Estimation of Water Budget Components of the Sakarya River Basin by Using the WEAP-PGM Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. WEAP Model
- Rainfall Runoff
- Irrigation Demands Only versions of the Simplified Coefficient Approach
- Soil Moisture Method
- The MABIA Method
- Plant Growth Model
2.2. Study Area
2.3. Data Analysis and Model Setup
3. Results and Discussion
3.1. Flow Rate Results
3.2. Water Budget
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Vörösmarty, C.J.; Green, P.; Salisbury, J.; Lammers, R.B. Global Water Resources: Vulnerability from Climate Change and Population Growth. Sci. New Ser. 2000, 289, 284–288. [Google Scholar] [CrossRef]
- Carr, M. New Patterns: Process and Change in Human Geography, 2nd ed.; Nelson Thornes Ltd.: Cheltenham, UK, 1998; ISBN 978-0-17-438681-0. [Google Scholar]
- van Dam, J. (Ed.) Impacts of Climate Change and Climate Variability on Hydrological Regimes; Cambridge University Press: Cambridge, UK, 1999; ISBN 978-0-511-56449-9. [Google Scholar]
- Refsgaard, J.C.; Abbott, M.B. Distributed Hydrological Modelling; Kluwer Academic: Dordrecht, The Netherlands, 1996; ISBN 978-94-010-6599-3. [Google Scholar]
- Singh, V.P.; Woolhiser, D.A. Mathematical Modeling of Watershed Hydrology. J. Hydrol. Eng. 2002, 7, 270–292. [Google Scholar] [CrossRef]
- Grayson, R.B.; Moore, I.D.; McMahon, T.A. Physically based hydrologic modeling: 2. Is the concept realistic? Water Resour. Res. 1992, 28, 2659–2666. [Google Scholar] [CrossRef]
- Wurbs, R.A. Dissemination of Generalized Water Resources Models in the United States. Water Int. 1998, 23, 190–198. [Google Scholar] [CrossRef]
- Hickey, J.T.; Diaz, G.E. From Flow to Fish to Dollars: An Integrated Approach to Water Allocation. J. Am. Water Resour. Assoc. 1999, 35, 1053–1067. [Google Scholar] [CrossRef]
- Singh, V.P.; Frevert, D.K. Watershed Models; Taylor & Francis: Boca Raton, FL, USA, 2006; ISBN 978-0-8493-3609-6. [Google Scholar]
- Yates, D.; Purkey, D.; Sieber, J.; Huber-Lee, A.; Galbraith, H. WEAP21, A Demand, Priority, and Preference-Driven Water Planning Model: Part 2: Aiding Freshwater Ecosystem Service Evaluation. Water Int. 2005, 30, 501–512. [Google Scholar] [CrossRef]
- Cuceloglu, G. Darlık Havzası’nın Model Destekli Hidrolojik Analizi/Model Supported Hydrological Analysis of Darlık Watershed; MSc, Istanbul Technical University: İstanbul, Turkey, 2013. [Google Scholar]
- Cuceloglu, G.; Ertürk, A. Model Supported Hydrological Analysis of Darlik Creek Watershed, Istanbul Turkey. Fresenius Environ. Bull. 2014, 23, 3110–3116. [Google Scholar]
- Esteve, P.; Varela-Ortega, C.; Blanco-Gutiérrez, I.; Downing, T.E. A Hydro-Economic Model for the Assessment of Climate Change Impacts and Adaptation in Irrigated Agriculture. Ecol. Econ. 2015, 120, 49–58. [Google Scholar] [CrossRef]
- Yilmaz, B.; Harmancioglu, N.B. An Indicator Based Assessment for Water Resources Management in Gediz River Basin, Turkey. Water Resour. Manag. 2010, 24, 4359–4379. [Google Scholar] [CrossRef]
- Yilmaz, B. Assessing Climate Change Impacts on Gediz Basin Water Balance with WEAP Model. J. Multidiscip. Eng. Sci. Technol. 2015, 2, 3017–3020. [Google Scholar]
- Agarwal, S. WEAP-MABIA Model Application in Ur River Watershed in Tikamgarh District, Bundelkhand Region; Central University of Jharkhand: Jharkhand, India, 2018. [Google Scholar]
- Agarwal, S.; Patil, J.P.; Goyal, V.C.; Singh, A. Assessment of Water Supply–Demand Using Water Evaluation and Planning (WEAP) Model for Ur River Watershed, Madhya Pradesh, India. J. Inst. Eng. 2018. [Google Scholar] [CrossRef]
- Yaykiran, S. Sakarya Havzası’nın Yüksek Çözünürlüklü Hidrolojik Modelinin Yapılandırılması/Structuring the High Resolution Hydrological Model of Sakarya Basin; MSc, Istanbul Technical University: İstanbul, Turkey, 2016. [Google Scholar]
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large Area Hydrologic Modeling and Assessment Part I: Model Development. J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Williams, J. Soil and Water Assessment Tool Theoretical Documentation; Version 2009; Texas A&M University: College Station, TX, USA, 2011. [Google Scholar]
- Demirel, M.C.; Venancio, A.; Kahya, E. Flow forecast by SWAT model and ANN in Pracana basin, Portugal. Adv. Eng. Softw. 2009, 40, 467–473. [Google Scholar] [CrossRef]
- Güngör, Ö.; Göncü, S. Application of the soil and water assessment tool model on the Lower Porsuk Stream Watershed. Hydrol. Process. 2013, 27, 453–466. [Google Scholar] [CrossRef]
- Ertürk, A.; Ekdal, A.; Gürel, M.; Karakaya, N.; Guzel, C.; Gönenç, E. Evaluating the impact of climate change on groundwater resources in a small Mediterranean watershed. Sci. Total Environ. 2014, 499, 437–447. [Google Scholar] [CrossRef] [PubMed]
- Golmohammadi, G.; Prasher, S.; Madani, A.; Rudra, R. Evaluating Three Hydrological Distributed Watershed Models: MIKE-SHE, APEX, SWAT. Hydrology 2014, 1, 20–39. [Google Scholar] [CrossRef]
- Santikayasa, I.P. Development of an Integrated Agricultural Planning Model Considering Climate Change. IOP Conf. Ser. Earth Environ. Sci. 2016, 31, 012042. [Google Scholar] [CrossRef]
- Emam, A.R.; Kappas, M.; Linh, N.; Renchin, T. Hydrological Modeling and Runoff Mitigation in an Ungauged Basin of Central Vietnam Using SWAT Model. Hydrology 2017, 4, 16. [Google Scholar] [CrossRef]
- Cuceloglu, G.; Abbaspour, K.; Ozturk, I. Assessing the Water-Resources Potential of Istanbul by Using a Soil and Water Assessment Tool (SWAT) Hydrological Model. Water 2017, 9, 814. [Google Scholar] [CrossRef]
- Vaghefi, S.A.; Abbaspour, K.; Faramarzi, M.; Srinivasan, R.; Arnold, J. Modeling Crop Water Productivity Using a Coupled SWAT–MODSIM Model. Water 2017, 9, 157. [Google Scholar] [CrossRef]
- Duru, U.; Arabi, M.; Wohl, E.E. Modeling stream flow and sediment yield using the SWAT model: A case study of Ankara River basin, Turkey. Phys. Geogr. 2018, 39, 264–289. [Google Scholar] [CrossRef]
- Panagopoulos, Y.; Gassman, P.W.; Jha, M.K.; Kling, C.L.; Campbell, T.; Srinivasan, R.; White, M.; Arnold, J.G. A refined regional modeling approach for the Corn Belt—Experiences and recommendations for large-scale integrated modeling. J. Hydrol. 2015, 524, 348–366. [Google Scholar] [CrossRef]
- Lindström, G.; Johansson, B.; Persson, M.; Gardelin, M.; Bergström, S. Development and test of the distributed HBV-96 hydrological model. J. Hydrol. 1997, 201, 272–288. [Google Scholar] [CrossRef]
- Lindström, G.; Pers, C.; Rosberg, J.; Strömqvist, J.; Arheimer, B. Development and testing of the HYPE (Hydrological Predictions for the Environment) water quality model for different spatial scales. Hydrol. Res. 2010, 41, 295–319. [Google Scholar] [CrossRef]
- Pechlivanidis, I.G.; Arheimer, B. Large-scale hydrological modelling by using modified PUB recommendations: The India-HYPE case. Hydrol. Earth Syst. Sci. 2015, 19, 4559–4579. [Google Scholar] [CrossRef]
- Donnelly, C.; Andersson, J.C.M.; Arheimer, B. Using flow signatures and catchment similarities to evaluate the E-HYPE multi-basin model across Europe. Hydrol. Sci. J. 2016, 61, 255–273. [Google Scholar] [CrossRef]
- Donnelly, C.; Arheimer, B.; Capell, R.; Dahné, J.; Strömqvist, J. Regional overview of nutrient load in Europe – challenges when using a large-scale model approach, E-HYPE. IAHS Publ. 2013, 361, 49–58. [Google Scholar]
- Arheimer, B.; Dahné, J.; Donnelly, C.; Lindström, G.; Strömqvist, J. Water and Nutrient Simulations Using the HYPE model for Sweden vs. the Baltic Sea Basin – Influence of Input-Data Quality and Scale. Hydrol. Res. 2012, 43, 315–329. [Google Scholar] [CrossRef]
- Yin, Y.; Jiang, S.; Pers, C.; Yang, X.; Liu, Q.; Yuan, J.; Yao, M.; He, Y.; Luo, X.; Zheng, Z. Assessment of the Spatial and Temporal Variations of Water Quality for Agricultural Lands with Crop Rotation in China by Using a HYPE Model. Int. J. Environ. Res. Public Health 2016, 13, 336. [Google Scholar] [CrossRef]
- Singh, V.P. MIKE SHE (Chapter 23). In Computer Models of Watershed Hydrology; Water Resources Publications: Highlands Ranch, CO, USA, 1995; p. 1130. ISBN 978-0-918334-91-6. [Google Scholar]
- Butts, M.; Graham, D. Flexible Integrated Watershed Modeling with MIKE SHE. In Watershed Models; Frevert, D., Singh, V., Eds.; CRC Press: Boca Raton, FL, USA, 2005; pp. 245–271. ISBN 978-0-8493-3609-6. [Google Scholar]
- Keilholz, P.; Disse, M.; Halik, Ü. Effects of Land Use and Climate Change on Groundwater and Ecosystems at the Middle Reaches of the Tarim River Using the MIKE SHE Integrated Hydrological Model. Water 2015, 7, 3040–3056. [Google Scholar] [CrossRef]
- U.S. Army Corps of Engineers. HEC-HMS Technical Reference Manual; U.S. Army Corps of Engineers: Washington, DC, USA, 2000.
- Zelelew, D.; Melesse, A. Applicability of a Spatially Semi-Distributed Hydrological Model for Watershed Scale Runoff Estimation in Northwest Ethiopia. Water 2018, 10, 923. [Google Scholar] [CrossRef]
- Koneti, S.; Sunkara, S.; Roy, P. Hydrological Modeling with Respect to Impact of Land-Use and Land-Cover Change on the Runoff Dynamics in Godavari River Basin Using the HEC-HMS Model. ISPRS Int. J. Geo-Inf. 2018, 7, 206. [Google Scholar] [CrossRef]
- Chen, T.; Ren, L.; Yuan, F.; Yang, X.; Jiang, S.; Tang, T.; Liu, Y.; Zhao, C.; Zhang, L. Comparison of Spatial Interpolation Schemes for Rainfall Data and Application in Hydrological Modeling. Water 2017, 9, 342. [Google Scholar] [CrossRef]
- Srinivasan, R.; Krysanova, V.; Wechsung, F.; Arnold, J.; Williams, J. SWIM (Soil and Water Integrated Model) User Manual; PIK Reports Potsdam Institute for Climate Impact Research: Houston, TX, USA, 2000. [Google Scholar]
- Hattermann, F.F.; Wattenbach, M.; Krysanova, V.; Wechsung, F. Runoff simulations on the macroscale with the ecohydrological model SWIM in the Elbe catchment-validation and uncertainty analysis. Hydrol. Process. 2005, 19, 693–714. [Google Scholar] [CrossRef]
- Krysanova, V.; Müller-Wohlfeil, D.-I.; Becker, A. Development and test of a spatially distributed hydrological/water quality model for mesoscale watersheds. Ecol. Model. 1998, 106, 261–289. [Google Scholar] [CrossRef]
- Lobanova, A.; Stagl, J.; Vetter, T.; Hattermann, F. Discharge Alterations of the Mures River, Romania under Ensembles of Future Climate Projections and Sequential Threats to Aquatic Ecosystem by the End of the Century. Water 2015, 7, 2753–2770. [Google Scholar] [CrossRef]
- Didovets, I.; Lobanova, A.; Bronstert, A.; Snizhko, S.; Maule, C.; Krysanova, V. Assessment of Climate Change Impacts on Water Resources in Three Representative Ukrainian Catchments Using Eco-Hydrological Modelling. Water 2017, 9, 204. [Google Scholar] [CrossRef]
- Donigian, A.S.; Imhoff, J.C.; Bicknell, B.R.; Kittle, J.L.; Nichols, A. Application Guide for Hydrological Simulation Program Fortran (HSPF); U.S. Environmental Protection Agency: Athens, Greece, 1984.
- Kim, Y.-J.; Kim, H.-D.; Jeon, J.-H. Characteristics of Water Budget Components in Paddy Rice Field under the Asian Monsoon Climate: Application of HSPF-Paddy Model. Water 2014, 6, 2041–2055. [Google Scholar] [CrossRef]
- Ahmed, S.I.; Singh, A.; Rudra, R.; Gharabaghi, B. Comparison of CANWET and HSPF for water budget and water quality modeling in rural Ontario. Water Qual. Res. J. Can. 2014, 49, 53–71. [Google Scholar] [CrossRef]
- Yan, C.-A.; Zhang, W.; Zhang, Z. Hydrological Modeling of the Jiaoyi Watershed (China) Using HSPF Model. Sci. World J. 2014, 2014, 1–9. [Google Scholar] [CrossRef]
- Strömbäck, L.; Arheimer, B.; Lindström, G.; Donnelly, C.; Gustafsson, D. The Importance of Open Data and Software for Large Scale Hydrological Modelling. Open Water J. 2013, 2, 7. [Google Scholar]
- Ekeu-wei, I.T.; Blackburn, G.A. Applications of Open-Access Remotely Sensed Data for Flood Modelling and Mapping in Developing Regions. Hydrology 2018, 5, 39. [Google Scholar] [CrossRef]
- Sevastas, S.; Siarkos, I.; Theodossiou, N.; Ifadis, I.; Kaffas, K. Comparing hydrological models built upon open access and/or measured data in a GIS environment. In Proceedings of the Water Resources Engineering and Management, Thessaloniki, Greece, 25–30 June 2017; pp. 377–386. [Google Scholar]
- Falkenmark, M. The Massive Water Scarcity Now Threatening Africa: Why Isn’t It Being Addressed? Ambio 1989, 18, 112–118. [Google Scholar]
- Ceribasi, G.; Dogan, E. Trend Analysis of Average Annual Precipitation for Black Sea and Sakarya Basin. Suleyman Demirel Univ. Int. J. Technol. Sci. 2015, 7, 1–7. [Google Scholar]
- Karşili, C. Türkiye’de Akarsu Havzalarında Kişi Başına Düşen Su Miktarının Coğrafi Bilgi Sistemleriyle Analizi; MSc, Ankara Üniversitesi: Ankara, Turkey, 2011. [Google Scholar]
- Republic of Turkey the Ministry of Forestry and Water Affairs General Directorate of Water Management. Climate Change Impacts On Water Resources Project, Final Report—Executive Summary; Republic of Turkey the Ministry of Forestry and Water Affairs General Directorate of Water Management: Ankara, Turkey, 2016.
- Moroglu, M.; Yazgan, M.S. Implementation of EU Water Framework Directive in Turkey. Desalination 2008, 226, 271–278. [Google Scholar] [CrossRef]
- Göl, C.; Yilmaz, H. Legal and Administrative Problems in Watershed Management in Turkey: Case of Tatlicay Watershed. Environ. Eng. Manag. J. 2017, 16, 2685–2698. [Google Scholar]
- Sieber, J.; Purkey, D. WEAP Plant Growth Model Technical Documentation; Stockholm Environment Institute: Stockholm, Sweden, 2015. [Google Scholar]
- Sieber, J.; Purkey, D. Water Evaluation and Planning System (WEAP) User Guide; Stockholm Environment Institute U.S. Center: Somerville, MA, USA, 2015. [Google Scholar]
- Arnold, J.G.; Moriasi, D.N.; Gassman, P.W.; Abbaspour, K.C.; White, M.J.; Srinivasan, R.; Santhi, C.; Harmel, R.D.; van Griensven, A.; van Liew, M.W.; et al. SWAT: Model Use, Calibration, and Validation. Trans. ASABE 2012, 55, 1491–1508. [Google Scholar] [CrossRef]
- Williams, J.R.; Renard, K.G.; Dyke, P.T. EPIC, a new model for assessing erosion’s effect on soil productivity. J. Soil Water Conserv. 1984, 38, 381–383. [Google Scholar]
- Stockle, C.O.; Williams, J.R.; Rosenberg, N.J. A Method for Estimating the Direct and Climatic Effects of Rising Atmospheric Carbon Dioxide on Growth and Yield of Crops: Part Ⅰ—Modification of the EPIC Model for Climate Change Analysis. Agric. Syst. 1991, 38, 225–238. [Google Scholar] [CrossRef]
- Stockle, C.O.; Dyke, P.T.; Williams, J.R.; Jones, C.A.; Rosenberg, N.J. A method for estimating the direct and climatic effects of rising atmospheric carbon dioxide on growth and yield of crops: Part II—Sensitivity analysis at three sites in the Midwestern USA. Agric. Syst. 1992, 38, 239–256. [Google Scholar] [CrossRef]
- Steduto, P.; Raes, D.; Hsiao, T.C.; Fereres, E.; Heng, L.; Izzi, G.; Hoogeveen, J. AquaCrop: A New Model for Crop Prediction Under Water Deficit Conditions. Options Méditerr. 2009, 285–292. [Google Scholar]
- TUBITAK The Scientific and Technological Research Council of Turkey. Watershed Protection Action Plan for Sakarya Basin, Final Report; TUBITAK: İstanbul, Turkey, 2013.
- Isik, S.; Singh, V.P. Assessment of the watershed yield of the Sakarya River basin, Turkey. IAHS 2007, 313, 338–345. [Google Scholar]
- Bayazit, M. Systems approach to management of the Sakarya River Basin. Int. J. Water Resour. Dev. 1983, 1, 323–330. [Google Scholar] [CrossRef]
- NASA (National Aeronautics and Space Administration) SRTM 90 m DEM Digital Elevation Database. Available online: http://srtm.csi.cgiar.org/ (accessed on 15 January 2016).
- EPA (European Environment Agency) CORINE (Coordination of Information on the Environment) 2012 Land Cover Project. Available online: https://land.copernicus.eu/pan-european/corine-land-cover/clc-2012 (accessed on 8 February 2016).
- Former Ministry of Food, Agriculture and Livestock of the Republic of Turkey Turkish National Soil Database. Ankara, Turkey. Available online: https://en.wikipedia.org/wiki/Ministry_of_Food,_Agriculture_and_Livestock_(Turkey) (accessed on 3 February 2019).
- ISRIC (International Soil Reference and Information Centre) Soil Grid 1 km Project. Available online: http://soilgrids1km.isric.org/ (accessed on 24 February 2016).
- TSI (Turkish Statistics Institute) Crop Production Statistics Database. Available online: https://biruni.tuik.gov.tr/bitkiselapp/bitkisel.zul (accessed on 1 March 2016).
- Former Ministry of Forestry and Water of the Republic of Turkey Affairs Stand Type Map Database. Ankara, Turkey. Available online: https://www.afad.gov.tr/upload/Node/3484/xfiles/seismic_microzonation_manual_eng.pdf (accessed on 3 February 2019).
- Turkish National Climate Reports; TSMS (Turkish State Meteorological Service): Ankara, Turkey, 2016.
- TSHW (Turkish State Hydraulic Works) Turkish National River Discharges Reports. Ankara, Turkey. Available online: http://en.dsi.gov.tr/ (accessed on 3 February 2019).
- Luzio, M.D.; Srinivasan, R.; Arnold, J.G.; Neitsch, S.L. ArcView Interface for SWAT2000; Texas A&M University System: College Station, TX, USA, 2002. [Google Scholar]
- Winchell, M.; Srinivasan, R.; Di Luzio, J. ARCSWAT Interface for SWAT2009—User’s Guide; Blackland Research Center; Texas Agricultural Experiment Station: Temple, TX, USA, 2010; Volume 489.
- Genuchten, M.T.V. A Closed-form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils. Soil Sci. Soc. Am. J. 1980, 44, 892–898. [Google Scholar] [CrossRef]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Gupta, H.V.; Kling, H.; Yilmaz, K.K.; Martinez, G.F. Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. J. Hydrol. 2009, 377, 80–91. [Google Scholar] [CrossRef]
- Bennett, N.D.; Croke, B.F.W.; Guariso, G.; Guillaume, J.H.A.; Hamilton, S.H.; Jakeman, A.J.; Marsili-Libelli, S.; Newham, L.T.H.; Norton, J.P.; Perrin, C.; et al. Characterising performance of environmental models. Environ. Model. Softw. 2013, 40, 1–20. [Google Scholar] [CrossRef]
- Kling, H.; Fuchs, M.; Paulin, M. Runoff conditions in the upper Danube basin under an ensemble of climate change scenarios. J. Hydrol. 2012, 424–425, 264–277. [Google Scholar] [CrossRef]
- Daggupati, D.N.M.; Gitau, M.W.; Pai, N. Hydrologic and Water Quality Models: Performance Measures and Evaluation Criteria. Trans. ASABE 2015, 58, 1763–1785. [Google Scholar]
- Moriasi, D.N.; Arnold, J.G.; Liew, M.W.V.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Siddiqui, M.A.R. Lag and Attenuation Parameters for Routing Daily Flow Changes Through Large River Systems; MSc, Texas A&M University: College Station, TX, USA, 2017. [Google Scholar]
- Granato, G.E. Estimating Basin Lagtime and Hydrograph -Timing Indexes Used to Characterize Stormflows; Scientific Investigations Report 2012–5110; U.S. Geological Survey: Reston, VA, USA, 2012; p. 58.
Data Type | Source | Resolution |
---|---|---|
Topography | SRTM (Shuttle Radar Top. Mission) Digital Elevation Map [73] | 30 m |
Land use | CORINE 2012 Land Cover Project [74] | 100 m |
Soil | Turkish National Soil Database [75] | 1:25,000 |
ISRIC Soil Grid 1 km Project [76] | 1 km | |
Crop pattern | TSI Crop Production Statistics Database [77] | District Level |
Turkish National Stand Type Maps [78] | 1:25,000 | |
Climate | Turkish National Climate Reports [79] | 14 Stations |
River discharge | Turkish National River Discharges Reports [80] | 1 Station |
Benchmarking Indices | Calibration Period | Validation Period | |||||||
---|---|---|---|---|---|---|---|---|---|
2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | |
R2 | 0.89 | 0.59 | 0.75 | 0.80 | 0.83 | 0.84 | 0.81 | 0.55 | 0.65 |
NSE | 0.74 | 0.39 | 0.22 | 0.65 | −0.27 | −1.16 | 0.76 | 0.48 | 0.39 |
KGE | 0.78 | 0.53 | 0.40 | 0.54 | 0.19 | −0.11 | 0.68 | 0.63 | 0.67 |
PBIAS | 21.68 | −30.08 | 7.26 | −21.8 | −31.68 | 46.23 | −9.32 | −18.31 | −12.58 |
RSR | 0.51 | 0.78 | 0.88 | 0.59 | 1.13 | 1.47 | 0.49 | 0.72 | 0.78 |
Benchmarking Indices | Calibration | Validation | Simulation Period |
---|---|---|---|
R2 | 0.57 | 0.56 | 0.55 |
NSE | 0.55 | 0.54 | 0.53 |
KGE | 0.73 | 0.59 | 0.72 |
PBIAS | −9.15 | 1.09 | −3.60 |
RSR | 0.67 | 0.70 | 0.69 |
Water Budget (km3) | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | Average |
---|---|---|---|---|---|---|---|---|---|---|
Precipitation | 32.3 | 30.9 | 28.3 | 26.6 | 22.4 | 34.4 | 32.4 | 33.5 | 37.2 | 30.9 |
Evaporation | 10.6 | 11.5 | 10.8 | 9.8 | 7.7 | 12.2 | 12.4 | 13.7 | 10.8 | 11.1 |
Transpiration | 11.3 | 13.3 | 11.5 | 11.1 | 10.6 | 12.1 | 10.7 | 12.3 | 14.7 | 12.0 |
Surface Runoff | 5.0 | 4.7 | 4.4 | 4.1 | 4.0 | 5.0 | 4.9 | 5.2 | 5.4 | 4.7 |
Flow to Groundwater | 4.3 | 2.0 | 2.0 | 1.7 | 0.2 | 4.5 | 3.9 | 2.2 | 6.8 | 3.1 |
Water Budget (mil. m3) | Surface Runoff | Evapotranspiration | Flow to Groundwater |
---|---|---|---|
Observed | 6400 | 27,187 | 2197 |
Simulated | 4747 | 23,011 | 3065 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yaykiran, S.; Cuceloglu, G.; Ekdal, A. Estimation of Water Budget Components of the Sakarya River Basin by Using the WEAP-PGM Model. Water 2019, 11, 271. https://doi.org/10.3390/w11020271
Yaykiran S, Cuceloglu G, Ekdal A. Estimation of Water Budget Components of the Sakarya River Basin by Using the WEAP-PGM Model. Water. 2019; 11(2):271. https://doi.org/10.3390/w11020271
Chicago/Turabian StyleYaykiran, Salim, Gokhan Cuceloglu, and Alpaslan Ekdal. 2019. "Estimation of Water Budget Components of the Sakarya River Basin by Using the WEAP-PGM Model" Water 11, no. 2: 271. https://doi.org/10.3390/w11020271
APA StyleYaykiran, S., Cuceloglu, G., & Ekdal, A. (2019). Estimation of Water Budget Components of the Sakarya River Basin by Using the WEAP-PGM Model. Water, 11(2), 271. https://doi.org/10.3390/w11020271