Analysis of Precipitation and Temperature Extremes over the Muda River Basin, Malaysia
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Data and Quality Control
3.2. Trend Analysis
3.3. Extreme Indices
4. Results
4.1. Data Quality Control and Homogeneous Assessment
4.2. Trend of Monthly Precipitation
4.3. Annual Trend of Precipitation Extremes
4.4. Trend of Temperature Extremes
5. Discussion
6. Conclusions
- -
- Interestingly, monthly precipitation tended to increase significantly in January (17.01 mm/decade) and December (23.23 mm/decade), which are among the months that received lowest precipitation amount, at a 95% significance level. Meanwhile, a significant decreasing monthly precipitation was found in May with a rate of 26.21 mm/decade.
- -
- Mann–Kendall test detected significant decreasing trends in annual R99p, TX10p, and TN10p, while significant increasing trends were found in TXmean, TNmean TX90p, and TN90p, at a 95% significance level.
- -
- Regional annual R10mm, R20mm, R50mm, and CWD showed increasing trends from 1985 to 2015, with magnitude changes of 1.02, 0.59, 0.13, and 0.1 days/decade, respectively. By contrast, decreasing trends were found in CDD (2.69 days/decade), R95p (39.76 mm/decade), R99p (32.37 mm/decade), Rx1d (4.21 mm/decade), and Rx5d (2.5 mm/decade).
- -
- Annual TXmean and TNmean at the Ampangan Muda station increased significantly at a rate of 0.22 and 0.32 °C/decade, respectively. Apparently, TNmean increased at a higher rate than TXmean. The differences between TXmean and TNmean are getting smaller due to the decreasing in DTR (0.07 °C/decade).
- -
- Annual TXx, TNx, TX90p, TN90p, TXn, and TNn at the Ampangan Muda station exhibited increasing trends, with magnitude changes of 0.07 °C/decade, 0.18 °C/decade, 3.49%/decade, 4.31%/decade, 0.31 °C/decade and 0.65 °C/decade, respectively. While TX10p and TN10p showed significant decreasing trends at rates of 2.3 and 6.99%/decade, respectively.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lee, T.M.; Markowitz, E.M.; Howe, P.D.; Ko, C.Y.; Leiserowitz, A.A. Predictors of public climate change awareness and risk perception around the world. Nat. Clim. Chang. 2015, 5, 1014. [Google Scholar] [CrossRef]
- Schiermeier, Q. Droughts, heatwaves and floods: How to tell when climate change is to blame. Nature 2018, 560, 20–22. [Google Scholar] [CrossRef] [PubMed]
- Kundzewicz, Z.W.; Kanae, S.; Seneviratne, S.I.; Handmer, J.; Nicholls, N.; Peduzzi, P.; Mechler, R.; Bouwer, L.M.; Arnell, N.; Mach, K.; et al. Flood risk and climate change: Global and regional perspectives. Hydrol. Sci. J. 2014, 59, 1–28. [Google Scholar] [CrossRef]
- Boccolari, M.; Malmusi, S. Changes in temperature and precipitation extremes observed in Modena, Italy. Atmos. Res. 2013, 122, 16–31. [Google Scholar] [CrossRef]
- Hoerling, M.; Eischeid, J.; Perlwitz, J.; Quan, X.-W.; Wolter, K.; Cheng, L. Characterizing recent trends in U.S. heavy precipitation. J. Clim. 2016, 29, 2313–2332. [Google Scholar] [CrossRef]
- Li, X.; Wang, X.; Babovic, V. Analysis of variability and trends of precipitation extremes in Singapore during 1980–2013. Int. J. Clim. 2018, 38, 125–141. [Google Scholar] [CrossRef]
- Salman, S.A.; Shahid, S.; Ismail, T.; Chung, E.-S.; Al-Abadi, A.M. Long-term trends in daily temperature extremes in Iraq. Atmos. Res. 2017, 198, 97–107. [Google Scholar] [CrossRef]
- Worku, G.; Teferi, E.; Bantider, A.; Dile, Y.T. Observed changes in extremes of daily rainfall and temperature in Jemma sub-basin, Upper Blue Nile Basin, Ethiopia. Appl. Clim. 2018. [Google Scholar] [CrossRef]
- Shrestha, A.B.; Bajracharya, S.R.; Sharma, A.R.; Duo, C.; Kulkarni, A. Observed trends and changes in daily temperature and precipitation extremes over the Koshi River Basin 1975–2010. Int. J. Clim. 2017, 37, 1066–1083. [Google Scholar] [CrossRef]
- Song, X.; Song, S.; Sun, W.; Mu, X.; Wang, S.; Li, J.; Li, Y. Recent changes in extreme precipitation and drought over the Songhua River Basin, China, during 1960–2013. Atmos. Res. 2015, 157, 137–152. [Google Scholar] [CrossRef]
- Tangang, F.; Farzanmanesh, R.; Mirzaei, A.; Supari; Salimun, E.; Jamaluddin, A.F.; Juneng, L. Characteristics of precipitation extremes in Malaysia associated with El Niño and La Niña events. Int. J. Clim. 2017, 37, 696–716. [Google Scholar] [CrossRef]
- Wan Zin, W.Z.; Jamaludin, S.; Deni, S.M.; Jemain, A.A. Recent changes in extreme rainfall events in Peninsular Malaysia: 1971–2005. Appl. Clim. 2010, 99, 303. [Google Scholar] [CrossRef]
- Suhaila, J.; Deni, S.M.; Wan Zin, W.Z.; Jemain, A.A. Spatial patterns and trends of daily rainfall regime in Peninsular Malaysia during the southwest and northeast monsoons: 1975–2004. Meteorol. Atmos. Phys. 2010, 110, 1–18. [Google Scholar] [CrossRef]
- Tan, M.L.; Ibrahim, A.L.; Cracknell, A.P.; Yusop, Z. Changes in precipitation extremes over the Kelantan River Basin, Malaysia. Int. J. Clim. 2017, 37, 3780–3797. [Google Scholar] [CrossRef]
- Ibrahim, A.L.; Chan, N.W. Water balance analysis in relation to wet rice cultivation in the Muda region of Kedah and Perlis, Malaysia. Malays. Agric. J. 1996, 55, 34–57. [Google Scholar]
- Ghani, A.A.; Ali, R.; Zakaria, N.A.; Hasan, Z.A.; Chang, C.K.; Ahamad, M.S.S. A temporal change study of the Muda River system over 22 years. Int. J. River Basin Manag. 2010, 8, 25–37. [Google Scholar] [CrossRef]
- Lee, K.F. A Background Study: Economic Benefits of the Muda Water Catchment; World Wide Fund for Nature (Formerly World Wildlife Fund): Petaling Jaya, Malaysia, 2009. [Google Scholar]
- PBA. PBA Holdings Bhd Annual Report 2016. 2016. Available online: https://www.pbahb.com.my/?page_id=564 (accessed on 15 October 2018).
- Tukimat, N.N.A.; Harun, S. Climate change impact on rainfall and temperature in muda irrigation area using multicorrelation matrix and downscaling method. J. Water Clim. Chang. 2015, 6, 647–660. [Google Scholar] [CrossRef]
- Peterson, T.C.; Easterling, D.R.; Karl, T.R.; Groisman, P.; Nicholls, N.; Plummer, N.; Torok, S.; Auer, I.; Boehm, R.; Gullett, D.; et al. Homogeneity adjustments of in situ atmospheric climate data: A review. Int. J. Clim. 1998, 18, 1493–1517. [Google Scholar] [CrossRef]
- Wijngaard, J.B.; Klein Tank, A.M.G.; Können, G.P. Homogeneity of 20th century European daily temperature and precipitation series. Int. J. Clim. 2003, 23, 679–692. [Google Scholar] [CrossRef]
- Tan, M.L.; Chua, V.P.; Li, C.; Brindha, K. Spatiotemporal analysis of hydro-meteorological drought in the Johor River Basin, Malaysia. Appl. Clim. 2018. [Google Scholar] [CrossRef]
- Cox, D.R.; Stuart, A. Some quick sign tests for trend in location and dispersion. Biometrika 1955, 42, 80–95. [Google Scholar] [CrossRef]
- Hamed, K.H.; Rao, R.A. A modified Mann–Kendall trend test for autocorrelated data. J. Hydrol. 1998, 204, 182–196. [Google Scholar] [CrossRef]
- Supari; Tangang, F.; Juneng, L.; Aldrian, E. Observed changes in extreme temperature and precipitation over Indonesia. Int. J. Clim. 2017, 37, 1979–1997. [Google Scholar] [CrossRef]
- Feng, R.; Yu, R.; Zheng, H.; Gan, M. Spatial and temporal variations in extreme temperature in Central Asia. Int. J. Clim. 2018, 38, e388–e400. [Google Scholar] [CrossRef]
- Tan, M.L.; Ibrahim, A.L.; Yusop, Z.; Duan, Z.; Ling, L. Impacts of land-use and climate variability on hydrological components in the Johor River Basin, Malaysia. Hydrol. Sci. J. 2015, 60, 873–889. [Google Scholar] [CrossRef]
- Tan, M.; Ibrahim, A.; Duan, Z.; Cracknell, A.; Chaplot, V. Evaluation of six high-resolution satellite and ground-based precipitation products over Malaysia. Remote Sens. 2015, 7, 1504–1528. [Google Scholar] [CrossRef]
- Suhaila, J.; Yusop, Z. Trend analysis and change point detection of annual and seasonal temperature series in Peninsular Malaysia. Meteorol. Atmos. Phys. 2018, 130, 565–581. [Google Scholar] [CrossRef]
- Loo, Y.Y.; Billa, L.; Singh, A. Effect of climate change on seasonal monsoon in asia and its impact on the variability of monsoon rainfall in Southeast Asia. Geosci. Front. 2015, 6, 817–823. [Google Scholar] [CrossRef]
- Wong, C.; Liew, J.; Yusop, Z.; Ismail, T.; Venneker, R.; Uhlenbrook, S. Rainfall characteristics and regionalization in Peninsular Malaysia based on a high resolution gridded data set. Water 2016, 8, 500. [Google Scholar] [CrossRef]
- Amirabadizadeh, M.; Huang, Y.F.; Lee, T.S. Recent trends in temperature and precipitation in the Langat River Basin, Malaysia. Adv. Meteorol. 2015, 2015, 579437. [Google Scholar] [CrossRef]
- Sharma, D.; Babel, M.S. Trends in extreme rainfall and temperature indices in the Western Thailand. Int. J. Clim. 2014, 34, 2393–2407. [Google Scholar] [CrossRef]
- Manton, M.J.; Della-Marta, P.M.; Haylock, M.R.; Hennessy, K.J.; Nicholls, N.; Chambers, L.E.; Collins, D.A.; Daw, G.; Finet, A.; Gunawan, D.; et al. Trends in extreme daily rainfall and temperature in Southeast Asia and the South Pacific: 1961–1998. Int. J. Clim. 2001, 21, 269–284. [Google Scholar] [CrossRef]
- Lawrence, D.; Vandecar, K. Effects of tropical deforestation on climate and agriculture. Nat. Clim. Chang. 2014, 5, 27. [Google Scholar] [CrossRef]
- Amin, M.Z.M.; Shaaban, A.J.; Ercan, A.; Ishida, K.; Kavvas, M.L.; Chen, Z.Q.; Jang, S. Future climate change impact assessment of watershed scale hydrologic processes in Peninsular Malaysia by a regional climate model coupled with a physically-based hydrology modelo. Sci. Total Environ. 2017, 575, 12–22. [Google Scholar] [CrossRef] [PubMed]
- Julien, P.Y.; Ghani, A.A.; Zakaria, N.A.; Abdullah, R.; Chang, C.K. Case study: Flood mitigation of the Muda River, malaysia. J. Hydraul. Eng. 2010, 136, 251–261. [Google Scholar] [CrossRef]
- Sanusi, W.; Jemain, A.A.; Zin, W.Z.W.; Zahari, M. The drought characteristics using the first-order homogeneous markov chain of monthly rainfall data in Peninsular Malaysia. Water Resour. Manag. 2015, 29, 1523–1539. [Google Scholar] [CrossRef]
- Tan, M.L.; Tan, K.C.; Chua, V.P.; Chan, N.W. Evaluation of TRMM product for monitoring drought in the Kelantan River Basin, Malaysia. Water 2017, 9, 57. [Google Scholar] [CrossRef]
- Tan, M.L.; Santo, H. Comparison of GPM IMERG, TMPA 3B42 and PERSIANN-CDR satellite precipitation products over Malaysia. Atmos. Res. 2018, 202, 63–76. [Google Scholar] [CrossRef]
- Tan, M.L.; Chua, V.P.; Tan, K.C.; Brindha, K. Evaluation of TMPA 3B43 and NCEP-CFSR precipitation products in drought monitoring over Singapore. Int. J. Remote Sens. 2018, 39, 2089–2104. [Google Scholar] [CrossRef]
- Huang, J.; Zhang, F.; Zhou, L.; Hu, Z.; Li, Y. Regional changes of climate extremes and its effect on rice yield in Jiangsu Province, Southeast China. Environ. Earth Sci. 2018, 77, 106. [Google Scholar] [CrossRef]
No | Station | Name | Latitude | Longitude | Elevation (m) | Missing (%) |
---|---|---|---|---|---|---|
1 | 41526 | Badenoch Estate | 5.55 | 100.76 | 40.00 | 2.54 |
2 | 41543 | Hospital Sungai Petani | 5.65 | 100.50 | 8.00 | 2.32 |
3 | 41545 | Hospital Baling | 5.68 | 100.93 | 52.00 | 0.30 |
4 | 41548 | Pusat Pertanian Charok Padang | 5.80 | 100.72 | 31.00 | 5.74 |
5 | 41549 | Pusat Pertanian Batu Seketol | 5.97 | 100.80 | 71.00 | 2.29 |
6 | 41559 | Felda Sungai Tiang | 5.99 | 100.60 | 38.00 | 0.00 |
7 | 41619 | Ampangan Pedu | 6.25 | 100.77 | 58.60 | 0.39 |
8 | 41638 | Ampangan Muda * | 6.12 | 100.85 | 110.00 | 0.00 |
9 | 48602 | Butterworth | 5.47 | 100.40 | 2.80 | 0.00 |
Index | Name | Detail | Unit |
---|---|---|---|
Precipitation | |||
SDII | Simple daily intensity index | Annual total precipitation divided by the number of wet days in the years | mm/days |
R10mm | Number of heavy precipitation days | Annual count of days when precipitation ≥ 10 mm | Days |
R20mm | Number of very heavy precipitation days | Annual count of days when precipitation ≥ 20 mm | Days |
R50mm | Number of violent precipitation days | Annual count of days when precipitation ≥ 50 mm | Days |
CDD | Consecutive dry days | Maximum number of consecutive days with rainfall < 1 mm | Days |
CWD | Consecutive wet days | Maximum number of consecutive days with rainfall ≥ 1 mm | Days |
R95p | Very wet days | Annual total precipitation when rainfall > 95th percentile | mm |
R99p | Extremely wet days | Annual total precipitation when rainfall > 99th percentile | mm |
PRCPTOT | Annual total wet-day precipitation | Annual total precipitation in wet days (rainfall > 1 mm) | mm |
Rx1day | Max 1-day precipitation amount | Annual or Monthly maximum 1-day precipitation | mm |
Rx5day | Max 5-day precipitation amount | Annual or Monthly maximum 5-day precipitation | mm |
Temperature | |||
TXmean | Mean of Maximum Temperature | Annual or Monthly Tmaxmean | °C |
TNmean | Mean of Minimum temperature | Annual or Monthly Tminmean | °C |
DTR | Diurnal temperature range | Monthly mean difference between Tmax and Tmin | °C |
TXx | Maximum Tmax | Monthly maximum value of daily maximum temperature | °C |
TNx | Maximum Tmin | Monthly maximum value of daily minimum temperature | °C |
TXn | Minimum Tmax | Monthly minimum value of daily maximum temperature | °C |
TNn | Minimum Tmin | Monthly minimum value of daily minimum temperature | °C |
TX10p | Cool days | Percentage of days when TX < 10th percentile | % |
TN10p | Cool nights | Percentage of days when TN < 10th percentile | % |
TX90p | Warm days | Percentage of days when TX > 90th percentile | % |
TN90p | Warm nights | Percentage of days when TN > 90th percentile | % |
Month | Precipitation (mm/decade) | Rx1d (mm/decade) | Rx5d (mm/decade) |
---|---|---|---|
January | 17.01 | 6.83 | 15.05 |
February | 10.33 | 4.61 | 10.56 |
March | −8.15 | −2.19 | −0.38 |
April | 22.05 | 1.27 | 8.96 |
May | −26.21 | −4.35 | −7.50 |
June | 9.63 | −1.35 | 5.08 |
July | −5.74 | −1.63 | −6.27 |
August | −9.74 | −3.61 | −3.99 |
September | −18.81 | −1.65 | −2.55 |
October | −18.22 | −1.82 | −2.33 |
November | 11.27 | −1.05 | −7.47 |
December | 23.23 | 3.92 | 4.19 |
Indices | Overall Trend | Station Trend | |
---|---|---|---|
Min | Max | ||
SDII (mm/days/decade) | 0.08 | −1.00 | 0.69 |
R10mm (days/decade) | 1.02 | 0.00 | 2.73 |
R20mm (days/decade) | 0.59 | −2.14 | 3.33 |
R50mm (days/decade) | 0.13 | −1.67 | 1.29 |
CDD (days/decade) | −2.69 | −5.71 | 0.95 |
CWD (days/decade) | 0.10 | −0.77 | 1.54 |
R95P (mm/decade) | −39.76 | −122.46 | 65.87 |
R99P (mm/decade) | −32.37 | −50.08 | 0.00 |
PRCPTOT (mm/decade) | −4.99 | −99.14 | 116.60 |
Rx1d (mm/decade) | −4.21 | −10.18 | 3.88 |
Rx5d (mm/decade) | −2.50 | −21.09 | 24.69 |
Month | TXmean | TNmean | DTR | TXx | TNx | TXn | TNn | TX10p | TN10p | TX90p | TN90p |
---|---|---|---|---|---|---|---|---|---|---|---|
January | −0.03 | 0.60 | −0.70 | −0.11 | 0.39 | −0.84 | 0.72 | 1.08 | −8.16 | 0.00 | 5.37 |
February | 0.07 | 0.18 | −0.14 | 0.11 | 0.39 | 0.22 | 0.36 | 0.00 | −1.98 | 0.00 | 1.98 |
March | 0.23 | 0.32 | 0.00 | 0.24 | 0.12 | 0.15 | 0.67 | 0.00 | −6.30 | 0.00 | 3.58 |
April | 0.15 | 0.27 | −0.13 | 0.25 | 0.11 | 0.46 | 0.56 | −0.73 | −6.66 | 0.00 | 3.49 |
May | 0.24 | 0.16 | 0.07 | 0.25 | 0.22 | 0.67 | 0.12 | −2.02 | −3.93 | 0.00 | 3.35 |
June | 0.33 | 0.20 | 0.12 | 0.33 | 0.13 | 0.53 | 0.53 | −2.86 | −3.84 | 3.20 | 2.11 |
July | 0.33 | 0.30 | −0.01 | 0.36 | 0.43 | 0.22 | 0.44 | −0.96 | −6.36 | 4.88 | 4.13 |
August | 0.41 | 0.20 | 0.20 | 0.56 | 0.14 | 0.16 | 0.25 | −3.23 | −3.67 | 5.21 | 3.22 |
September | 0.39 | 0.25 | 0.20 | 0.33 | 0.20 | 0.36 | 0.29 | −3.00 | −4.76 | 3.32 | 2.68 |
October | 0.34 | 0.18 | 0.14 | 0.25 | 0.07 | 0.11 | 0.33 | −0.54 | −5.71 | 3.78 | 1.98 |
November | 0.40 | 0.37 | 0.05 | 0.40 | 0.33 | 0.46 | 0.21 | −4.23 | −3.85 | 4.68 | 6.18 |
December | 0.15 | 0.49 | −0.40 | 0.36 | 0.23 | 0.00 | 0.53 | −0.21 | −2.91 | 3.97 | 6.30 |
Annual | 0.22 | 0.32 | −0.07 | 0.07 | 0.18 | 0.31 | 0.65 | −2.30 | −6.99 | 3.49 | 4.31 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, M.L.; Samat, N.; Chan, N.W.; Lee, A.J.; Li, C. Analysis of Precipitation and Temperature Extremes over the Muda River Basin, Malaysia. Water 2019, 11, 283. https://doi.org/10.3390/w11020283
Tan ML, Samat N, Chan NW, Lee AJ, Li C. Analysis of Precipitation and Temperature Extremes over the Muda River Basin, Malaysia. Water. 2019; 11(2):283. https://doi.org/10.3390/w11020283
Chicago/Turabian StyleTan, Mou Leong, Narimah Samat, Ngai Weng Chan, Anisah Jessica Lee, and Cheng Li. 2019. "Analysis of Precipitation and Temperature Extremes over the Muda River Basin, Malaysia" Water 11, no. 2: 283. https://doi.org/10.3390/w11020283
APA StyleTan, M. L., Samat, N., Chan, N. W., Lee, A. J., & Li, C. (2019). Analysis of Precipitation and Temperature Extremes over the Muda River Basin, Malaysia. Water, 11(2), 283. https://doi.org/10.3390/w11020283