Water Quality Changes during Riverbank Filtration in Budapest, Hungary
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Groundwater Flow Modeling
2.3. RBF Monitoring Network and Samples
3. Results and Discussion
3.1. Physical Parameters and Selected Cations and Anions
3.2. Redox-Related Parameters
3.3. Metals
3.4. Microbiological Parameters
3.5. Biological Parameters
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgements
Conflicts of Interest
References
- Ray, C.; Melin, G.; Linsky, R.B. (Eds.) Riverbank Filtration: Improving Source Water Quality; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2002. [Google Scholar]
- Barreto, S.; Bártfai, B.; Engloner, A.; Liptay, Á.Z.; Madarász, T.; Vargha, M. Water in Hungary, Status overview for the National Water Programme of the Hungarian Academy of Science. (Document of the National Water Programme). Budapest, Hungary, 2017. Available online: https://mta.hu (accessed on 11 February 2019).
- Davidesz, J.; Debreczeny, L. Long-Term Sustainability of RBF Systems from Aspects of Availability and Capacity. In Proceedings of the MAVÍZ Conference, Sopron, Hungary, 11–12 June 2009. (In Hungarian). [Google Scholar]
- László, F. The Hungarian experience with riverbank filtration. In Riverbank Filtration: The Future Is NOW! Proceedings of the 2nd International Riverbank Filtration Conference, Cincinnati, OH, USA, 16–19 September 2003; Melin, G., Ed.; National Water Research Institute: Fountain Valley, CA, USA, 2003. [Google Scholar]
- Massmann, G.; Nogetzig, A.; Taute, T.; Pekdeger, A. Seasonal and spatial distribution of redox zone during lake bank filtration in Berlin, Germany. Environ. Geol. 2008, 54, 53–65. [Google Scholar] [CrossRef]
- Sprenger, C.; Lorenzen, G.; Hülshoff, I.; Grützmacher, G.; Ronghang, M.; Pekdeger, A. Vulnerability of bank filtration systems to climate change. Sci. Total Environ. 2011, 409, 655–663. [Google Scholar] [CrossRef] [PubMed]
- Bertelkamp, C.; Verliefde, A.R.D.; Schoutteten, K.; VanHaecke, L.; Vand Bussche, J.; Singhal, N.; van der Hoek, J.P. The effect of redox conditions and adaptation time on organic micropollutant removal during river bank filtration: A laboratory scale column study. Sci. Total Environ. 2016, 544, 309–318. [Google Scholar] [CrossRef] [PubMed]
- Kischner, A.-K.-T.; Reischer, G.H.; Kakwerth, S.; Savio, D.; Ixenmaier, S.; Toth, E.; Sommer, R.; Mach, R.L.; Linke, R.; Eiler, A. Multiparametric monitoring of microbial faecal pollution reveals the dominance of human contamination along the whole Danube River. Water Res. 2017, 124, 543–555. [Google Scholar] [CrossRef] [PubMed]
- Kolarevic, S.; Knezevic-Vukcevic, J.; Paunovic, M.; Tmovic, J.; Gagic, Z.; Vukovic-Gacic, B. The anthropogenic impact on water quality of the river Danube in Serbia: Microbiological analysis and genotoxicity monitoring. Arch. Biol. Sci. 2011, 63, 1209–1217. [Google Scholar] [CrossRef]
- AquaNES Deliverable 1.6—Advantages and Limitations, Impact of BF Design, Recommendations for Operators. 2019. Available online: http://www.aquanes-h2020.eu (accessed on 10 February 2019).
- Benedek, P. New trends in water quality management. Water Sci. Technol. 1982, 14, 47–82. [Google Scholar] [CrossRef]
- Grischek, T.; Macheleidt, W.; Nestler, W. River bed specifics and their effect on bank filtration efficiency. In Management of Aquifer Recharge for Sustainability; Dillon, P., Ed.; Balkema Publ.: Lisse, The Netherlands, 2002; pp. 59–64. [Google Scholar]
- Grischek, T.; Bartak, R. Riverbed clogging and sustainability of riverbank filtration. Water 2016, 8, 604. [Google Scholar] [CrossRef]
- Grischek, T. Management of RBF along the Elbe River. Ph.D. Thesis, Dresden University of Technology, Department of Water Sciences, Dresden, Germany, 2003. (In German). [Google Scholar]
- Nagy-Kovács, Z.; László, B.; Fleit, E.; Czichat-Mártonné, K.; Till, G.; Börnick, H.; Adomat, Y.; Grischek, T. Behaviour of organic micropollutants during riverbank filtration at Budapest, Hungary. Water 2018, 10, 1861. [Google Scholar] [CrossRef]
- Nagy-Kovács, Z.; László, B.; Simon, E.; Fleit, E. Large scale, long-term operational experiences to sustain secure RBF and well structure remodeling. Water 2018, 10, 1751. [Google Scholar] [CrossRef]
- Molnár, Z. Determination of the Production Well Capacities by Modelling; Internal Unpublished Document; Budapest Waterworks: Budapest, Hungary, 2013. (In Hungarian) [Google Scholar]
- Ministry for Environment and Water. Ministerial Decree No. 21/2002. (IV. 25.) on the Operation of Water Supply Systems; Ministry for Environment and Water: Budapest, Hungary, 2002. Available online: https://net.jogtar.hu (accessed on 11 February 2019). (In Hungarian)
- Schoenheinz, D.; Grischek, T. Behavior of dissolved organic carbon during bank filtration under extreme climate conditions. In Riverbank Filtration for Water Security in Desert Countries; Ray, C., Shamrukh, M., Eds.; Springer Science + Business Media B.V.: Dordrecht, The Netherlands, 2011; pp. 51–67. [Google Scholar]
- Hoehn, E.; Cirpka, O.A. Assessing residence times of hyporheic ground water in two alluvial flood plains of the Southern Alps using water temperature and tracers. Hydrol. Earth Syst. Sci. 2006, 10, 553–563. [Google Scholar] [CrossRef]
- Schmidt, C.K.; Lange, F.T.; Brauch, H.J.; Kühn, W. Experiences with riverbank filtration and infiltration in Germany. In Proceedings of the Int. Symp. Artificial Recharge of Groundwater, Daejon, Korea, 14 November 2003; DVGW-Water Technology Center (TZW): Karlsruhe, Germany, 2003. [Google Scholar]
- Grischek, T.; Hiscock, K.M.; Metschies, T.; Dennis, P.; Nestler, W. Factors affecting denitrification during infiltration of river water into a sand and gravel aquifer in Saxony. Water Res. 1998, 32, 450–460. [Google Scholar] [CrossRef]
- Henzler, A.F.; Greskowiak, J.; Massmann, G. Seasonality of temperatures and redox zonations during bank filtration—A modeling approach. J. Hydrol. 2016, 535, 282–292. [Google Scholar] [CrossRef]
- Ministry for Environment and Water-Ministry of Health-Ministry of Agriculture and Regional Development. Hungarian Drinking Water Guideline: Governmental Decree No. 201/2001. (X. 25) on Water Quality Standards and Monitoring of Drinking Water Quality; Ministry for Environment and Water-Ministry of Health-Ministry of Agriculture and Regional Development: Budapest, Hungary, 2001. Available online: https://net.jogtar.hu (accessed on 11 February 2019). (In Hungarian)
- Ministry for Environment and Water. Ministerial Decree No. 6/2009 (IV. 14) on the Limits and Measurement Methods Necessary for the Protection of Ground and Ground Water against Contaminations; Ministry for Environment and Water: Budapest, Hungary, 2009. Available online: https://net.jogtar.hu (accessed on 11 February 2019). (In Hungarian)
- Stuyfzand, P.J. Fate of pollutants during artificial recharge and bank filtration in the Netherlands. In Artificial Recharge of Groundwater, Proceedings of the Third International Symposium on Artificial Recharge of Ground Water, Amsterdam, Netherlands, 21–25 September 1998; Peters, J.H., Ed.; Balkema: Rotterdam, The Netherlands, 1998; pp. 119–125. [Google Scholar]
- Partinoudi, V.; Collins, M.R. Assessing RBF reduction/removal mechanisms for microbial and organic DBP precursors. J. AWWA 2007, 99, 61–71. [Google Scholar] [CrossRef]
- Hijnen, W.A.M.; Brouwer-Hanzens, A.J.; Charles, K.J.; Medema, G.J. Transport of MS2 phage, Escherichia coli, Clostridium parvum, and Giardia intestinalis in a gravel and a sandy soil. Environ. Sci. Technol. 2005, 39, 7860–7868. [Google Scholar] [CrossRef] [PubMed]
- Sandhu, C.; Grischek, T. Riverbank filtration in India—Using ecosystem services to safeguard human health. Wat. Sci. Technol. 2012, 12, 783–790. [Google Scholar] [CrossRef]
Well/Well Group | Type of Wells | Distance between the Riverbank and Wells (m) | Thickness of Aquifer (m) | Travel Time of Bank Filtrate (days) |
---|---|---|---|---|
Kisoroszi | HW | 40–370 | 9–13 | 13–17 |
Tótfalu | HW | 120 | 7–10 | 14–22 |
Tahi I. | HW | 60 | 5–8 | 3–6 |
Tahi II. | HW | 200–230 | 5–8 | 12–20 |
Surány well 1–7 | HW | 60–120 | 7–12 | 6–8 |
Surány well 8–14 | HW | 190–228 | 7–12 | 22–25 |
Surány well 15–20 | HW | 255–410 | 7–12 | 68–98 |
Horány I. | VW | 19 | 7–9 | 4–6 |
Horány II. | VW | 19 | 7–9 | 6–8 |
Horány III. | HW | 85–245 | 7–9 | 9–11 |
Pócsmegyer I. | VW, HW | 90–140 | 5–12 | 8–11 |
Pócsmegyer II. | HW | 0–60 | 5–12 | 2–4 |
Pócsmegyer III. | VW | 30 | 5–12 | 2–4 |
Monostor I | HW | 30–270 | 5–13 | 11–12 |
Monostor II. | VW | 70 | 5–13 | 9–12 |
Monostor III. | VW | 70 | 5–13 | 7–9 |
Monostor IV. | VW | 40 | 5–13 | 4–6 |
Monostor V. | VW, HW | 40–80 | 5–13 | 9–13 |
Sziget I. | HW | 10–35 | 5–13 | 2–5 |
Sziget II. | HW | 10–45 | 5–13 | 2–5 |
Balpart I. | HW, SW | 51–100 | 5–10 | 5–10 |
Balpart II. | HW | 62–203 | 5–10 | 2–5 |
Csepel | HW | 7–27 | 9–17 | 2–5 |
Halásztelek | HW | 24–113 | 9–17 | 2–25 |
Tököl | VW | 55–70 | 5–13 | 5–20 |
Szigetújfalu | HW | 374–860 | 5–13 | 100–220 |
Ráckeve | HW | 60–117 | 8–15 | 15–20 |
Parameter | Unit | Danube River Water | Bank Filtrate t < 10 days | Bank Filtrate t = 10–25 days | Bank Filtrate t > 50 days | Effect |
---|---|---|---|---|---|---|
T | °C | 13.2 | 12.4 | 11.7 | 11.8 | Buffering effect |
−1.4–26.3 | −0.7–21 | 4–20.8 | 7–16.6 | |||
(n = 1476) | (n = 4744) | (n = 4451) | (n = 753) | |||
EC | µS/cm | 387 | 454 | 475 | 731 | Increase with travel time |
283–652 | 303–1617 | 336–1809 | 411–1379 | |||
(n = 1010) | (n = 3255) | (n = 3677) | (n = 663) | |||
Turbidity | NTU | 12.5 | 0.07 | 0.08 | 0.05 | Removal up to 99% |
0.24–213 | <0.1–149 | <0.1–44.5 | <0.1–1.99 | |||
(n = 962) | (n = 4152) | (n = 3951) | (n = 698) | |||
pH | - | 8.03 | 7.52 | 7.5 | 7.4 | Decrease, no effect of travel time |
6.86–8.95 | 7–7.95 | 6.11–7.92 | 7.05–7.7 | |||
(n = 1009) | (n = 2080) | (n = 2298) | (n = 375) | |||
Alk | mmol/L | 3.2 | 3.8 | 3.1 | 5.5 | Slight increase for t < 50 days |
2.4–4.0 | 2.5–7.6 | 2.9–7.7 | 3.8–8.2 | |||
(n = 140) | (n = 845) | (n = 1524) | (n = 268) | |||
Ca2+ | mg/L | 54.3 | 66.6 | 72.1 | 92.1 | Increase with travel time |
40.3–80.3 | 24.7–196 | 47.6–214 | 64–160 | |||
(n = 352) | (n = 1799) | (n = 1605) | (n = 269) | |||
Mg2+ | mg/L | 13.3 | 16.1 | 17.2 | 40.4 | Slight increase for t < 50 days |
9.1–20.6 | 5.2–59.9 | 11.5–73.7 | 15.5–96 | |||
(n = 354) | (n = 1799) | (n = 1604) | (n = 269) | |||
Na+ | mg/L | 13.3 | 14.3 | 14.6 | 19.7 | Slight increase for t < 50 days |
6–30.3 | 8.0–75.3 | 8.7–78.7 | 11.3–45.9 | |||
(n = 352) | (n = 1804) | (n = 1604) | (n = 269) | |||
K+ | mg/L | 2.7 | 2.7 | 2.6 | 2.6 | No change in median |
1.6–4.6 | 1.5–11 | 1.0–36.0 | 1.4–10.8 | |||
(n = 352) | (n = 1778) | (n = 1593) | (n = 268) | |||
NH4+ | mg/L | 0.07 | <0.04 | <0.04 | <0.04 | Slight decrease |
<0.04–1.1 | ||||||
(n = 1046) | (n = 3273) | (n = 3628) | (n = 656) | |||
Hardness | mg/L CaO | 113 | 142 | 147 | 215 | Increase with travel time |
77–194 | 91–374 | 101–429 | 135–427 | |||
(n = 668) | (n = 464) | (n = 864) | (n = 150) | |||
HCO3− | mg/L | 189 | 232 | 256 | 342 | Slight increase for t < 50 days |
140–256 | 171–464 | 183–469 | 232–500 | |||
(n = 223) | (n = 523) | (n = 937) | (n = 170) | |||
Cl− | mg/L | 19.0 | 21.3 | 21.3 | 33.2 | Slight increase for t < 50 days |
8.9–48 | 7.9–218 | 11.0–220 | 9.7–77.8 | |||
(n = 978) | (n = 3305) | (n = 3460) | (n = 632) | |||
PO43− | mg/L | 0.123 | <0.1 | <0.1 | <0.1 | Removal 0–18% at least |
<0.1–0.55 | <0.1–0.46 | <0.1–0.378 | <0.1–0.106 | |||
(n = 579) | (n = 1489) | (n = 1031) | (n = 151) | |||
F− | mg/L | <0.2 | <0.2 | <0.2 | <0.2 | No change |
<0.2–0.4 | <0.2–0.9 | <0.2–0.9 | <0.2–0.2 | |||
(n = 260) | (n = 1363) | (n = 899) | (n = 150) | |||
B | mg/L | 0.028 | 0.031 | 0.022 | 0.035 | Buffering |
<0.005–1.594 | 0.008–0.313 | 0.009–0.099 | 0.014–0.079 | |||
(n = 242) | (n = 152) | (n = 218) | (n = 36) | |||
Si | mg/L | 2.82 | 4.06 | 4.43 | 8.42 | Increase with travel time |
2.29–3.21 | 2.81–8.45 | 2.97–12.1 | 6.66–10.6 | |||
(n = 11) | (n = 25) | (n = 30) | (n = 10) | |||
CN− | µg/L | No data | <10 | <10 | <10 | No river data |
<10–20.4 | <10–18.8 | <10–14.5 | ||||
(n = 123) | (n = 258) | (n = 35) |
Parameter | Unit | Danube River Water | Bank Filtrate t < 10 days | Bank Filtrate t = 10–25 days | Bank Filtrate t > 50 days | Effect |
---|---|---|---|---|---|---|
TOC | mg/L | 2.8 | 1.1 | 1.1 | 0.9 | Removal 11–75% |
1.6–10.0 | 0.7–2.5 | 0.7–2.1 | 0.7–1.3 | |||
(n = 585) | (n = 319) | (n = 200) | (n = 10) | |||
UV254 | m−1 | 7.4 | 2.7 | 2.4 | 1.65 | Removal 0–92% |
1–29.6 | 0.7–7.5 | 0.6–12.7 | 0.55–6.9 | |||
(n = 426) | (n = 2617) | (n = 2771) | (n = 500) | |||
COD | mg/L | 2.8 | 0.7 | 0.7 | 0.44 | Removal 7–93% |
0.3–16.2 | <0.2–2.6 | <0.2–2.5 | <0.2–2.4 | |||
(n = 1039) | (n = 3401) | (n = 3639) | (n = 657) | |||
DO | mg/L | >7 near to saturation | 2.7 | 3.1 | 2.3 | No river data set available |
0.2–11.1 | 0.2–11.1 | 0.4–4.4 | ||||
(n = 173) | (n = 97) | (n = 13) | ||||
NO3− | mg/L | 8.1 | 8.4 | 7.1 | 22.9 | No effect at short travel times |
2.9–17.8 | <1–126 | <1–144 | 2.2–89.6 | |||
(n = 1092) | (n = 3531) | (n = 3815) | (n = 661) | |||
NO2− | mg/L | 0.05 | <0.03 | <0.03 | <0.03 | Decreasing effect |
<0.03–0.91 | <0.03–0.82 | <0.03–0.53 | <0.03–0.19 | |||
(n = 1052) | (n = 3296) | (n = 3649) | (n = 656) | |||
Mn | µg/L | 33.5 | 1.3 | 1.9 | 3.9 | Removal 0–97% |
1.9–415 | <1–1752 | <1–3255 | <1–135 | |||
(n = 757) | (n = 3358) | (n = 3722) | (n = 657) | |||
Fe | µg/L | 201 | 5.8 | 7.2 | 6.5 | Removal 0–98% |
<5–3600 | <5–1670 | <5–3540 | <5–82.2 | |||
(n = 1052) | (n = 918) | (n = 1215) | (n = 257) | |||
SO42− | mg/L | 31.8 | 38.4 | 45.5 | 103 | Slight increase |
18.2–138.3 | 20.7–438.8 | 20.7–491.9 | 18.4–351.6 | |||
(n = 307) | (n = 2016) | (n = 1904) | (n = 319) |
Parameter | Unit | Danube River Water | Bank Filtrate t < 10 days | Bank Filtrate t = 10–25 days | Bank Filtrate t > 50 days | Effect |
---|---|---|---|---|---|---|
Al | µg/L | 157 | <5 | <5 | <5 | Nearly complete removal |
5.2–4261 | <5–107 | <5–1114 | <5–289 | |||
(n = 163) | (n = 192) | (n = 267) | (n = 43) | |||
Sb | µg/L | <0.5 | <0.5 | <0.5 | <0.5 | Results below LOD |
<0.5–1.28 | <0.5–2.5 | <0.5–2.8 | <0.5–0.9 | |||
(n = 159) | (n = 158) | (n = 229) | (n = 38) | |||
As | µg/L | 1.8 | 1.7 | 1.5 | <1 | Little change, around LOD |
1.0–7.7 | <1–3.7 | <1–6 | <1–6.9 | |||
(n = 163) | (n = 325) | (n = 521) | (n = 88) | |||
Ba | µg/L | 35.1 | 40.2 | 42.9 | 47.7 | Slight increase |
<5–185 | <5–126 | 19–126 | 24.3–102 | |||
(n = 266) | (n = 172) | (n = 257) | (n = 43) | |||
Bi | µg/L | <0.2 | <0.2 | <0.2 | <0.2 | Results below LOD |
<0.2–0.8 | <0.2–0.8 | |||||
(n = 12) | (n = 33) | (n = 33) | (n = 10) | |||
Cd | µg/L | 0.2 | <0.2 | 0.2 | <0.2 | Slight decrease, results close to LOD |
<0.2–0.8 | <0.2–0.677 | <0.2–0.5 | ||||
(n = 266) | (n = 192) | (n = 266) | (n = 43) | |||
Cr | µg/L | 1.2 | 1.0 | 1.0 | 1.2 | Removal 0–16%, results close to LOD |
<1–23.3 | <1–6.6 | <1–21.9 | <1–3.1 | |||
(n = 266) | (n = 192) | (n = 267) | (n = 45) | |||
Co | µg/L | 0.25 | <0.2 | <0.2 | <0.2 | Removal 0–20% (at least) |
<0.2–2.4 | <0.2–2.0 | <0.2–0.4 | <0.2–1.4 | |||
(n = 266) | (n = 172) | (n = 257) | (n = 43) | |||
Cu | mg/L | <0.005 | <0.005 | <0.005 | <0.005 | Results below LOD |
<0.005–3.34 | <0.005–1.003 | <0.005–0.059 | <0.005–0.067 | |||
(n = 266) | (n = 192) | (n = 266) | (n = 43) | |||
Pb | µg/L | 1 | <0.5 | <0.5 | <0.5 | Results for BF below LOD |
<0.5–13.5 | <0.5–5.7 | <0.5–6 | <0.5–1.2 | |||
(n = 163) | (n = 193) | (n = 266) | (n = 43) | |||
Li | µg/L | 3 | 7 | 6.2 | 14.4 | Increase |
<0.1–11 | <0.1–15.6 | 3.3–17.6 | 10.9–18.9 | |||
(n = 11) | (n = 26) | (n = 25) | (n = 10) | |||
Hg | µg/L | <0.05 | <0.05 | <0.05 | <0.05 | Results below LOD |
<0.05–0.65 | <0.05–1.2 | <0.05–0.8 | ||||
(n = 116) | (n = 175) | (n = 263) | (n = 43) | |||
Mo | µg/L | 1.0 | <1 | <1 | <1 | Results for BF below LOD |
<1–23 | <1–7.6 | <1–20.4 | <1–2.1 | |||
(n = 265) | (n = 172) | (n = 258) | (n = 45) | |||
Ni | µg/L | 1.672 | <1 | <1 | <1 | Results for BF below LOD |
<1–105 | <1–28.6 | <1–89.9 | <1–4.46 | |||
(n = 267) | (n = 192) | (n = 267) | (n = 45) | |||
Se | µg/L | <1 | <1 | <1 | 1.6 | Little change |
<1–1.0 | <1–3.6 | <1–3.6 | <1–4.2 | |||
(n = 163) | (n = 191) | (n = 265) | (n = 43) | |||
Ag | µg/L | <1 | <1 | <1 | <1 | Results below LOD |
<1–4 | <1–2.3 | <1–4.4 | <1–0.839 | |||
(n = 266) | (n = 178) | (n = 258) | (n = 43) | |||
Sr | mg/L | 0.4 | 0.33 | 0.3 | 0.58 | River data not sufficient |
0.24–0.32 | 0.23–0.95 | 0.26–0.46 | 0.46–0.78 | |||
(n = 3) | (n = 20) | (n = 23) | (n = 8) | |||
Zn | µg/L | 12.1 | 5.8 | 6.2 | 11.5 | Removal 0–59% |
<5–222 | <5–119.5 | <5–175 | <5–166 | |||
(n = 267) | (n = 172) | (n = 257) | (n = 43) |
Parameter | Unit | Danube River | Bank Filtrate t < 10 days | Bank Filtrate t = 10–25 days | Bank Filtrate t > 50 days | Log Removal |
---|---|---|---|---|---|---|
HPC 22 | c/mL | 480 | 0 | 0 | 0 | 2.7 |
0–30,000 | 0–30,000 | 0–60,000 | 0–26,000 | |||
(n = 894) | (n = 4381) | (n = 4068) | (n = 706) | |||
HPC 37 | c/mL | 220 | 0 | 0 | 0 | 2.3 |
0–18,000 | 0–40,000 | 0–50,000 | 0–16,000 | |||
(n = 728) | (n = 3275) | (n = 1709) | (n = 215) | |||
TCC | c/100 mL | 660 | 0 | 0 | 0 | 2.8 |
0–1600 | 0–102 | 0–500 | 0–7 | |||
(n = 890) | (n = 4371) | (n = 4071) | (n = 711) | |||
Enterococci | c/100 mL | 75 | 0 | 0 | 0 | 1.9 |
12–360 | 0–160 | 0–3 | 0–0 | |||
(n = 245) | (n = 2851) | (n = 987) | (n = 142) | |||
Pseudomonas aeruginosa | c/100 mL | 70 | 0 | 0 | 0 | 1.8 |
2–2800 | 0–160 | 0–80 | 0–2 | |||
(n = 440) | (n = 2846) | (n = 996) | (n = 141) |
Parameter | Unit | Danube River Water | Bank Filtrate t < 10 days | Bank Filtrate t = 10–25 days | Bank Filtrate t > 50 days | Removal |
---|---|---|---|---|---|---|
Algae | c/L | 24 | 0 | 0 | 0 | 100% |
1,727,200–66,739,440 | 0–1,464,542 | 0–10,494 | 0–26 | |||
(n = 797) | (n = 2544) | (n = 2204) | (n = 356) | |||
Protozoa | c/L | No measurement | 0 | 0 | 0 | No river data |
0–360 | 0–1503 | 0–1 | ||||
(n = 446) | (n = 543) | (n = 85) | ||||
Other protozoa | c/L | No measurement | 0 | 0 | 0 | No river data |
0–50 | 0–8 | 0–288 | ||||
(n = 1059) | (n = 963) | (n = 194) | ||||
Nematodes | c/L | 0 | 0 | 0 | 0 | - |
0–0 | 0–8 | 0–12 | 0–3 | |||
(n = 21) | (n = 1358) | (n = 1381) | (n = 256) | |||
Other worms | c/L | No measurement | 0 | 0 | 0 | No river data |
0–28 | 0–6 | 0–1 | ||||
(n = 1150) | (n = 1055) | (n = 211) | ||||
Amoebae | c/L | 0 | 0 | 0 | 0 | - |
0–1 | 0–42 | 0–8 | 0–2 | |||
(n = 23) | (n = 1358) | (n = 1381) | (n = 256) | |||
Fungi | c/L | 0 | 0 | 0 | 0 | - |
0–0 | 0–18 | 0–2 | 0–0 | |||
(n = 23) | (n = 1358) | (n = 1381) | (n = 256) | |||
Fe/Mn bact. | c/L | No measurement | 97 | 97 | 24 | No river data |
0–238,440 | 0–8,253,349 | 0–7610 | ||||
(n = 1358) | (n = 1381) | (n = 256) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nagy-Kovács, Z.; Davidesz, J.; Czihat-Mártonné, K.; Till, G.; Fleit, E.; Grischek, T. Water Quality Changes during Riverbank Filtration in Budapest, Hungary. Water 2019, 11, 302. https://doi.org/10.3390/w11020302
Nagy-Kovács Z, Davidesz J, Czihat-Mártonné K, Till G, Fleit E, Grischek T. Water Quality Changes during Riverbank Filtration in Budapest, Hungary. Water. 2019; 11(2):302. https://doi.org/10.3390/w11020302
Chicago/Turabian StyleNagy-Kovács, Zsuzsanna, János Davidesz, Katalin Czihat-Mártonné, Gábor Till, Ernő Fleit, and Thomas Grischek. 2019. "Water Quality Changes during Riverbank Filtration in Budapest, Hungary" Water 11, no. 2: 302. https://doi.org/10.3390/w11020302
APA StyleNagy-Kovács, Z., Davidesz, J., Czihat-Mártonné, K., Till, G., Fleit, E., & Grischek, T. (2019). Water Quality Changes during Riverbank Filtration in Budapest, Hungary. Water, 11(2), 302. https://doi.org/10.3390/w11020302