | n.d. | n.d. | n.d. | 64.7/78.8 | n.d. | n.d. | 307/382 | n.d. | n.d. | n.d. | n.d. | n.d. | 161 (1) | n.d. | d. | 133/177 | n.d. | 28.5/44.1 | n.d. | 34.8 (1) | n.d | n.d. | |
RBF/5 | n.d. | n.d. | n.d. | 42.3 (2) | n.d. | n.d. | 17.1/24.8 (3) | n.d. | 25.9 (1) | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | d. | n.d. | n.d. | n.d. | |
Mathura, Yamuna | SW/1 | 177 | 30.7 | d. | 140 | n.d. | 46.2 | d. | d. | n.d. | 229 | d. | 12.4 | n.d. | n.d. | 158 | 39.0 | n.d. | d. | 440 | 182 | d. | n.d. |
RBF/1 | 142 | n.d. | 15.9 | 122 | n.d. | 14.4 | d. | 379 | n.d. | 182 | d. | 15.5 | n.d. | n.d. | 40.0 | n.d. | n.d. | 16.8 | 40.9 | n.d. | 259 | n.d. | |
RO/1 | 36.8 | n.d. | n.d. | n.d. | n.d. | n.d. | 43.9 | 23.7 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | d. | n.d. | 43.2 | n.d. | |
Agra, Yamuna | SW/3 | 226/240 | 43.9/72.5 | d. (2) & 23.3 | 131/186 | 240 & n.d.(2) | 44.9/69.8 | 131/246 | 398/463 | d. | 169/256 | d. | d. (2) & 16.8 | 94.2 (1) | 198 (1) | 235/446 | 67.5/69.8 | d. & n.d.(2) | n.d. | 368/400 | 86.7/448 | d. | d. |
CT/2 | 164/190 | n.d. | d. | 113/124 | n.d. | 20.6/23.2 | 177 (1) | 333/418 | n.d. | 136/162 | d. | d. | n.d. | n.d. | 54.3 (1) | 33.8/56.2 | n.d. | n.d. | 117/196 | d. & 33.5 | d. | n.d. | |
Japla (Jh.), Sone | SW/1 | n.d. | n.d. | 13.2 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | 42.7 |
RBF/1 | n.d. | n.d. | 13.6 | n.d. | n.d. | 18.8 | n.d. | n.d. | 108 | n.d. | n.d. | n.d. | n.d. | 76.2 | n.d. | n.d. | n.d. | n.d. | n.d. | 140 | n.d. | n.d. | |
CT/1 | n.d. | n.d. | 13.6 | n.d. | n.d. | d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | d. | n.d. | n.d. | n.d. | n.d. | d. | n.d. | n.d. | n.d. | |
DTJ (Jh.), N. Koel | SW/1 | n.d. | n.d. | n.d. | n.d. | n.d. | 13.5 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | d. | n.d. | n.d. | 41.4 |
RBF/1 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | d. | n.d. | n.d. | n.d. | |
CT/1 | n.d. | n.d. | n.d. | n.d. | n.d. | 21.4 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | 341 | n.d. | n.d. | d. | 17.8 | n.d. | 30.1 | |
Dhanbad, Damodar | SW/4 | n.d. | n.d. | n.d. | 58.2 & n.d.(3) | n.d. | 126 & n.d.(3) | 46.9 & n.d.(3) | 72.5 & n.d.(3) | n.d. | 10/100 | n.d. | n.d. | n.d. | 50.5/146 | 59.7 & n.d.(3) | 25.8 & n.d.(3) | n.d. | n.d. | 39.6 & n.d.(3) | 94.3 & n.d.(3) | 88.9/102 | n.d. |
CT/1 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | d. | n.d. | 67.0 | n.d. | |
Nainital | SW/2 | n.d. | n.d. | n.d. | n.d. | n.d. | d. & 13.0 | n.d. | 89.5/112 | n.d. | n.d. | n.d. | n.d. | n.d. | d. & 105 | n.d. | n.d. | n.d. | n.d. | d. | d. & 35.1 | n.d. | n.d. |
BF/6 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | d. | n.d. | n.d. | n.d. |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sandhu, C.; Grischek, T.; Börnick, H.; Feller, J.; Sharma, S.K. A Water Quality Appraisal of Some Existing and Potential Riverbank Filtration Sites in India. Water 2019, 11, 215. https://doi.org/10.3390/w11020215
Sandhu C, Grischek T, Börnick H, Feller J, Sharma SK. A Water Quality Appraisal of Some Existing and Potential Riverbank Filtration Sites in India. Water. 2019; 11(2):215. https://doi.org/10.3390/w11020215
Chicago/Turabian StyleSandhu, Cornelius, Thomas Grischek, Hilmar Börnick, Jörg Feller, and Saroj Kumar Sharma. 2019. "A Water Quality Appraisal of Some Existing and Potential Riverbank Filtration Sites in India" Water 11, no. 2: 215. https://doi.org/10.3390/w11020215
APA StyleSandhu, C., Grischek, T., Börnick, H., Feller, J., & Sharma, S. K. (2019). A Water Quality Appraisal of Some Existing and Potential Riverbank Filtration Sites in India. Water, 11(2), 215. https://doi.org/10.3390/w11020215