Bed-Load Transport in Two Different-Sized Mountain Catchments: Mlynne and Lososina Streams, Polish Carpathians
Abstract
:1. Introduction
2. Study Areas
2.1. The Mlynne Stream
2.2. The Lososina River
3. Methods
4. Results and Discussion
4.1. The Mlynne Stream
4.2. The Lososina River
5. Conclusions
- During the floods, the Mlynne Stream transports, in comparison with other mountain streams, there is a lower bed load (53.5249 × 10−5–166.303 × 10−5 kg s−1 m−1). This might be connected with the catchment area as well as with the channel slope.
- Since the bed-load transport for the Mlynne is marginal, the need for the existence of the check dam is questionable and in the future it could be possible to deconstruct and remove it. Such a practice would be in line with the rehabilitation works started on the Carpathian streams which are already leading to the reconstruction of braided gravel mountain streams.
- Because of reducing the river slope of the longitudinal profile of the Lososina when it was river trained, the shear stress values decreased. As a consequence of this, the unit bed-load volume decreased. This indicates the importance of the slope of a river channel for sediment movement when managing rivers. It might be reached by, for example, a series of hydraulic structures across the river channel.
- The Lososina river training reduced the bed-load transport by a value of q = 13.3687 kg s−1 m−1. In terms of the water reservoir and its clogging, this is useful information in terms of river management practices because the reservoir is a source of drinking water for the region.
- The study was performed to assist river and mountain stream managers and urban-village planners to understand how important it is to include bed-load transport in designing calculations when dealing with any river channel problems. The next step of such research could be an analysis of the hydrological situation after removing the check dam from the stream and/or introducing a new philosophy of river rehabilitation works to the region where the sediment is low whilst at the same time, giving due consideration to flood protection aims. In all cases, knowledge of the sediment budget is eternally helpful.
Author Contributions
Funding
Conflicts of Interest
References
- Galia, T.; Hradecký, J. Estimation of bedload transport in headwater streams using a numerical model (Moravskoslezké Beskydy Mts, Czech Republic). Acta Univ. Carol. Geogr. 2014, 49, 21–31. [Google Scholar] [CrossRef] [Green Version]
- Church, M.; Hassan, M.A. Size and distance of travel of unconstrained clasts on a streambed. Water Resour. Res. 1992, 28, 299–303. [Google Scholar] [CrossRef]
- Bednarek, A.T. Undamming rivers: A review of the ecological impacts of dam removal. Environ. Manag. 2001, 27, 803–814. [Google Scholar] [CrossRef]
- Stanley, E.H.; Doyle, M.W. Trading off: The ecological effects of dam removal. Front. Ecol. Environ. 2003, 1, 15–22. [Google Scholar] [CrossRef]
- Lane, S.N. Acting, predicting and intervening in a sociohydrological world. Hydrol. Earth Syst. Sci. 2014, 18, 927–952. [Google Scholar] [CrossRef]
- Fox, C.A.; Magilligan, F.J.; Sneddon, C.S. “You kill the dam, you are killing a part of me”: Dam removal and the environmental politics of river restoration. Geoforum 2016, 70, 93–104. [Google Scholar] [CrossRef] [Green Version]
- Magilligan, F.J.; Graber, B.E.; Nislow, K.H.; Chipman, J.W.; Sneddon, C.S.; Fox, C.A. River restoration by dam removal: Enhancing connectivity at watershed scales. Elem. Sci. Anthr. 2016, 4. [Google Scholar] [CrossRef]
- Bellmore, R.J.; Duda, J.J.; Craig, L.S.; Greene, S.L.; Torgersen, C.E.; Collins, M.J.; Vittum, K. Status and trends of dam removal research in United States. Wirel. Water 2017, 4. [Google Scholar] [CrossRef]
- Yang, C.T. Sediment Transport: Theory and Practice; McGraw-Hill: New York, NY, USA, 1996; ISBN 10 0079122655. [Google Scholar]
- Church, M.A.; McLean, D.G.; Wolcot, J.F. River Bed Gravels: Sampling and Analysis. In Sediment Transport in Gravel-Bed Rivers; Throne, C.R., Bathurst, J.C., Hey, R.D., Eds.; John Wiley and Sons: London, UK, 1987; pp. 43–87. [Google Scholar]
- Gomez, B.; Church, M. A Catalogue of Equilibrium Bedload Transport Data for Coarse Sand and Gravel-Bed Channels; University of British Columbia: Vancouver, BC, Canada, 1988. [Google Scholar]
- Carling, P.A. Bedload transport in two gravel-bedded streams. Earth Surf. Process. Landf. 1987, 14, 27–39. [Google Scholar] [CrossRef]
- Mrokowska, M.M.; Rowiński, P.M.; Książek, L.; Strużyński, A.; Wyrębek, M.; Radecki-Pawlik, A. Laboratory studies on bedload transport under unsteady flow conditions. J. Hydrol. Hydromech. 2018, 66, 23–31. [Google Scholar] [CrossRef] [Green Version]
- Dey, S. Fluvial Hydrodynamics: Hydrodynamic and Sediment Transport Phenomena; Springer: Berlin, Germany, 2014; ISBN 978-3-642-19062-9. [Google Scholar]
- Selby, M.J. Earth’s Changing Surface: An Introduction to Geomorphology; Oxford University Press: London, UK, 1985; ISBN 10 9780198232513. [Google Scholar]
- Radecki-Pawlik, A. Pobór żwiru i otoczaków z dna potoków górskich (in Polish). Aura—Ochr. Środowiska 2002, 3, 17–19. [Google Scholar]
- Wyżga, B.; Hajdukiewicz, H.; Radecki-Pawlik, A.; Zawiejska, J. Eksploatacja osadów z koryt rzek górskich—skutki środowiskowe i procedury oceny (in Polish). Gospod. Wodna 2010, 6, 243–249. [Google Scholar]
- Lehotský, M.; Frandofer, M.; Novotný, J.; Rusnák, M.; Szmańda, J.B. Geomorphic/Sedimentary Responses of Rivers to Floods: Case Studies from Slovakia. In Geomorphological Impacts of Extreme Weather. Case Studies from Central and Eastern Europe; Lóczy, D., Ed.; Springer: Dordrecht, The Netherlands, 2013; pp. 37–52. [Google Scholar]
- Lehotský, M.; Kidová, A.; Rusnák, M. Slovensko-anglické názvoslovie morfológie vodných tokov. Geomorphol. Slovaca Et Bohem. 2015, 15, 1–63. Available online: http://www.asg.sav.sk/gfsb/v0151/GSeB_1_2015.pdf (accessed on 2 February 2019).
- Kondolf, G.M. Hungry water: Effects of dams and gravel mining on river channel. Environ. Manag. 1997, 21, 533–551. [Google Scholar] [CrossRef]
- Gladki, H. Discussion of “Determination of Sand Roughness for Fixed Beds”. J. Hydraul. Res. 1975, 13, 221–222. [Google Scholar] [CrossRef]
- Michalik, A. Bed-Load Transport Investigations in Some Polish Carpathians Rivers. Ph.D. Thesis, University of Agricultural in Krakow, Krakow, Poland, 1990. (In Polish). [Google Scholar]
- Radecki-Pawlik, A. Point bars development and sediment structure in the Skawica Creek in Polish Carpathians. International conference on transport and sedimentation of solid particles. Zesz. Nauk. Ar We Wrocławiu 2000, 320, 113–120. [Google Scholar]
- Mikuś, P.; Wyżga, B.; Radecki-Pawlik, A.; Zawiejska, J.; Amirowicz, A.; Oglęcki, P. Environment-friendly reduction of flood risk and infrastructure damage in a mountain river: Case study of the Czarny Dunajec. Geomorphology 2015, 272, 43–54. [Google Scholar] [CrossRef]
- Hajdukiewicz, H.; Wyżga, B.; Amirowicz, A.; Oglęcki, P.; Radecki-Pawlik, A.; Zawiejska, J.; Mikuś, P. Ecological state of a mountain river before and after a large flood: Implications for river status assessment. Sci. Total Environ. 2018, 610–611, 244–257. [Google Scholar] [CrossRef]
- Pagliara, S.; Radecki-Pawlik, A.; Palermo, M.; Plesiński, K. Block ramps in curved rivers: Morphology analysis and prototype data supported design criteria for mild bed slopes. River Res. Appl. 2017, 33, 427–437. [Google Scholar] [CrossRef]
- Pagliara, S.; Radecki-Pawlik, A.; Palermo, N.; Plesiński, K. A Preliminary Study of field scour morphology downstream of block ramps located at river bends. In Proceedings of the 7th IAHR International Symposium on Hydraulic Structures, Aachen, Germany, 15–18 May 2018; Bung, D., Tullis, B., Eds.; Utah State University: Logan, UT, USA, 2018. [Google Scholar]
- Sattar, A.M.A.; Plesiński, K.; Radecki-Pawlik, A.; Gharabaghi, B. Scour depth model for grade-control structures. J. Hydroinform. 2018, 20, 117–133. [Google Scholar] [CrossRef]
- Plesiński, K.; Radecki-Pawlik, A.; Wyżga, B. Sediment Transport Processes Related to the Operation of a Rapid Hydraulic Structure (Boulder Ramp) in a Mountain Stream Channel: A Polish Carpathian Example. In Sediment Metters; Heininger, P., Cullmann, J., Eds.; Springer: Koblenz, Germany, 2015; pp. 39–58. [Google Scholar]
- Plesiński, K.; Pachla, F.; Radecki-Pawlik, A.; Tatara, T.; Radecki-Pawlik, B. Numerical 2D simulation of morphological phenomena of a block ramp in Poniczanka Stream: Polish Carpathians. In Proceedings of the 7th IAHR International Symposium on Hydraulic Structures, Aachen, Germany, 15–18 May 2018; Bung, D., Tullis, B., Eds.; Utah State University: Logan, UT, USA, 2018. [Google Scholar]
- Radecki-Pawlik, A.; Plesiński, K.; Radecki-Pawlik, B.; Kuboń, P.; Manson, R. Hydrodynamic parameters in a flood impacted boulder block ramp: Krzczonówska mountain stream, Polish Carpathians. J. Mt. Sci. 2018, 15, 2335–2346. [Google Scholar] [CrossRef]
- Kałuża, T.; Radecki-Pawlik, A.; Szoszkiewicz, K.; Plesiński, K.; Radecki-Pawlik, B.; Laks, I. Plant basket hydraulic structures (PBHS) as a new river restoration measure. Sci. Total Environ. 2018, 627, 245–255. [Google Scholar] [CrossRef] [PubMed]
- Wyżga, B.; Oglęcki, P.; Radecki-Pawlik, A.; Skalski, T.; Zawiejska, J. Hydromorphological complexity as a driver of the diversity of benthic invertebrate communities in the Czarny Dunajec River, Polish Carpathians. Hydrobiologia 2012, 696, 29–46. [Google Scholar] [CrossRef]
- Wyżga, B.; Oglęcki, P.; Hajdukiewicz, H.; Zawiejska, J.; Radecki-Pawlik, A.; Skalski, T.; Mikuś, P. Interpretation of the invertebrate-based BMWP–PL index in a gravel-bed river: Insight from the Polish Carpathians. Hydrobiologia 2013, 712, 71–88. [Google Scholar] [CrossRef]
- Wyżga, B.; Amirowicz, A.; Oglęcki, P.; Hajdukiewicz, H.; Radecki-Pawlik, A.; Zawiejska, J.; Mikuś, P. Response of fish and benthic invertebrate communities to constrained channel conditions in a mountain river: Case study of the Biała, Polish Carpathians. Limnologica 2014, 46, 58–69. [Google Scholar] [CrossRef]
- Agoramoorthy, G.; Minna, J.H. Small size, big potential: Check dams for sustainable development. Environ. Sci. Policy Sustain. Dev. 2008, 50, 22–35. [Google Scholar] [CrossRef]
- Conesa-Garcia, C.; Lenzi, M.A. Check Dams, Morphological Adjustments and Erosion Control in Torrential Streams; Nova Science Publishers: New York, NY, USA, 2010; ISBN 978-1-61761-749-2. [Google Scholar]
- Renganayaki, P.; Elango, L. A review on managed aquifer recharge by check dams: A case study near Chennai, India. Int. J. Res. Eng. Technol. 2013, 2, 416–423. [Google Scholar] [CrossRef]
- Castillo, C.; Pérez, R.; Gómez, J.A. A conceptual model of check dam hydraulics for gully control: Efficiency, optimal spacing and relation with step-pools. Hydrol. Earth Syst. Sci. 2014, 18, 1705–1721. [Google Scholar] [CrossRef]
- Bucala, A.; Radecki-Pawlik, A. Wpływ regulacji technicznej na zmiany morfologii górskiej potoku: Potok Jamne, Gorce, The influence of hydrotechnical structures on morphological changes of Jamne stream channels in the Gorce Mountains, Polish Carpathians. Acta Sci. Pol. Form. Circumiectus 2011, 10, 3–16. [Google Scholar]
- Horton, R.E. Erosional development of streams and their drainage basins; hydrophysical approach to quantitative morphology. Bull. Geol. Soc. Am. 1945, 56, 275–370. [Google Scholar] [CrossRef]
- Kajetanowicz, Z. Untersuchungsmethoden der Sinkstoffbewegung in den Flüssen Südpolens. In Proceedings of the VI Baltische Hydrologische Konferenz, Berlin, Germany, August 1938; Volume 19D, p. 19. [Google Scholar]
- Chalov, S.; Golosov, V.; Tsyplenkov, A.; Theuring, P.; Zakerinejad, R.; Märker, M.; Samokhin, M.A. Toolbox for sediment budget research in small catchments. Geogr. Environ. Sustain. 2017, 10, 43–68. [Google Scholar] [CrossRef]
- Radecki-Pawlik, A.; Bucała, A.; Plesiński, K.; Oglęcki, P. Ecohydrological conditions in two catchments in the Gorce Mountains: Jaszcze and Jamne streams—Western Polish Carpathians. Ecohydrol. Hydrobiol. 2014, 14, 229–242. [Google Scholar] [CrossRef]
- Meyer-Peter, E.; Mueller, R. Formulas for bedload transport. In Proceedings of the II Congress IAHR 1948, Stockholm, Sweden, 7 June 1948; pp. 39–64. [Google Scholar]
- Wallingford University the SandCalc1_1 Software; Wallingford University: Wallingford, UK, 1996.
- Frost, J.; Clarke, R.T. Estimating the T-tear flood by the extension of records of partial duration series. Hydrol. Sci. J. 1972, 17, 209–217. [Google Scholar] [CrossRef]
- Punzet, J. Empiryczny system ocen charakterystycznych przepływów rzek i potoków w karpackiej części dorzecza Wisły (in Polish). Wiadomości Inst. Meteorol. I Gospod. Wodnej 1981, 7, 31–40. [Google Scholar]
- Radecki-Pawlik, A. Woda-v. 2. 0—A simple hydrological computer model to calculate the T-year flood. Hydrological processes in the catchment. Cracow University of Technology. In Proceedings of the International Conference 1995, Cracow, Poland, 26–28 October 1995. [Google Scholar]
- Florkowski, J.; Adamek, D. Wielozadaniowy zbiornik retencyjny Młynne na rz. Łososinie (in Polish), the multi-role storage reservoir Mlynne on the river Lososina. Gospod. Wodna 2004, 5, 197–203. [Google Scholar]
- HYDROPROJEKT Designing Office. Studium do Założeń Kompleksowych Gospodarki Wodnej w Dorzeczu Łososiny; CBS i PBW Hydroprojekt: Kraków, Poland, 1953. (In Polish) [Google Scholar]
- HYDROPROJEKT Designing Office. Założenia Gospodarki Wodnej Dorzecza Dunajca; CUGW, CBS i PBW Hydroprojekt: Kraków, Poland, 1961. (In Polish) [Google Scholar]
- Kaszowski, L.; Kotarba, A. Wpływ Katastrofalnych Wezbrań na Przebieg Procesów Fluwialnych; Prace Geograficzne Instytutu Geografii PAN: Warszawa, Poland, 1970. (In Polish) [Google Scholar]
- Gorczyca, E. Przekształcanie Stoków Fliszowych Przez Procesy Masowe Podczas Katastrofalnych Opadów (Dorzecze Łososiny); Wydawnictwo Uniwersytetu Jagiellońskiego: Cracow, Poland, 2005; ISBN 83-233-1957-X. (In Polish) [Google Scholar]
- Shvidchenko, A.B.; Kopaliani, Z.D. Hydraulic modeling of bed load transport in gravel-bed Laba River. J. Hydraul. Eng. 1998, 124, 778–785. [Google Scholar] [CrossRef]
- Lisle, T.E.; Nelson, J.M.; Pitlick, J.; Madej, M.A.; Barket, B.L. Variability of bed mobility in natural, gravel-bed channels and adjustments to sediment load at local and reach scales. Water Resour. Res. 2000, 36, 3743–3755. [Google Scholar] [CrossRef] [Green Version]
Variables | The Mlynne Stream |
---|---|
precipitation (mm) | 850 |
catchment area (km2) | 7.3 |
max. catchment area altitude (m a.s.l.) | 985.00 |
min. catchment area altitude (m a.s.l.) | 495.00 |
channel gradient (average within study area) (-) | 0.022 |
max. stream length (km) | 7.50 |
T-year flood Q50% (m3·s−1) | 7.70 |
T-year flood Q5% (m3·s−1) | 40.4 |
d16 (mm) | 7 |
d50 (mm) | 39 |
d84 (mm) | 94 |
d90 (mm) | 102 |
Variables | The Lososina River |
---|---|
precipitation (mm) | 896 |
catchment area (km2) | 410 |
max. catchment area altitude (m a.s.l.) | 760.00 |
min. catchment area altitude (m a.s.l.) | 241.00 |
channel gradient (average within study area) (-) | 0.011 |
max. stream length L (km) | 49.00 |
discharge Q50% (m3 s−1)/flood Q50% | 48.63 |
discharge Q5% (m3 s−1)/flood Q3% | 196.41 |
Sampled Cross Section | Before River-Training Works | After River-Training Works | ||||||
---|---|---|---|---|---|---|---|---|
Sediment Diameter (mm) | Sediment Diameter (mm) | |||||||
d16 | d50 | d84 | d90 | d16 | d50 | d84 | d90 | |
1-1 | 7 | 28 | 83 | 88 | 7 | 30 | 85 | 90 |
2-2 | 10 | 30 | 70 | 76 | 6 | 22 | 65 | 70 |
3-3 | 12 | 40 | 90 | 95 | 10 | 35 | 88 | 90 |
4-4 | 10 | 30 | 58 | 67 | 11 | 22 | 50 | 65 |
Unit Bedload Transport (kg s−1 m−1) | |||||
---|---|---|---|---|---|
Water Depth h (m) | Sampling Cross Section 2-2 | Depth h (m) | Sampling Cross Section 5-5 | Depth h(m) | Sampling Cross Section 6-6 |
0.10 | 0.643 | 0.10 | no bed-load transport | 0.10 | no bed-load transport |
0.30 | 1.338 | 0.30 | no bed-load transport | 0.30 | no bed-load transport |
0.50 | 1.880 | 0.50 | 20.7308 × 10−5 | 0.50 | 7.4031 × 10−5 |
0.70 | 2.303 | 0.70 | 48.1816 × 10−5 | 0.70 | 2.6798 × 10−5 |
0.90 | 2.028 | 0.90 | 161.1152 × 10−5 | 0.90 | 54.4528 × 10−5 |
1.20 | 2.878 | 1.20 | 165.7039 × 10−5 | 1.20 | 101.7977 × 10−5 |
Total | 53.5249 × 10−5 | Total | 395.7315 × 10−5 | Total | 166.3035 × 10−5 |
Water Depth h (m) | Sampling Cross Section 1-1 | Sampling Cross Section 2-2 | Sampling Cross Section 3-3 | Sampling Cross Section 4-4 | ||||
---|---|---|---|---|---|---|---|---|
d50 = 28 (mm) | d50 = 28 (mm) | d50 = 28 (mm) | d50 = 28 (mm) | |||||
Shear Stress τ (N m−2) | Transport (kg s−1 m−1) | Shear Stress τ (N m−2) | Transport (kg s−1 m−1) | Shear Stress τ (N m−2) | Transport (kg s−1 m−1) | Shear Stress τ (N m−2) | Transport (kg s−1 m−1) | |
0.6 | no bed-load transport | no bed-load transport | no bed-load transport | no bed-load transport | ||||
0.7 | 21.39 | 0.0112 | ||||||
0.8 | 23.24 | 0.1439 | ||||||
0.9 | 28.07 | 0.7892 | ||||||
1.0 | 29.28 | 0.9990 | ||||||
1.1 | 32.38 | 1.6059 | ||||||
1.2 | 34.67 | 2.1094 | ||||||
1.3 | 43.76 | 4.5236 | 25.78 | 0.2520 | ||||
1.4 | max. depth in cross section 1. 3 (m) | 28.24 | 0.5793 | 33.47 | 0.2764 | 22.65 | 0.0037 | |
1.5 | 32.28 | 1.2797 | 39.36 | 1.2034 | 27.42 | 0.4600 | ||
1.6 | 35.60 | 1.9796 | 49.38 | 3.5642 | 32.57 | 1.3383 | ||
1.7 | 41.33 | 3.4106 | 52.34 | 4.4070 | 38.09 | 2.5705 | ||
1.8 | 43.98 | 4.1499 | 55.38 | 5.3318 | 43.98 | 4.1499 | ||
1.9 | 50.23 | 6.0818 | 58.49 | 6.3414 | 50.23 | 6.0818 | ||
2.0 | 53.09 | 7.0490 | 61.69 | 7.4332 | 53.09 | 7.0490 |
Water Depth h (m) | Sampling Cross Section 1-1 | Sampling Cross Section 2-2 | Sampling Cross Section 3-3 | Sampling Cross Section 4-4 | ||||
---|---|---|---|---|---|---|---|---|
d50 = 28 (mm) | d50 = 28 (mm) | d50 = 28 (mm) | d50 = 28 (mm) | |||||
Shear Stress τ (N m−2) | Transport (kg s−1 m−1) | Shear Stress τ (N m−2) | Transport (kg s−1 m−1) | Shear Stress τ (N m−2) | Transport (kg s−1 m−1) | Shear Stress τ (N m−2) | Transport (kg s−1 m−1) | |
0.8 | no bed-load transport | no bed-load transport | no bed-load transport | no bed-load transport | ||||
0.9 | 22.85 | 0.0103 | ||||||
1.0 | 27.78 | 0.5177 | 28.43 | 0.1389 | ||||
1.1 | 33.03 | 1.4284 | 30.68 | 0.3956 | ||||
1.2 | 35.36 | 1.9266 | 31.77 | 0.5475 | ||||
1.3 | 44.63 | 4.3380 | 32.28 | 0.6246 | 17.36 | 0.0352 | ||
1.4 | max. depth in cross section 1. 3 (m) | 33.46 | 0.8136 | 18.27 | 0.1010 | |||
1.5 | 44.77 | 3.3258 | 19.21 | 0.1892 | ||||
1.6 | 17.80 | 0.0639 | 47.54 | 4.0969 | 19.95 | 0.2708 | ||
1.7 | 24.21 | 0.8960 | 50.38 | 4.9422 | 20.94 | 0.3935 | ||
1.8 | 26.26 | 1.2720 | 53.31 | 5.8671 | 21.95 | 0.5340 | ||
1.9 | 28.38 | 1.7092 | 56.30 | 6.8662 | 25.29 | 1.0897 | ||
2.0 | 30.57 | 2.1995 | 59.38 | 7.9420 | 25.72 | 1.1708 |
Unit Bed−Load Transport (kg s−1 m−1) | |||||||
---|---|---|---|---|---|---|---|
Depth h (m) | Sampling Cross Section 1-1 | Depthh (m) | Sampling Cross Section 2-2 | Depthh (m) | Sampling Cross Section 3-3 | Depthh (m) | Sampling Cross Section 4-4 |
0.9 | 0.7788 | 1.6 | 1.9157 | 1.5 | −2.1200 | 1.4 | −0.0973 |
1.0 | 0.4873 | 1.7 | 2.5146 | 1.6 | −0.3100 | 1.5 | 0.2708 |
1.1 | 0.1776 | 1.8 | 2.8779 | 1.7 | −0.5353 | 1.6 | 1.0674 |
1.2 | 0.1829 | 1.9 | 4.3725 | 1.8 | −0.5353 | 1.7 | 2.1770 |
1.3 | 0.1855 | 2.0 | 4.8495 | 1.9 | −0.5247 | 1.8 | 3.6146 |
- | - | - | - | 2.0 | −0.5088 | 1.9 | 4.9921 |
- | - | - | - | - | - | 2.0 | 5.8782 |
Total | 1.8121 | Total | 16.5302 | Total | −4.5341 | Total | 17.9028 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Radecki-Pawlik, A.; Kuboń, P.; Radecki-Pawlik, B.; Plesiński, K. Bed-Load Transport in Two Different-Sized Mountain Catchments: Mlynne and Lososina Streams, Polish Carpathians. Water 2019, 11, 272. https://doi.org/10.3390/w11020272
Radecki-Pawlik A, Kuboń P, Radecki-Pawlik B, Plesiński K. Bed-Load Transport in Two Different-Sized Mountain Catchments: Mlynne and Lososina Streams, Polish Carpathians. Water. 2019; 11(2):272. https://doi.org/10.3390/w11020272
Chicago/Turabian StyleRadecki-Pawlik, Artur, Piotr Kuboń, Bartosz Radecki-Pawlik, and Karol Plesiński. 2019. "Bed-Load Transport in Two Different-Sized Mountain Catchments: Mlynne and Lososina Streams, Polish Carpathians" Water 11, no. 2: 272. https://doi.org/10.3390/w11020272
APA StyleRadecki-Pawlik, A., Kuboń, P., Radecki-Pawlik, B., & Plesiński, K. (2019). Bed-Load Transport in Two Different-Sized Mountain Catchments: Mlynne and Lososina Streams, Polish Carpathians. Water, 11(2), 272. https://doi.org/10.3390/w11020272