Modelling Snowmelt in Ungauged Catchments
Abstract
:1. Introduction
2. Modelling Snow Accumulation and Melt
2.1. Snow Accumulation
2.2. Snowmelt
2.2.1. Classic Temperature-Based Approaches (Tb)
2.2.2. Temperature-Based Approaches with Radiation (Enhanced Temperature-Based Approaches) (TR)
2.2.3. Classic Energy and Mass Balance Approach (Eb)
2.2.4. Energy and Mass Balance Approach with Reduced Input Data Requirements (Wa)
3. Materials and Methods
3.1. Study Areas
3.2. Datasets
3.2.1. Livneh Dataset
3.2.2. MERRRA-2 Dataset
3.2.3. SNODAS Dataset
3.2.4. Discharge Data
3.3. Snowmelt and Hydrological Models
- a classic temperature-index-based approach (Tb)
- a temperature-index-based approach with radiation data (TR)
- a classic energy-balance approach (Eb)
- an energy-balance approach that only requires temperature data as described by Walter et al. (2005) [10] (Wa)
3.4. Model Setup, Calibration and Evaluation
- An a priori estimate (Ap) based on literature data. A value of 1.7 °C was assigned to the snow/rain accumulation threshold () and the melt temperature () was set at 0 °C. Day-degree factors of 6 and 2 mm·°C−1·day−1 were used with the temperature-based and enhanced temperature-based approaches, respectively.
- An estimation of the snow parameters using the SNODAS data. Since this data is available for the whole US it represents a viable alternative for estimating the snow parameters in ungauged basins. For estimating the melt temperature, all days with snowmelt need to be identified. The minimum and maximum temperatures provided by each forcing (Livneh, MERRA-2) on these days are then retrieved. For ensuring that the identified temperatures are representative of the temperature at which snowmelt starts, only the temperature in the first day is considered when considered when melt takes place on consecutive days. The median temperature was assumed to be the melt temperature. A similar approach was used for the snow accumulation temperature, estimated as the median temperature for the days with a positive increase in the snow water equivalent. The day-degree factor was calibrated by fitting the snowmelt to the SNODAS melt. These parameters, obtained by calibrating the SNODAS data to the average daily temperatures, are identified as SD_av parameters.
- While snow parameters are usually estimated for the mean daily temperature, some studies suggest that the maximum temperature could be more appropriate [5,14]. Therefore, the snow parameters were additionally estimated using the same approach outlined above, but considering the maximum, instead of the mean daily temperatures. These parameters are abbreviated as SD_x parameters.
4. Results
4.1. Performance of Snowmelt Models for Gauged Basins
4.2. Performance of Snowmelt Models with Snow Parameters Estimated Without Using Discharge Data
4.3. Performance of Snowmelt Models for Ungauged Basins
4.4. Consistency of Results for other Hydrological Models
5. Discussion
5.1. Performance with Respect to Correlation
5.2. Performance with Respect to Bias
5.3. MERRA-2 Radiation
5.4. Limitations of the Study
Supplementary Materials
Funding
Acknowledgments
Conflicts of Interest
References
- Ferguson, R.I. Snowmelt runoff models. Prog. Phys. Geogr. 1999, 23, 205–227. [Google Scholar] [CrossRef]
- Barnett, T.P.; Adam, J.C.; Lettenmaier, D.P. Potential impacts of a warming climate on water availability in snow-dominated regions. Nature 2005, 438, 303–309. [Google Scholar] [CrossRef] [PubMed]
- Behnke, R.; Vavrus, S.; Allstadt, A.; Albright, T.; Thogmartin, W.E.; Radeloff, V.C. Evaluation of downscaled, gridded climate data for the conterminous United States. Ecol. Appl. 2016, 26, 1338–1351. [Google Scholar] [CrossRef] [PubMed]
- Hock, R. Temperature index melt modelling in mountain areas. J. Hydrol. 2003, 282, 104–115. [Google Scholar] [CrossRef]
- Corps of Engineers U.S. Army. Snow Hydrology. In Summary Report of the Snow Investigations; North Pacific Division: Portland, OR, USA, 1956. [Google Scholar]
- Martinec, J.; Rango, A. Parameter values for snowmelt runoff modelling. J. Hydrol. 1986, 84, 197–219. [Google Scholar] [CrossRef]
- Martinec, J.; de Quervain, M.R. The effect of snow displacement by avalanches on snow melt and runoff. IAHS-AISH 1975, 104, 364–377. [Google Scholar]
- Nolin, A.W. Recent advances in remote sensing of seasonal snow. J. Glaciol. 2010, 56, 1141–1150. [Google Scholar] [CrossRef]
- Dietz, A.J.; Kuenzer, C.; Gessner, U.; Dech, S. Remote sensing of snow—A review of available methods. Int. J. Remote Sens. 2012, 33, 4094–4134. [Google Scholar] [CrossRef]
- Walter, M.T.; Brooks, E.S.; McCool, D.K.; King, L.G.; Molnau, M.; Boll, J. Process-based snowmelt modeling: Does it require more input data than temperature-index modeling? J. Hydrol. 2005, 300, 65–75. [Google Scholar] [CrossRef]
- Franz, K.J.; Hogue, T.S.; Sorooshian, S. Operational snow modeling: Addressing the challenges of an energy balance model for National Weather Service forecasts. J. Hydrol. 2008, 360, 48–66. [Google Scholar] [CrossRef]
- Debele, B.; Srinivasan, R.; Gosain, A.K. Comparison of process-based and temperature-index snowmelt modeling in SWAT. Water Resour. Manag. 2010, 24, 1065–1088. [Google Scholar] [CrossRef]
- Dai, A. Temperature and pressure dependence of the rain-snow phase transition over land and ocean. Geophys. Res. Lett. 2008, 35, L12802. [Google Scholar] [CrossRef]
- Rajagopal, S.; Harpold, A.A. Testing and improving temperature thresholds for snow and rain prediction in the Western United States. J. Am. Water Resour. Assoc. 2016, 52, 1142–1154. [Google Scholar] [CrossRef]
- L’Hôte, Y.; Chevallier, P.; Coudrain, A.; Lejeune, Y.; Etchevers, P. Relationship between precipitation phase and air temperature: Comparison between the Bolivian Andes and the Swiss Alps. Hydrol. Sci. J. 2005, 50, 989–997. [Google Scholar] [CrossRef]
- Martinec, J. Snowmelt—Runoff model for stream flow forecasts. Hydrol. Res. 1975, 6, 145–154. [Google Scholar] [CrossRef]
- Ohmura, A. Physical Basis for the Temperature-Based Melt-Index Method. J. Appl. Meteorol. 2001, 40, 753–761. [Google Scholar] [CrossRef]
- Lang, H.; Braun, L. On the information content of air temperature in the context of snow melt estimation. IAHS 1990, 190, 347–354. [Google Scholar]
- Valéry, A.; Andréassian, V.; Perrin, C. ”As simple as possible but not simpler”: What is useful in a temperature-based snow-accounting routine? Part 2—Sensitivity analysis of the Cemaneige snow accounting routine on 380 catchments. J. Hydrol. 2014, 517, 1176–1187. [Google Scholar] [CrossRef]
- Valéry, A.; Andréassian, V.; Perrin, C. ”As simple as possible but not simpler”: What is useful in a temperature-based snow-accounting routine? Part 1—Comparison of six snow accounting routines on 380 catchments. J. Hydrol. 2014, 517, 1166–1175. [Google Scholar] [CrossRef]
- Kustas, W.P.; Rango, A.; Uijlenhoet, R. A simple energy budget algorithm for the snowmelt runoff model. Water Resour. Res. 1994, 30, 1515–1527. [Google Scholar] [CrossRef]
- Kane, D.L.; Giek, R.E.; Hinzman, L.D. Snowmelt modeling at small Alaskan arctic watershed. J. Hydrol. Eng. 1997, 2, 204–210. [Google Scholar] [CrossRef]
- Kollat, J.B.; Reed, P.M.; Wagener, T. When are multiobjective calibration trade-offs in hydrologic models meaningful? Water Resour. Res. 2012, 48, W03520. [Google Scholar] [CrossRef]
- U.S. Department of Agriculture (USDA). National Engineering Handbook. Part 630 Hydrology, Chapter 11 Snowmelt; 2004. Available online: http://www.wcc.nrcs.usda.gov/ftpref/wntsc/H&H/NEHhydrology/ch11.pdf (accessed on 1 February 2019).
- Brubaker, K.; Rango, A.; Kustas, W. Incorporating radiation inputs into the snowmelt runoff model. Hydrol. Process. 1996, 10, 1329–1343. [Google Scholar] [CrossRef]
- Martinec, J. Hour-to-hour snowmelt rates and lysimeter outflow during an entire ablation period. IAHS 1989, 183, 19–28. [Google Scholar]
- Carenzo, M.; Pellicciotti, F.; Rimkus, S.; Burlando, P. Assessing the transferability and robustness of an enhanced temperature-index glacier-melt model. J. Glaciol. 2009, 55, 258–274. [Google Scholar] [CrossRef]
- Pelliccotti, F.; Brock, B.; Strasser, U.; Burlando, P.; Funk, M.; Corripio, J. An enhanced temperature-index glacier melt model including the shortwave radiation balance: Development and testing for Haut Glacier d’Arolla, Switzerland. J. Glaciol. 2005, 51, 573–587. [Google Scholar] [CrossRef]
- Hock, R. A distributed temperature-index ice-and snowmelt model including potential direct solar radiation. J. Glaciol. 1999, 45, 101–111. [Google Scholar] [CrossRef]
- Cazorzi, F.; Dalla Fontana, G. Snowmelt modelling by combining air temperature and a distributed radiation index. J. Hydrol. 1996, 181, 169–187. [Google Scholar] [CrossRef]
- Kumar, L.; Skidmore, A.K.; Knowles, E. Modelling topographic variation in solar radiation in a GIS environment. Int. J. Geogr. Inf. Sci. 1997, 11, 475–497. [Google Scholar] [CrossRef]
- Bartelt, P.; Lehning, M. A physical SNOWPACK model for the Swiss avalanche warning. Part I: Numerical model. J. Cold Regions Sci. Technol. 2002, 35, 123–145. [Google Scholar] [CrossRef]
- Shuttleworth, W.J. Terrestrial Hydrometeorology; Wiley & Sons: New York, NY, USA, 2012; p. 448. [Google Scholar]
- Tarboton, D.G.; Chowdhury, T.G.; Jackson, T.H. A Spatially distributed energy balance snowmelt model. In Biogeochemistry of Seasonally Snow-Covered Catchments; Proceedings of a Boulder Symposium, Boulder CO, USA, 3–14 July 1995; Tonnessen, K.A., Ed.; IAHS Publishing: Oxford, UK, 1995; Volume 228, pp. 141–155. [Google Scholar]
- Huintjes, E.; Sauter, T.; Schröter, B.; Maussion, F.; Yang, W.; Kropáček, J.; Buchroithner, M.; Scherer, D.; Kang, S.; Schneider, C. Evaluation of a coupled snow and energy balance model for Zhadang glacier, Tibetan Plateau, using glaciological measurements and time-lapse photography. Arct. Antarct. Alpine Res. 2015, 47, 573–590. [Google Scholar] [CrossRef]
- Herrero, J.; Polov, M.J.; Moñinov, A.; Losadav, M.A. An energy balance snowmelt model in a Mediterranean site. J. Hydrol. 2009, 371, 98–107. [Google Scholar] [CrossRef]
- Magnussonv, J.; Wever, N.; Essery, R.; Helbig, N.; Winstral, A.; Jonas, T. Evaluating snow models with varying process representations for hydrological applications. Water Resour. Res. 2015, 51, 2707–2723. [Google Scholar] [CrossRef]
- Fuka, D.R.; Walter, M.T.; Archibald, J.A.; Steenhuis, T.S.; Easton, Z.M. EcoHydRology: A Community Modeling Foundation for Eco-Hydrology. R Package Version 0.4.12. Available online: http://CRAN.R-project.org/package=EcoHydRology (accessed on 1 February 2019).
- Bristow, K.L.; Campbell, G.S. On the relationship between incoming solar radiation and daily maximum and minimum temperature. Agric. For. Meteorol. 1984, 31, 150–166. [Google Scholar] [CrossRef]
- Rosenberg, N.J. Microclimate: The Biological Environment; Wiley: New York, NY, USA, 1974; p. 495. [Google Scholar]
- Wolock, D.M. Base-Flow Index Grid for the Conterminous United States. USGS Report 2003-263; 2003. Available online: http://pubs.er.usgs.gov/publication/ofr03263 (accessed on 1 February 2019).
- Livneh, B.; Rosenberg, E.A.; Lin, C.; Nijssen, B.; Mishra, V.; Andreadis, K.M.; Maurer, E.P.; Lettenmaier, D.P. A long-term hydrologically based dataset of land surface fluxes and states for the conterminous United States: Update and extensions. J. Clim. 2013, 26, 9384–9392. [Google Scholar] [CrossRef]
- Maurer, E.P.; Wood, A.W.; Adam, J.C.; Lettenmaier, D.P.; Nijssen, B. A long-term hydrologically based dataset of land surface fluxes and states for the conterminous United States. J. Clim. 2002, 15, 3237–3251. [Google Scholar] [CrossRef]
- Rienecker, M.M.; Suarez, M.J.; Gelaro, R.; Todling, R.; Bacmeister, J.; Liu, E.; Bosilovich, M.G.; Schubert, S.D.; Takacs, L.; Kim, G.-K.; et al. MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Clim. 2011, 24, 3624–3648. [Google Scholar] [CrossRef]
- Gelaro, R.; McCarty, W.; Suárez, M.J.; Todling, R.; Molod, A.; Takacs, L.; Randles, C.A.; Darmenov, A.; Bosilovich, M.G.; Reichle, R.; et al. The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). J. Clim. 2017, 30, 5419–5454. [Google Scholar] [CrossRef]
- Wang, T.; Hamann, A.; Spittlehouse, D.; Carroll, C. Locally downscaled and spatially customizable climate data for historical and future periods for North America. PLoS ONE 2016, 11, e0156720. [Google Scholar] [CrossRef] [PubMed]
- Barret, A.P. National Operational Hydrologic Remote Sensing Center SNOwData Assimilation System (SNODAS) Products at NSIC; Special Report 11; National Snow and Ice Data Center: Boulder, CO, USA, 2003. [Google Scholar]
- National Operational Hydrologic Remote Sensing Center. Snow Data Assimilation System (SNODAS) Data Products at NSIDC; National Snow and Ice Data Center: Boulder, CO, USA, 2004. [Google Scholar]
- Clow, D.W.; Nanus, L.; Verdin, K.L.; Schmidt, J. Evaluation of SNODAS snow depth and snow water equivalent estimates for the Colorado Rocky Mountains, USA. Hydrol. Process. 2012, 26, 2583–2591. [Google Scholar] [CrossRef]
- Hedrick, A.; Marshall, H.-P.; Winstral, A.; Elderv, K.; Yueh, S.; Cline, D. Independent evaluation of the SNODAS snow depth product using regional-scale lidar-derived measurements. Cryosphere 2015, 9, 13–23. [Google Scholar] [CrossRef]
- Artan, G.A.; Verdin, J.P.; Lietzow, R. Large scale snow water equivalent status monitoring: Comparison of different snow water products in the upper Colorado Basin. Hydrol. Earth Syst. Sci. 2013, 17, 5127–5139. [Google Scholar] [CrossRef]
- Guan, B.; Molotch, N.P.; Waliser, D.E.; Jepsen, S.M.; Painter, T.H.; Dozier, J. Snow water equivalent in the Sierra Nevada: Blending snow sensor observations with snowmelt model simulations. Water Resour. Res. 2013, 49, 5029–5046. [Google Scholar] [CrossRef]
- Atkinson, S.E.; Woods, R.A.; Sivapalan, M. Climate and landscape controls on water balance model complexity over changing timescales. Water Resour. Res. 2002, 38, 1314. [Google Scholar] [CrossRef]
- Farmer, D.; Sivapalan, M.; Jothityangkoon, C. Climate, soil, and vegetation controls upon the variability of water balance in temperate and semiarid landscapes: Downward approach to water balance analysis. Water Resour. Res. 2003, 39, 1035. [Google Scholar] [CrossRef]
- Bai, Y.; Wagener, T.; Reed, P. A top-down framework for watershed model evaluation and selection under uncertainty. Environ. Model. Softw. 2009, 24, 901–916. [Google Scholar] [CrossRef]
- Hargreaves, G.H.; Samani, Z.A. Estimating potential evapotranspiration. J. Irrig. Drain. Div. 1982, 108, 225–230. [Google Scholar]
- Duan, Q.; Sorooshian, S.; Gupta, V. Effective and efficient global optimization for conceptual rainfall-runoff models. Water Resour. Res. 1992, 28, 1015–1031. [Google Scholar] [CrossRef]
- Homer, C.; Dewitz, J.; Fry, J.; Coan, M.; Hossain, N.; Larson, C.; Herold, N.; McKerrow, A.; VanDriel, J.N.; Wickham, J. Completion of the 2001 National Land Cover Database for the Conterminous United States. Photogramm. Eng. Remote Sens. 2007, 73, 337–341. [Google Scholar]
- Wang-Erlandsson, L.; van der Ent, R.J.; Gordon, L.J.; Savenije, H.H.G. Contrasting roles of interception and transpiration in the hydrological cycle—Part 1: Temporal characteristics over land. Earth Syst. Dynam. 2014, 5, 441–469. [Google Scholar] [CrossRef]
- Pelletier, J.D.; Broxton, P.D.; Hazenberg, P.; Zeng, X.; Troch, P.A.; Niu, G.; Williams, Z.C.; Brunke, M.A.; Gochis, D. Global 1-Km Gridded Thickness of Soil, Regolith, and Sedimentary Deposit Layers; ORNL DAAC: Oak Ridge, TN, USA, 2016. [Google Scholar]
- Chaney, N.W.; Wood, E.F.; McBratney, A.B.; Hempel, J.W.; Nauman, T.W.; Brungard, C.W.; Odgers, N.P. POLARIS: A 30-meter probabilistic soil series map of the contiguous United States. Geoderma 2016, 274, 54–67. [Google Scholar] [CrossRef]
- Merz, R.; Blöschl, G. Regionalization of catchment model parameters. J. Hydrol. 2004, 287, 95–123. [Google Scholar] [CrossRef]
- Parajka, J.; Viglione, A.; Rogger, M.; Salinas, J.L.; Sivapalan, M.; Blöschl, G. Comparative assessment of predictions in ungauged basins—Part 1: Runoff-hydrograph studies. Hydrol. Earth Syst. Sci. 2013, 17, 1783–1795. [Google Scholar] [CrossRef]
- Gupta, H.V.; Kling, H.; Yilmaz, K.K.; Martinez, G.F. Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. J. Hydrol. 2009, 377, 80–91. [Google Scholar] [CrossRef]
- Groisman, P.; Legates, D. The Accuracy of United States Precipitation Data. Bull. Am. Meteorol. Soc. 1994, 75, 215–227. [Google Scholar] [CrossRef]
- Rasmussen, R.; Baker, B.; Kochendorfer, J.; Meyers, T.; Landolt, S.; Fischer, A.; Black, J.; Thériault, J.; Kucera, P.; Gochis, D.; et al. How well are we measuring snow: The NOAA/FAA/NCAR winter precipitation test bed. Bull. Am. Meteorol. Soc. 2012, 93, 811–829. [Google Scholar] [CrossRef]
- Reichle, R.H.; Liu, Q.; Koster, R.D.; Draper, C.S.; Mahanama, S.P.; Partyka, G.S. Land surface precipitation in MERRA-2. J. Clim. 2017, 30, 1643–1664. [Google Scholar] [CrossRef]
- Oliveira, P.T.S.; Nearing, M.A.; Moran, M.S.; Goodrich, D.C.; Wendland, E.; Gupta, H.V. Trends in water balance components across the Brazilian Cerrado. Water Resour. Res. 2014, 50, 7100–7114. [Google Scholar] [CrossRef]
- Koivusalo, H.; Heikinheimo, M.; Karvonen, T. Test of a simple two-layer parameterisation to simulate the energy balance and temperature of a snow pack. Theor. Appl. Climatol. 2001, 70, 65–79. [Google Scholar] [CrossRef]
Property | Unit | Min | Max | Median |
---|---|---|---|---|
snow | % | 3 | 87 | 15 |
precipitation 1 | mm | 401 | 3314 | 1137 |
temperature 1 | °C | −1.5 | 13.7 | 7.3 |
PET 2 | mm | 615 | 1277 | 927 |
area | km2 | 4 | 14,269 | 304 |
elevation | m.a.s.l. | 14 | 3644 | 610 |
forest | % | 0 | 99 | 69 |
barren land | % | 0 | 40 | 0 |
glacier | % | 0 | 52 | 0 |
BFI 3 | - | 0.1 | 0.85 | 0.5 |
discharge | mm | 14 | 3514 | 479 |
Analysis | Forcing | Snow Model | Soil Parameters | Snow Parameters |
---|---|---|---|---|
step 1 | Livneh MERRA | Tb TR Eb Wa | SCE calibration to discharge | SCE calibration to discharge |
step 2 | Livneh MERRA | Tb TR Eb Wa | SCE calibration to discharge | 3 estimation approaches: a priori (Ap) and using SNODAS data (SD_av, SD_x) |
step 3 | Livneh MERRA | Tb TR Eb Wa | A priori | 3 estimation approaches: a priori (Ap) and using SNODAS data (SD_av, SD_x) |
Parameter | Description of the a Priori Estimation Approach |
---|---|
M | Percentage of deep-rooted vegetation in the catchment Estimated as the percentage of the catchment covered by forests (evergreen, mixed and deciduous) according to the NLCD (National Land Cover Database) 2001 landcover [58]. |
Interception coefficient Estimated as a function of the percentage of the catchment covered by different land use classes and the interception factors for each land use class provided by Wang-Erlandsson [59]. | |
Size of soil storage The average thickness of the permeable rocks above bedrock was estimated using the Pelletier et al. [60] datasets. This was multiplied by the fraction of soil water between saturation and the permanent wilting point estimated with the POLARIS dataset [61]. | |
Field capacity Estimated as a function of the soil properties obtained from the POLARIS datasets following the approach of [55]. | |
Surface recession , recharge coefficient and baseflow recession Since there is no straightforward way of estimating these variables from the catchment properties we used the values from the nearest catchment (centroid) for which we had information. This is justified by previous studies indicating that geographical proximity provides good results when estimating parameters for ungauged basins [62,63]. |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Massmann, C. Modelling Snowmelt in Ungauged Catchments. Water 2019, 11, 301. https://doi.org/10.3390/w11020301
Massmann C. Modelling Snowmelt in Ungauged Catchments. Water. 2019; 11(2):301. https://doi.org/10.3390/w11020301
Chicago/Turabian StyleMassmann, Carolina. 2019. "Modelling Snowmelt in Ungauged Catchments" Water 11, no. 2: 301. https://doi.org/10.3390/w11020301
APA StyleMassmann, C. (2019). Modelling Snowmelt in Ungauged Catchments. Water, 11(2), 301. https://doi.org/10.3390/w11020301