Climate Change Impact on Flood Frequency and Source Area in Northern Iran under CMIP5 Scenarios
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Climate Change Assessment
2.3. Hydrological Modeling (SWAT)
2.3.1. SWAT Input Data
2.3.2. SWAT Model Set Up
2.3.3. Calibration of the Model (SWAT-CUP)
2.3.4. Evaluation of Model Performance
2.4. Flood Frequency Assessment
2.4.1. IPF Estimation Methods
2.4.2. Flood Frequency Index (FFI)
2.4.3. Subbasin Flood Source Area Index (SFSAI)
3. Results and Discussion
3.1. Climate Change Models and Downscaling
3.2. SWAT Model Calibration and Validation
3.3. Analysis of Flood Frequency
3.4. Subbasin Instantaneous Peak Flow (IPF) Estimation
3.5. Flood Frequency Index (FFI)
3.6. Subbasin Flood Source Area Index (SFSAI)
4. Summary and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Asgharpour, S.E.; Ajdari, B. A case study on seasonal floods in Iran, watershed of Ghotour Chai Basin. Procedia Soc. Behav. Sci. 2011, 19, 556–566. [Google Scholar] [CrossRef]
- The Core Writing Team; Pachauri, R.K.; Meyer, L. (Eds.) Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014; p. 151. [Google Scholar] [CrossRef]
- Duan, J.G.; Bai, Y.; Dominguez, F.; Rivera, E.; Meixner, T. Framework for incorporating climate change on flood magnitude and frequency analysis in the upper Santa Cruz River. J. Hydrol. 2017, 549, 194–207. [Google Scholar] [CrossRef]
- Reynard, N.; Crooks, S.; Wilby, R.; Kay, A. Climate change and flood frequency in the UK. In Proceedings of the 39th Defra Flood and Coastal Flood Management Conference, York, UK, 29 June–1 July 2004; pp. 1–12. [Google Scholar]
- Amiri, M.J.; Eslamian, S.S. Investigation of climate change in Iran. J. Environ. Sci. Technol. 2010, 3, 208–216. [Google Scholar] [CrossRef]
- Das, S.; Simonovic, S.P. Assessment of Uncertainty in Flood Flows under Climate Change: The Upper Thames River Basin (Ontario, Canada); University of Western Ontario: London, ON, Canada, 2012. [Google Scholar]
- Mallakpour, I.; Villarini, G. The changing nature of flooding across the central United States. Nat. Clim. Chang. 2015, 5, 250–254. [Google Scholar] [CrossRef]
- Alfieri, L.; Burek, P.; Feyen, L.; Forzieri, G. Global warming increases the frequency of river floods in Europe. Hydrol. Earth Syst. Sci. 2015, 19, 2247–2260. [Google Scholar] [CrossRef]
- Krysanova, V.; Vetter, T.; Eisner, S.; Huang, S.; Pechlivanidis, I.; Strauch, M.; Gelfan, A.; Kumar, R.; Aich, V.; Arheimer, B.; et al. Intercomparison of regional-scale hydrological models and climate change impacts projected for 12 large river basins worldwide—A synthesis. Environ. Res. Lett. 2017, 12, 105002. [Google Scholar] [CrossRef]
- Hashemi, H. Climate change and the future of water management in Iran. Middle East Crit. 2015, 24, 307–323. [Google Scholar] [CrossRef]
- Hashemi, H.; Uvo, C.B.; Berndtsson, R. Coupled modeling approach to assess climate change impacts on groundwater recharge and adaptation in arid areas. Hydrol. Earth Syst. Sci. 2015, 19, 4165–4181. [Google Scholar] [CrossRef]
- Welde, K. Identification and prioritization of subwatersheds for land and water management in Tekeze dam watershed, Northern Ethiopia. Int. Soil Water Conserv. Res. 2016, 4, 30–38. [Google Scholar] [CrossRef]
- Abbaspour, K.C.; Faramarzi, M.; Ghasemi, S.S.; Yang, H. Assessing the impact of climate change on water resources in Iran. Water Resour. Res. 2009, 45. [Google Scholar] [CrossRef]
- Covey, C.; AchutaRao, K.M.; Cubasch, U.; Jones, P.; Lambert, S.J.; Mann, M.E.; Phillips, T.J.; Taylor, K.E. An overview of results from the Coupled Model Intercomparison Project. Glob. Planet. Chang. 2003, 37, 103–133. [Google Scholar] [CrossRef]
- Miao, C.; Duan, Q.; Sun, Q.; Huang, Y.; Kong, D.; Yang, T.; Ye, A.; Di, Z.; Gong, W. Assessment of CMIP5 climate models and projected temperature changes over Northern Eurasia. Environ. Res. Lett. 2014, 9, 055007. [Google Scholar] [CrossRef]
- Moss, R.H.; Edmonds, J.A.; Hibbard, K.A.; Manning, M.R.; Rose, S.K.; Van Vuuren, D.P.; Carter, T.R.; Emori, S.; Kainuma, M.; Kram, T.; et al. The next generation of scenarios for climate change research and assessment. Nature 2010, 463, 747–756. [Google Scholar] [CrossRef] [PubMed]
- Quintero, F.; Mantilla, R.; Anderson, C.; Claman, D.; Krajewski, W. Assessment of Changes in Flood Frequency Due to the Effects of Climate Change: Implications for Engineering Design. Hydrology 2018, 5, 19. [Google Scholar] [CrossRef]
- Pitta, S.K. A case study on flood frequency analysis. Int. J. Civ. Eng. Technol. 2017, 8, 1762–1767. [Google Scholar]
- Argaw, Y. Flood Frequency Analysis for Lower Awash Subbasin (Tributaries from Northern Wollo High Lands) Using SWAT 2005 Model. Master’s Thesis, Addis Ababa University, Addis Ababa, Ethiopia, 2008. [Google Scholar]
- Saghafian, B.; Golian, S.; Elmi, M.; Akhtari, R. Monte Carlo analysis of the effect of spatial distribution of storms on prioritization of flood source areas. Nat. Hazards 2013, 66, 1059–1071. [Google Scholar] [CrossRef]
- Huang, X.; Wang, L.; Han, P.; Wang, W. Spatial and Temporal Patterns in Nonstationary Flood Frequency across a Forest Watershed: Linkage with Rainfall and Land Use Types. Forests 2018, 9, 339. [Google Scholar] [CrossRef]
- Saghafian, B.; Ghermezcheshmeh, B.; Kheirkhah, M.M. Iso-flood severity mapping: A new tool for distributed flood source identification. Nat. Hazards 2010, 55, 557–570. [Google Scholar] [CrossRef]
- Camici, S.; Brocca, L.; Melone, F.; Moramarco, T. Impact of climate change on flood frequency using different climate models and downscaling approaches. J. Hydrol. Eng. 2014, 19, 04014002. [Google Scholar] [CrossRef]
- Almasi, P.; Soltani, S. Assessment of the climate change impacts on flood frequency (case study: Bazoft Basin, Iran). Stoch. Environ. Res. Risk Assess. 2016, 31, 1171–1182. [Google Scholar] [CrossRef]
- Prudhomme, C.; Jakob, D.; Svensson, C. Uncertainty and climate change impact on the flood regime of small UK catchments. J. Hydrol. 2003, 277, 1–23. [Google Scholar] [CrossRef]
- Gholami, V.; Khaleghi, M.; Zabardast Rostami, H. Hydrological impacts of Chashm dam on the downstream of Talar River Watershed, Iran. Int. J. Agric. Res. Crop Sci. 2017, 1, 9–20. [Google Scholar]
- Kavian, A.; Mohammadi, M.; Gholami, L.; Rodrigo-Comino, J. Assessment of the spatiotemporal effects of land use changes on runoff and nitrate loads in the Talar River. Water 2018, 10, 445. [Google Scholar] [CrossRef]
- Zare, M.; Panagopoulos, T.; Loures, L. Simulating the impacts of future land use change on soil erosion in the Kasilian Watershed, Iran. Land Use Policy 2017, 67, 558–572. [Google Scholar] [CrossRef]
- Jahanshahi, A.; Golshan, M.; Afzali, A. Simulation of the catchments hydrological processes in arid, semi-arid and semi-humid areas. Desert 2017, 22, 1–10. [Google Scholar]
- Azmoodeh, A.; Kavian, A.; Habib Nejad Roshan, M.; Zeinivand, H.; Goudarzi, M. Forecasting of land use changes based on land change modeler (LCM) using remote sensing: A case study of Talar Watershed, Mazandaran province, northern Iran. Adv. Biores. 2016, 8, 22–32. [Google Scholar] [CrossRef]
- Jahad Engineering Services Company. Comprehensive Studies of Talar Watershed; Office of Watershed Studies Evaluation: Sari, Mazandaran, Iran, 2001. [Google Scholar]
- Lutz, A.F.; ter Maat, H.W.; Biemans, H.; Shrestha, A.B.; Wester, P.; Immerzeel, W.W. Selecting representative climate models for climate change impact studies: An advanced envelope-based selection approach. Int. J. Climatol. 2016, 36, 3988–4005. [Google Scholar] [CrossRef]
- Shrestha, S.; Shrestha, M.; Babel, M.S. Modelling the potential impacts of climate change on hydrology and water resources in the Indrawati River Basin, Nepal. Environ. Earth Sci. 2016, 75, 280. [Google Scholar] [CrossRef]
- Tian, Y.; Xu, Y.-P.; Booij, M.J.; Cao, L. Impact assessment of multiple uncertainty sources on high flows under climate change. Hydrol. Res. 2015, 47, 61–74. [Google Scholar] [CrossRef]
- Buser, C.M.; Kunsch, H.R.; Luthi, D.; Wild, M.; Schar, C. Bayesian multi-model projection of climate: Bias assumptions and interannual variability. Clim. Dyn. 2009, 33, 849–868. [Google Scholar] [CrossRef]
- Knutti, R.; Sedláček, J. Robustness and uncertainties in the new CMIP5 climate model projections. Nat. Clim. Chang. 2013, 3, 369–373. [Google Scholar] [CrossRef]
- Semenov, M.A.; Barrow, E.M. LARS-WG: A Stochastic Weather Generator for Use in Climate Impact Studies; User Manual; Rothamsted Research: Hertfordshire, UK, 2002; pp. 1–27. [Google Scholar]
- Semenov, M.A. Simulation of extreme weather events by a stochastic weather generator. Clim. Res. 2008, 35, 203–212. [Google Scholar] [CrossRef]
- Semenov, M.A.; Stratonovitch, P. Use of multi-model ensembles from global climate models for assessment of climate change impacts. Clim. Res. 2010, 41, 1–14. [Google Scholar] [CrossRef]
- Vaighan, A.A.; Talebbeydokhti, N.; Bavani, A.M. Assessing the impacts of climate and land use change on streamflow, water quality and suspended sediment in the Kor River Basin, Southwest of Iran. Environ. Earth Sci. 2017, 76, 543. [Google Scholar] [CrossRef]
- Praskievicz, S.; Chang, H. A review of hydrological modelling of basin-scale climate change and urban development impacts. Prog. Phys. Geogr. 2009, 33, 650–671. [Google Scholar] [CrossRef]
- Amengual, A.; Romero, R.; Gómez, M.; Martín, A.; Alonso, S. A hydrometeorological modeling study of a flash-flood event over Catalonia, Spain. J. Hydrometeorol. 2006, 8, 282–303. [Google Scholar] [CrossRef]
- Mehan, S.; Neupane, R.P.; Kumar, S. Coupling of SUFI 2 and SWAT for improving the simulation of streamflow in an agricultural watershed of South Dakota. Hydrol. Curr. Res. 2017, 8, 3. [Google Scholar] [CrossRef]
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large area hydrologic modeling and assessment Part I: Model development. J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Abbaspour, K.C. SWAT-CUP: SWAT Calibration and Uncertainty Programs—A User Manual; Eawag: Dübendorf, Switzerland, 2015. [Google Scholar] [CrossRef]
- Kiros, G.; Shetty, A.; Nandagiri, L. Performance evaluation of SWAT model for land use and land cover changes under different climatic conditions: A review. Hydrol. Curr. Res. 2015, 6, 3. [Google Scholar] [CrossRef]
- Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Williams, J.R. Soil & Water Assessment Tool Theoretical Documentation Version 2009; Texas Water Resources Institute Technical Report: College Station, TX, USA, 2011; pp. 1–647. [Google Scholar] [CrossRef]
- Faramarzi, M.; Abbaspour, K.C.; Schulin, R.; Yang, H. Modelling blue and green water resources availability in Iran. Hydrol. Process. 2009, 23, 486–501. [Google Scholar] [CrossRef]
- Xu, X.; Wang, Y.C.; Kalcic, M.; Muenich, R.L.; Yang, Y.C.E.; Scavia, D. Evaluating the impact of climate change on fluvial flood risk in a mixed-used watershed. Environ. Model. Softw. 2017. [Google Scholar] [CrossRef]
- Goyal, M.K.; Panchariya, V.K.; Sharma, A.; Singh, V. Comparative assessment of SWAT model performance in two distinct catchments under various DEM scenarios of varying resolution, sources and resampling methods. Water Resour. Manag. 2018, 32, 805–825. [Google Scholar] [CrossRef]
- Abbaspour, K.C.; Rouholahnejad, E.; Vaghefi, S.; Srinivasan, R.; Yang, H.; Kløve, B. A continental-scale hydrology and water quality model for Europe: Calibration and uncertainty of a high-resolution large-scale SWAT model. J. Hydrol. 2015, 524, 733–752. [Google Scholar] [CrossRef]
- Bajracharya, A.R.; Bajracharya, S.R.; Shrestha, A.B.; Maharjan, S.B. Climate change impact assessment on the hydrological regime of the Kaligandaki Basin, Nepal. Sci. Total Environ. 2018, 625, 837–848. [Google Scholar] [CrossRef] [PubMed]
- Me, W.; Abell, J.M.; Hamilton, D.P. Effects of hydrologic conditions on SWAT model performance and parameter sensitivity for a small, mixed land use catchment in New Zealand. Hydrol. Earth Syst. Sci. 2015, 19, 4127–4147. [Google Scholar] [CrossRef]
- Srinivas, G.; Gopal, M.N. Hydrological modeling of Musi River Basin, India and sensitive parameterization of streamflow using SWAT CUP. J. Hydrogeol. Hydrol. Eng. 2017, 6, 2–11. [Google Scholar] [CrossRef]
- Yang, J.; Reichert, P.; Abbaspour, K.C.; Xia, J.; Yang, H. Comparing uncertainty analysis techniques for a SWAT application to the Chaohe Basin in China. J. Hydrol. 2008, 358, 1–23. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Dibike, Y.B.; Coulibaly, P. Downscaling of Global Climate Model Outputs for Flood Frequency Analysis in the Saguenay River System; Department of Civil Engineering/School of Geography and Geology, McMaster University: Hamilton, ON, Canada, 2004. [Google Scholar]
- Chen, B.; Krajewski, W.F.; Liu, F.; Fang, W.; Xu, Z. Estimating instantaneous peak flow from mean daily flow. Hydrol. Res. 2017. [Google Scholar] [CrossRef]
- Fuller, W.E. Flood flows. Trans. Am. Soc. Civ. Eng. 1914, 77, 564–617. [Google Scholar]
- Sangal, B.P. Practical method of estimating peak flow. J. Hydraul. Eng. 1983, 109, 549–563. [Google Scholar] [CrossRef]
- Saghafian, B.; Khosroshahi, M. Unit response approach for priority determination of flood source areas. J. Hydrol. Eng. 2005, 10, 23–38. [Google Scholar] [CrossRef]
- Gharib, M.; Motamedvaziri, B.; Ghermezcheshmeh, B.; Ahmadi, H. Evaluation of ModClark model for simulating rainfall-runoff in Tangrah Watershed, Iran. Appl. Ecol. Environ. Res. 2018, 16, 1053–1068. [Google Scholar] [CrossRef]
- Suriya, S.; Mudgal, B.V. Assessment of flood potential ranking of subwatersheds: Adayar Watershed a case study. Int. J. Innov. Res. Sci. Eng. Technol. 2014, 3, 14537–14548. [Google Scholar]
- Saghafian, B.; Farazjoo, H.; Bozorgy, B.; Yazdandoost, F. Flood intensification due to changes in land use. Water Resour. Manag. 2008, 22, 1051–1067. [Google Scholar] [CrossRef]
- Tuo, Y.; Marcolini, G.; Disse, M.; Chiogna, G. Calibration of snow parameters in SWAT: Comparison of three approaches in the Upper Adige River basin (Italy). Hydrol. Sci. J. 2018, 63, 657–678. [Google Scholar] [CrossRef]
- Vilaysane, B.; Takara, K.; Luo, P.; Akkharath, I.; Duan, W. Hydrological stream flow modelling for calibration and uncertainty analysis using SWAT model in the Xedone River Basin, Lao PDR. Procedia Environ. Sci. 2015, 28, 380–390. [Google Scholar] [CrossRef]
- Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Srinivasan, R.; Williams, J.R. Soil and Water Assessment Tool User’s Manual, Version 2000; Texas Water Resources Institute: College Station, TX, USA, 2002; p. 412. [Google Scholar]
- Moriasi, D.N.; Gitau, M.W.; Pai, N.; Daggupati, P. Hydrologic and Water Quality Models: Performance Measures and Evaluation Criteria. Trans. ASABE 2015, 58, 1763–1785. [Google Scholar] [CrossRef]
- Boithias, L.; Sauvage, S.; Lenica, A.; Roux, H.; Abbaspour, K.C.; Larnier, K.; Dartus, D.; Sánchez-Pérez, J.M. Simulating flash floods at hourly time-step using the SWAT model. Water 2017, 9, 929. [Google Scholar] [CrossRef]
- Tejaswini, V.; Sathian, K.K. Calibration and validation of SWAT model for Kunthipuzha Basin using SUFI-2 algorithm. Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 2162–2172. [Google Scholar] [CrossRef]
- Khazaei, M.R.; Zahabiyoun, B.; Saghafian, B. Assessment of climate change impact on floods using weather generator and continuous rainfall-runoff model. Int. J. Climatol. 2012, 32, 1997–2006. [Google Scholar] [CrossRef]
- Joorabian Shooshtari, S.; Shayesteh, K.; Gholamalifard, M.; Azari, M.; Serrano-Notivoli, R.; López-Moreno, J.I. Impacts of future land cover and climate change on the water balance in northern Iran. Hydrol. Sci. J. 2017, 62, 2655–2673. [Google Scholar] [CrossRef]
- Soleimani, A.; Mohsen, S.; Reza, A.; Bavani, M.; Jafari, M.; Francaviglia, R. Simulating soil organic carbon stock as affected by land cover change and climate change, Hyrcanian forests (northern Iran). Sci. Total Environ. 2017, 599–600, 1646–1657. [Google Scholar] [CrossRef] [PubMed]
- Azari, M.; Moradi, H.R.; Saghafian, B. Climate change impacts on streamflow and sediment yield in the North of Iran. Hydrol. Sci. J. 2016, 61, 123–133. [Google Scholar] [CrossRef]
Month | ΔP (2.6) | ΔP (8.5) | ΔTmax (2.6) | ΔTmax (8.5) | ΔTmin (2.6) | ΔTmin (8.5) |
---|---|---|---|---|---|---|
January | 0.99 | 0.95 | 0.90 | 1.14 | 0.97 | 1.07 |
February | 1.00 | 0.98 | 1.20 | 1.09 | 0.80 | 0.92 |
March | 0.94 | 0.93 | 1.21 | 1.44 | 1.10 | 1.23 |
April | 1.08 | 0.91 | 1.03 | 1.02 | 1.24 | 1.05 |
May | 0.99 | 0.87 | 1.17 | 1.43 | 1.13 | 1.34 |
June | 1.08 | 0.82 | 1.36 | 1.43 | 1.41 | 1.45 |
July | 0.93 | 0.83 | 0.97 | 1.47 | 1.06 | 1.50 |
August | 0.89 | 0.96 | 1.61 | 1.91 | 1.51 | 1.81 |
September | 1.01 | 0.95 | 1.32 | 1.60 | 1.43 | 1.62 |
October | 1.01 | 0.96 | 1.12 | 1.35 | 1.20 | 1.26 |
November | 1.03 | 1.02 | 1.20 | 1.14 | 1.10 | 1.14 |
December | 1.04 | 0.97 | 1.01 | 1.35 | 0.77 | 1.23 |
Rank of Parameter | Parameter | Fit | Minimum | Maximum | t-Stat | p-Value |
---|---|---|---|---|---|---|
1 | V 1__SMTMP.bsn | 12.92 | 8.47 | 13.05 | 4.67 | 0.00 |
2 | A 2__GW_DELAY.gw | 79.33 | 44.07 | 126.08 | −2.69 | 0.01 |
3 | V__RCHRG_DP.gw | 0.34 | 0.24 | 0.46 | 1.82 | 0.08 |
4 | V__CH_N2.rte | 0.15 | 0.06 | 0.26 | −1.53 | 0.14 |
5 | R 3__CN2.mgt | −0.91 | −1.25 | −0.72 | −1.13 | 0.27 |
6 | R__ESCO.hru | 0.28 | 0.21 | 0.42 | 0.82 | 0.42 |
7 | V__CANMX.hru | 34.67 | 27.16 | 46.42 | −0.75 | 0.46 |
8 | R__SOL_AWC(..).sol | −0.16 | −0.26 | −0.06 | −0.70 | 0.49 |
9 | R__SURLAG.bsn | 3.33 | −8.60 | 5.43 | −0.70 | 0.49 |
10 | V__CH_K2.rte | 0.29 | 0.15 | 0.56 | −0.53 | 0.60 |
11 | R__SOL_Z(..).sol | 0.21 | 0.19 | 0.47 | −0.50 | 0.62 |
12 | R__SOL_K(..).sol | 0.29 | −0.02 | 0.49 | −0.40 | 0.69 |
13 | V__REVAPMN.gw | 107.09 | 89.84 | 113.47 | 0.36 | 0.72 |
14 | V__GWQMN.gw | 4336.60 | 4253.70 | 4806.40 | 0.28 | 0.78 |
15 | R__SOL_ALB(..).sol | 0.02 | −0.10 | 0.03 | −0.22 | 0.83 |
16 | V__ALPHA_BF.gw | 0.30 | 0.06 | 0.35 | 0.17 | 0.86 |
17 | R__SOL_BD(..).sol | −0.26 | −0.31 | −0.15 | 0.15 | 0.88 |
18 | R__GWHT.gw | 0.07 | −0.19 | 0.19 | 0.11 | 0.91 |
Index | Sangal | Fill–Steiner | Fuller | Slope-Based |
---|---|---|---|---|
R2 | 0.76 | 0.78 | 0.80 | 0.74 |
NSE | 0.48 | 0.48 | 0.90 | 0.36 |
RMSE (m3 s−1) | 19.68 | 19.69 | 19.09 | 21.77 |
MAE (m3 s−1) | 4.77 | 9.67 | 8.9 | 9.8 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maghsood, F.F.; Moradi, H.; Massah Bavani, A.R.; Panahi, M.; Berndtsson, R.; Hashemi, H. Climate Change Impact on Flood Frequency and Source Area in Northern Iran under CMIP5 Scenarios. Water 2019, 11, 273. https://doi.org/10.3390/w11020273
Maghsood FF, Moradi H, Massah Bavani AR, Panahi M, Berndtsson R, Hashemi H. Climate Change Impact on Flood Frequency and Source Area in Northern Iran under CMIP5 Scenarios. Water. 2019; 11(2):273. https://doi.org/10.3390/w11020273
Chicago/Turabian StyleMaghsood, Fatemeh Fadia, Hamidreza Moradi, Ali Reza Massah Bavani, Mostafa Panahi, Ronny Berndtsson, and Hossein Hashemi. 2019. "Climate Change Impact on Flood Frequency and Source Area in Northern Iran under CMIP5 Scenarios" Water 11, no. 2: 273. https://doi.org/10.3390/w11020273
APA StyleMaghsood, F. F., Moradi, H., Massah Bavani, A. R., Panahi, M., Berndtsson, R., & Hashemi, H. (2019). Climate Change Impact on Flood Frequency and Source Area in Northern Iran under CMIP5 Scenarios. Water, 11(2), 273. https://doi.org/10.3390/w11020273