Bio-Removal of Methylene Blue from Aqueous Solution by Galactomyces geotrichum KL20A
Abstract
:1. Introduction
2. Materials and Methods
2.1. Yeast Isolation and Culture
2.2. Removal Tests
2.2.1. Effects of the Methylene Blue Concentration and Temperature
2.2.2. Effects of the pH
2.3. Citotoxicity Analysis
2.4. Statistical Analysis
3. Results and Discussions
3.1. Effect of MB Concentration and the Growth Temperature on the Removal Process
3.2. Effect of pH in the Removal Process
3.3. Kinetic of the Bioremoval Process
3.4. Citotoxicity Test
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Zaharia, C.; Suteu, D. Textile Organic Dyes—Characteristics, Polluting Effects and Separation/Elimination Procedures from Industrial Effluents—A Critical Overview. In Organic Pollutants Ten Years After the Stockholm Convention—Environmental and Analytical Update; Puzyn, T., Ed.; InTech: Beijing, China, 2012; pp. 55–86. ISBN 978-953-307-917-2. [Google Scholar]
- Shah, K. Biodegradation of azo dye compounds. Int. Res. J. Biochem. Biotechnol. 2014, 1, 5–13. [Google Scholar]
- Ginimuge, P.R.; Jyothi, S.D. Methylene blue: Revisited. J. Anaesthesiol. Clin. Pharmacol. 2010, 26, 517–520. [Google Scholar] [PubMed]
- Oz, M.; Lorke, D.E.; Hasan, M.; Petroianu, G.A. Cellular and molecular actions of Methylene Blue in the nervous system. Med. Res. Rev. 2011, 31, 93–117. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Rangaiah, G.P.; Zhao, X.S. Photocatalytic Degradation of Methylene Blue by Titanium Dioxide: Experimental and Modeling Study. Ind. Eng. Chem. Res. 2014, 53, 14641–14649. [Google Scholar] [CrossRef]
- El-Ashtoukhy, E.-S.Z.; Fouad, Y.O. Liquid–liquid extraction of methylene blue dye from aqueous solutions using sodium dodecylbenzenesulfonate as an extractant. Alex. Eng. J. 2015, 54, 77–81. [Google Scholar] [CrossRef]
- Garg, V.K.; Amita, M.; Kumar, R.; Gupta, R. Basic dye (methylene blue) removal from simulated wastewater by adsorption using Indian Rosewood sawdust: A timber industry waste. Dye Pigment. 2004, 63, 243–250. [Google Scholar] [CrossRef]
- Xi, Y.; Shen, Y.; Yang, F.; Yang, G.; Liu, C.; Zhang, Z.; Zhu, D. Removal of azo dye from aqueous solution by a new biosorbent prepared with Aspergillus nidulans cultured in tobacco wastewater. J. Taiwan Inst. Chem. Eng. 2013, 44, 815–820. [Google Scholar] [CrossRef]
- Robinson, T.; McMullan, G.; Marchant, R.; Nigam, P. Remediation of dyes in textile effluent: A critical review on current treatment technologies with a proposed alternative. Bioresour. Technol. 2001, 77, 247–255. [Google Scholar] [CrossRef]
- Kandisa, R.V.; KV, N.S.; Shaik, K.B.; Gopinath, R. Dye Removal by Adsorption: A Review. J. Bioremed. Biodegrad. 2016, 7, 1–4. [Google Scholar] [CrossRef]
- Dzionek, A.; Wojcieszyńska, D.; Guzik, U. Natural carriers in bioremediation: A review. Electron. J. Biotechnol. 2016, 23, 28–36. [Google Scholar] [CrossRef]
- Mosa, K.A.; Saadoun, I.; Kumar, K.; Helmy, M.; Dhankher, O.P. Potential Biotechnological Strategies for the Cleanup of Heavy Metals and Metalloids. Front. Plant Sci. 2016, 7, 303. [Google Scholar] [CrossRef] [PubMed]
- Jadhav, U.U.; Dawkar, V.V.; Telke, A.A.; Govindwar, S.P. Decolorization of Direct Blue GLL with enhanced lignin peroxidase enzyme production in Comamonas sp. UVS. J. Chem. Technol. Biotechnol. 2009, 84, 126–132. [Google Scholar] [CrossRef]
- Maldonado, R.R.; Lopes, D.B.; Aguiar-Oliveira, E.; Kamimura, E.S.; Bacedo, G.A. A Review on Geotrichum Lipases: Production, Purification, Immobilization and Applications. Chem. Biochem. Eng. Q. 2016, 30, 439–454. [Google Scholar] [CrossRef]
- Noelia, S.V. Selection of Geotrichum Candidum Strains Isolated from Artisanal Cheeses in Order to Obtain Technologically Useful Co-Starters to Be Used in Cheese-Making; Universidad de León: León, Spain, 2016. [Google Scholar]
- Larone Davise, H. Medically Important Fungi: A Guide to Identification, 5th ed.; ASM Press: Washington, DC, USA, 2014; Volume 45, ISBN 978-1555816605. [Google Scholar]
- Tores, L.F. Clonación, Expresión y Evolución Molecular de la Lipasa I de Galactomices Geotrichum, 1st ed.; Editorial de la Universidad de Granada: Granada, Spain, 2005; ISBN 84-338-3613-7. [Google Scholar]
- Grygier, A.; Myszka, K.; Rudzińska, M. Galactomyces Geotrichum-Moulds from dairy Products with High Biotechnological Potential. Acta Sci. Pol. Technol. Aliment. 2017, 16, 5–16. [Google Scholar] [CrossRef] [PubMed]
- Jadhav, S.U.; Kalme, S.D.; Govindwar, S.P. Biodegradation of Methyl red by Galactomyces geotrichum MTCC 1360. Int. Biodeterior. Biodegrad. 2008, 62, 135–142. [Google Scholar] [CrossRef]
- Waghmode, T.R.; Kurade, M.B.; Kabra, A.N.; Govindwar, S.P. Biodegradation of Rubine GFL by Galactomyces geotrichum MTCC 1360 and subsequent toxicological analysis by using cytotoxicity, genotoxicity and oxidative stress studies. Microbiology 2012, 158, 2344–2352. [Google Scholar] [CrossRef]
- Govindwar, S.P.; Kurade, M.B.; Tamboli, D.P.; Kabra, A.N.; Kim, P.J.; Waghmode, T.R. Decolorization and degradation of xenobiotic azo dye Reactive Yellow-84A and textile effluent by Galactomyces geotrichum. Chemosphere 2014, 109, 234–238. [Google Scholar] [CrossRef]
- Chaves-López, C.; Tofalo, R.; Serio, A.; Paparella, A.; Sacchetti, G.; Suzzi, G. Yeasts from Colombian Kumis as source of peptides with Angiotensin I converting enzyme (ACE) inhibitory activity in milk. Int. J. Food Microbiol. 2012, 159, 39–46. [Google Scholar] [CrossRef]
- Waghmode, T.R.; Kurade, M.B.; Govindwar, S.P. Time dependent degradation of mixture of structurally different azo and non azo dyes by using Galactomyces geotrichum MTCC 1360. Int. Biodeterior. Biodegrad. 2011, 65, 479–486. [Google Scholar] [CrossRef]
- Zhen, Z.; Liu, X.; Huang, T.; Xi, T.; Zheng, Y. Hemolysis and cytotoxicity mechanisms of biodegradable magnesium and its alloys. Mater. Sci. Eng. C 2015, 46, 202–206. [Google Scholar] [CrossRef]
- Saratale, R.G.; Saratale, G.D.; Chang, J.S.; Govindwar, S.P. Decolorization and biodegradation of textile dye Navy blue HER by Trichosporon beigelii NCIM-3326. J. Hazard. Mater. 2009, 166, 1421–1428. [Google Scholar] [CrossRef] [PubMed]
- Jadhav, U.U.; Dawkar, V.V.; Tamboli, D.P.; Govindwar, S.P. Purification and characterization of veratryl alcohol oxidase from Comamonas sp. UVS and its role in decolorization of textile dyes. Biotechnol. Bioprocess Eng. 2009, 14, 369–376. [Google Scholar] [CrossRef]
- Kozliak, E.I.; Paca, J. Foreword. J. Environ. Sci. Heal. Part A 2012, 47, 919. [Google Scholar] [CrossRef] [PubMed]
- Khelifi, E.; Ayed, L.; Bouallagui, H.; Touhami, Y.; Hamdi, M. Effect of nitrogen and carbon sources on Indigo and Congo red decolourization by Aspergillus alliaceus strain 121C. J. Hazard. Mater. 2009, 163, 1056–1062. [Google Scholar] [CrossRef]
- Tony, B.D.; Goyal, D.; Khanna, S. Decolorization of textile azo dyes by aerobic bacterial consortium. Int. Biodeterior. Biodegrad. 2009, 63, 462–469. [Google Scholar] [CrossRef]
- Levin, L.; Melignani, E.; Ramos, A.M. Effect of nitrogen sources and vitamins on ligninolytic enzyme production by some white-rot fungi. Dye decolorization by selected culture filtrates. Bioresour. Technol. 2010, 101, 4554–4563. [Google Scholar] [CrossRef]
- Solís-Oba, M.; Eloy-Juárez, M.; Teutli, M.; Nava, J.L.; González, I. Comparison of advanced techniques for the treatment of an indigo model solution: Electro incineration, chemical coagulation and enzymatic. Rev. Mex. Ing. Quím. 2009, 8, 275–282. [Google Scholar]
- Ali, N.; Hameed, A.; Ahmed, S. Role of brown-rot fungi in the bioremoval of azo dyes under different conditions. Braz. J. Microbiol. 2010, 41, 907–915. [Google Scholar] [CrossRef]
- Jackson, S.A.; Brashers, D.E. Random Factors in ANOVA; Sage Publications: Thousand Oaks, CA, USA, 1994; ISBN 9780803950900. [Google Scholar]
- Bhattacharya, S.; Das, A. Mycoremediation of Congo Red Dye By Filamentous Fungi. Braz. J. Microbiol. 2011, 42, 1526–1536. [Google Scholar] [CrossRef]
- Harris, P.O.; Ramelow, G.J. Binding of metal ions by particulate biomass derived from Chlorella vulgaris and Scenedesmus quadricauda. Environ. Sci. Technol. 1990, 24, 220–228. [Google Scholar] [CrossRef]
- Schiewer, S.; Volesky, B. Modeling of the proton-metal ion exchange in biosorption. Environ. Sci. Technol. 1995, 29, 3049–3058. [Google Scholar] [CrossRef] [PubMed]
- Kapoor, A.; Viraraghavan, T.; Cullimore, D.R. Removal of heavy metals using the fungus Aspergillus niger. Bioresour. Technol. 1999, 70, 95–104. [Google Scholar] [CrossRef]
- Jadhav, S.U.; Jadhav, M.U.; Kagalkar, A.N.; Govindwar, S.P. Decolorization of Brilliant Blue G dye mediated by degradation of the microbial consortium of Galactomyces geotrichum and Bacillus sp. J. Chin. Inst. Chem. Eng. 2008, 39, 563–570. [Google Scholar] [CrossRef]
- Solís, M.; Solís, A.; Pérez, H.I.; Manjarrez, N.; Flores, M. Microbial decolouration of azo dyes: A review. Process Biochem. 2012, 47, 1723–1748. [Google Scholar] [CrossRef]
- Das, D.; Charumathi, D.; Das, N. Bioaccumulation of the synthetic dye Basic Violet 3 and heavy metals in single and binary systems by Candida tropicalis grown in a sugarcane bagasse extract medium: Modelling optimal conditions using response surface methodology (RSM) and inhibition kinet. J. Hazard. Mater. 2011, 186, 1541–1552. [Google Scholar] [CrossRef] [PubMed]
- Jin, X.-C.; Liu, G.-Q.; Xu, Z.-H.; Tao, W.-Y. Decolorization of a dye industry effluent by Aspergillus fumigatus XC6. Appl. Microbiol. Biotechnol. 2007, 74, 239–243. [Google Scholar] [CrossRef] [PubMed]
- Waghmode, T.R.; Kurade, M.B.; Lade, H.S.; Govindwar, S.P. Decolorization and Biodegradation of Rubine GFL by Microbial Consortium GG-BL in Sequential Aerobic/Microaerophilic Process. Appl. Biochem. Biotechnol. 2012, 167, 1578–1594. [Google Scholar] [CrossRef]
- Krishnan, J.; Arvind Kishore, A.; Suresh, A.; Madhumeetha, B.; Gnana Prakash, D. Effect of pH, inoculum dose and initial dye concentration on the removal of azo dye mixture under aerobic conditions. Int. Biodeterior. Biodegrad. 2017, 119, 16–27. [Google Scholar] [CrossRef]
- Ruiz, Y.; Medina, L.; Borusiak, M.; Ramos, N.; Pinto, G.; Valbuena, O. Biodegradation of polyethoxylated nonylphenols. ISRN Microbiol. 2013, 2013, 284950. [Google Scholar] [CrossRef]
- Catherine, R.; Jimenez, G. Cinética de Degradación de Colorantes Textiles de Diferentes Clases Químicas por hongos y Bacterias Inmovilizados Sobre Fibra DE Agave tequilana Webber var Azul; Universidad Javeriana: Bogotá, Colombia, 2009. [Google Scholar]
- De Sena Pereira, V.S.; Silva de Oliveira, C.B.; Fumagalli, F.; da Silva Emery, F.; da Silva, N.B.; de Andrade-Neto, V.F. Cytotoxicity, hemolysis and in vivo acute toxicity of 2-hydroxy-3-anilino-1,4-naphthoquinone derivatives. Toxicol. Rep. 2016, 3, 756–762. [Google Scholar] [CrossRef]
- Ferraz, E.R.A.; Umbuzeiro, G.A.; De-Almeida, G.; Caloto-Oliveira, A.; Chequer, F.M.D.; Zanoni, M.V.B.; Dorta, D.J.; Oliveira, D.P. Differential toxicity of Disperse Red 1 and Disperse Red 13 in the Ames test, HepG2 cytotoxicity assay, and Daphnia acute toxicity test. Environ. Toxicol. 2011, 26, 489–497. [Google Scholar] [CrossRef] [PubMed]
- Jadhav, S.B.; Phugare, S.S.; Patil, P.S.; Jadhav, J.P. Biochemical degradation pathway of textile dye Remazol red and subsequent toxicological evaluation by cytotoxicity, genotoxicity and oxidative stress studies. Int. Biodeterior. Biodegrad. 2011, 65, 733–743. [Google Scholar] [CrossRef]
Variable Factor | Low Level | Medium Level | High Level |
---|---|---|---|
MB * concentration (ppm) | 50 | 100 | 200 |
Temperature (°C) | 25 | 30 | 35 |
Concentration MB (ppm) | 25 °C | 30 °C | 35 °C |
---|---|---|---|
9.1 1 | 62.0 | 58.9 | |
200 | 23.7 | 71.4 | 56.1 |
6.2 | 57.0 | 44.3 | |
27.7 | 27.7 | 26.5 | |
100 | 32.4 | 32.4 | 27.4 |
35.1 | 35.1 | 26.7 | |
58.2 | 70.7 | 66.2 | |
50 | 63.6 | 64.7 | 71.7 |
63.4 | 62.8 | 76.6 |
Origin of Variations | Sum of Squares | Degrees of Freedom | Average of Squares | F-Value | Probability | F-Critical Value |
---|---|---|---|---|---|---|
Sample * | 6132.4 | 2 | 3066.2 | 98.6 | 2.0 × 10−10 | 3.5 |
Level ** | 1618.5 | 2 | 809.3 | 26.0 | 4.9 × 10−6 | 3.5 |
Interaction *** | 2586.1 | 4 | 646.5 | 20.8 | 1.5 × 10−6 | 2.9 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Contreras, M.; Grande-Tovar, C.D.; Vallejo, W.; Chaves-López, C. Bio-Removal of Methylene Blue from Aqueous Solution by Galactomyces geotrichum KL20A. Water 2019, 11, 282. https://doi.org/10.3390/w11020282
Contreras M, Grande-Tovar CD, Vallejo W, Chaves-López C. Bio-Removal of Methylene Blue from Aqueous Solution by Galactomyces geotrichum KL20A. Water. 2019; 11(2):282. https://doi.org/10.3390/w11020282
Chicago/Turabian StyleContreras, Margarita, Carlos David Grande-Tovar, William Vallejo, and Clemencia Chaves-López. 2019. "Bio-Removal of Methylene Blue from Aqueous Solution by Galactomyces geotrichum KL20A" Water 11, no. 2: 282. https://doi.org/10.3390/w11020282
APA StyleContreras, M., Grande-Tovar, C. D., Vallejo, W., & Chaves-López, C. (2019). Bio-Removal of Methylene Blue from Aqueous Solution by Galactomyces geotrichum KL20A. Water, 11(2), 282. https://doi.org/10.3390/w11020282