Constructing the Ecological Security Pattern for Sponge City: A Case Study in Zhengzhou, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Approaches to Build ESP for Sponge City
2.3. Analysis of Water Ecological Sensitivity
2.3.1. Hierarchical Model and Weight Calculation
2.3.2. Integrated Overlay Analysis Based on GIS
2.4. Construction of ESP
2.4.1. Identification of Ecological Source
2.4.2. Extraction of Ecological Corridor by MCR Model and Ecological nodes
3. Results
3.1. Individual Layers of Factors Evaluation of Water Ecological Sensitivity
3.2. Comprehensive Evaluation of Water Ecological Sensitivity
3.3. ESP for The Sponge City
3.3.1. Recognition of Ecological Sources, Corridors, and Nodes
3.3.2. ESP for Zhengzhou
4. Discussion
4.1. Zoning the Functional Areas for the Sponge City with Targeted Suggestions
4.2. Discussion on Technical Methods for Modeling the ESP of the Sponge City
4.2.1. Constructing Ecological Sensitivity Evaluation by AHP and Delphi Method
4.2.2. Identification of the Ecological Source
4.2.3. Hierarchical Setting of the Ecological Resistance Surface
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Su, S.L.; Xiao, R.; Jiang, Z.L.; Zhang, Y. Characterizing landscape pattern and ecosystem service value changes for urbanization impacts at an eco-regional scale. Appl. Geogr. 2012, 34, 295–305. [Google Scholar]
- Ahiablame, L.M.; Engel, B.A.; Chaubey, I. Effectiveness of Low Impact Development Practices: Literature Review and Suggestions for Future Research. Water Air Soil Pollut. 2012, 223, 4253–4273. [Google Scholar] [CrossRef]
- Tan, P.Y.; Hamid, A.R.B. Urban ecological research in Singapore and its relevance to the advancement of urban ecology and sustainability. Landsc. Urban Plan. 2014, 125, 271–289. [Google Scholar] [CrossRef]
- Wu, J.G.; Xiang, W.N.; Zhao, J.Z. Urban ecology in China: Historical developments and future directions. Landsc. Urban Plan. 2014, 125, 222–233. [Google Scholar] [CrossRef]
- Yu, K.; Li, D.; Yuan, H.; Fu, W.; Qiao, Q.; Wang, S. “Sponge city”: Theory and practice. Plan. Stud. 2015, 39, 26–36. [Google Scholar]
- Shao, W.W.; Zhang, H.X.; Liu, J.H.; Yang, G.Y.; Chen, X.D.; Yang, Z.Y.; Huang, H. Data integration and its application in the sponge city construction of China. Procedia Eng. 2016, 154, 779–786. [Google Scholar] [CrossRef]
- Peng, J.; Zhao, H.; Liu, Y.; Du, Y. Progress and conceptual framework of regional water security pattern construction. Acta Ecol. Sin. 2016, 36, 3137–3145. [Google Scholar]
- Changnon, S.A., Jr.; Ackermann, W.C.; White, G.F.; Ivens, J.L.; Caulfield, H.P., Jr.; Drabek, T.; Landsberg, H.E.; Linsley, R.K.; Marzolf, G.R.; Milliman, J.W. A Plan for Research on Floods and Their Mitigation in the United States; Illinois State Water Survey: Champaign, IL, USA, 1983. [Google Scholar]
- Fletcher, T.D.; Shuster, W.; Hunt, W.F.; Ashley, R.; Butler, D.; Arthur, S.; Trowsdale, S.; Barraud, S.; Semadeni-Davies, A.; Bertrand-Krajewski, J.L.; et al. SUDS, LID, BMPs, WSUD and more—The evolution and application of terminology surrounding urban drainage. Urban Water J. 2015, 12, 525–542. [Google Scholar] [CrossRef]
- Miklas, S. Best Management Practice: A Sustainable Urban Drainage System Management Case Study. Water Int. 2006, 31, 310–319. [Google Scholar]
- Bedan, E.S.; Clausen, J.C. Stormwater Runoff Quality and Quantity From Traditional and Low Impact Development Watersheds(1). J. Am. Water Resour. Assoc. 2009, 45, 998–1008. [Google Scholar] [CrossRef]
- Dietz, M.E. Low impact development practices: A review of current research and recommendations for future directions. Water Air Soil Pollut. 2007, 186, 351–363. [Google Scholar] [CrossRef]
- Walmsley, A. Greenways: Multiplying and diversifying in the 21st century. Landsc. Urban Plan. 2006, 76, 252–290. [Google Scholar] [CrossRef]
- Roy, A.H.; Wenger, S.J.; Fletcher, T.D.; Walsh, C.J.; Ladson, A.R.; Shuster, W.D.; Thurston, H.W.; Brown, R.R. Impediments and solutions to sustainable, watershed-scale urban stormwater management: Lessons from Australia and the United States. Environ. Manag. 2008, 42, 344–359. [Google Scholar] [CrossRef]
- Spillett, P.; Evans, S.; Colquhoun, K. International perspective on BMPs/SUDS: UK—Sustainable stormwater management in the UK. In Proceedings of the World Water and Environmental Resources Congress, Anchorage, AK, USA, 15–19 May 2005; pp. 1–12. [Google Scholar]
- Lloyd, S.D.; Wong, T.H.F.; Chesterfield, C.J. Water Sensitive Urban Design: A Stormwater Management Perspective; CRC for Catchment Hydrology, CanPrint: Victoria, Australia, 2002. [Google Scholar]
- Wong, T.H.F. Water sensitive urban design—The journey thus far. Aust. J. Water Resour. 2006, 10, 213–222. [Google Scholar] [CrossRef]
- Summary of Four International Experiences for Sponge City Construction. Available online: http://www.cjw.gov.cn/zjzx/jhzh/31991.html (accessed on 24 April 2018).
- Liu, C.; Zhang, Y.; Wang, Z.; Wang, Y.; Bai, P. The LID Pattern for Maintaining Virtuous Water Cycle in Urbanized Area: A Preliminary Study of Planning and Techniques for Sponge City. J. Nat. Resour. 2016, 31, 719–731. [Google Scholar]
- Ministry of Housing Urban-Rural Construction of People’s Republic of China. Technical Guide for Sponge City Construction-Construction of Rain Water System for Low Impact Development; Mohurd: Beijing, China, 2014; pp. 1–88.
- Zhang, S.H.; Pan, B.Z. An urban storm-inundation simulation method based on GIS. J. Hydrol. 2014, 517, 260–268. [Google Scholar] [CrossRef]
- Che, W.; Wu, Y.; Yang, Z.; Yan, P.; Zhao, Y. Explanation of Sponge City Development Technical Guide: Rational Building of Urban Stormwater Detention and Retention System. China Water Wastewater 2015, 31, 13. [Google Scholar]
- Wang, G.; Chen, J.; Zhao, C.; Zhou, X.; Deng, X. Exploration of the causality between area changes of green spaces and waterlogging frequency in Beijing. Phys. Chem. Earth 2017, 101, 172–177. [Google Scholar] [CrossRef]
- Li, H.; Ding, L.Q.; Ren, M.L.; Li, C.Z.; Wang, H. Sponge City Construction in China: A Survey of the Challenges and Opportunities. Water 2017, 9, 17. [Google Scholar] [CrossRef]
- Ma, H.; Zhou, D.; Kang, C.; Wang, J. Sponge City Planning Theory And Zhuhai’s Practice. Planners 2016, 32, 29–34. [Google Scholar]
- Ling, Z.; Zhai, G.; He, Z. Summary of Sponge City Theory and Practice. In Proceedings of the 2015 China City Planning Annual Meeting, Guiyang, China, 17–22 October 2015. [Google Scholar]
- Han, X.; Zhao, Y. “Sponge” Development in Sponge City Construction. J. Earth Sci. Environ. 2016, 38, 708–714. [Google Scholar]
- Xia, J.; Zhang, Y.Y.; Xiong, L.H.; He, S.; Wang, L.F.; Yu, Z.B. Opportunities and challenges of the Sponge City construction related to urban water issues in China. Sci. China-Earth Sci. 2017, 60, 652–658. [Google Scholar] [CrossRef]
- Yu, K. Security patterns and surface model in landscape ecological planning. Landsc. Urban Plan. 1996, 36, 1–17. [Google Scholar] [CrossRef]
- Jiansheng, W.U.; Zhang, L.; Jian, P.; Zhe, F.; Liu, H.; Shengbin, H.E. The integrated recognition of the source area of the urban ecological security pattern in Shenzhen. Acta Ecol. Sin. 2013, 33, 4125–4133. [Google Scholar] [CrossRef]
- Gong, J.Z.; Liu, Y.S.; Xia, B.C.; Zhao, G.W. Urban ecological security assessment and forecasting, based on a cellular automata model: A case study of Guangzhou, China. Ecol. Model. 2009, 220, 3612–3620. [Google Scholar] [CrossRef]
- Solovjova, N.V. Synthesis of ecosystemic and ecoscreening modelling in solving problems of ecological safety. Ecol. Model. 1999, 124, 1–10. [Google Scholar] [CrossRef]
- Su, Y.X.; Chen, X.Z.; Liao, J.S.; Zhang, H.O.; Wang, C.J.; Ye, Y.Y.; Wang, Y. Modeling the optimal ecological security pattern for guiding the urban constructed land expansions. Urban For. Urban Green. 2016, 19, 35–46. [Google Scholar] [CrossRef]
- Li, Z.; Xu, L. Evaluation indicators for urban ecological security based on ecological network analysis. Procedia Environ. Sci. 2010, 2, 1393–1399. [Google Scholar] [CrossRef]
- Su, Y.; Zhang Hong, o.; Chen, X.; Huang, G.; Ye, Y.; Wu, Q.; Huang, N.; Kuang, Y. The ecological security patterns and construction land expansion simulation in Gaoming. Acta Ecol. Sin. 2013, 33, 1524–1534. [Google Scholar]
- Chen, X.; Peng, J.; Liu, Y.; Yang, Y.; Li, G. Constructing ecological security patterns in Yunfu city based on the framework of importance-sensitivity-connectivity. Geogr. Res. 2017, 36, 471–484. [Google Scholar]
- Klar, N.; Herrmann, M.; Henning-Hahn, M.; Pott-Dorfer, B.; Hofer, H.; Kramer-Schadt, S. Between ecological theory and planning practice: (Re-) Connecting forest patches for the wildcat in Lower Saxony, Germany. Landsc. Urban Plan. 2012, 105, 376–384. [Google Scholar] [CrossRef]
- Teng, M.J.; Wu, C.G.; Zhou, Z.X.; Lord, E.; Zheng, Z.M. Multipurpose greenway planning for changing cities: A framework integrating priorities and a least-cost path model. Landsc. Urban Plan. 2011, 103, 1–14. [Google Scholar] [CrossRef]
- Peng, J.; Zhao, H.; Yanxu, L.; Jiansheng, W. Research progress and prospect on regional ecological security pattern construction. Geogr. Res. 2017, 36, 407–419. [Google Scholar]
- Knaapen, J.P.; Scheffer, M.; Harms, B. Estimating habitat isolation in landscape planning. Landsc. Urban Plan. 1992, 23, 1–16. [Google Scholar] [CrossRef]
- Li, F.; Ye, Y.P.; Song, B.W.; Wang, R.S. Evaluation of urban suitable ecological land based on the minimum cumulative resistance model: A case study from Changzhou, China. Ecol. Model. 2015, 318, 194–203. [Google Scholar] [CrossRef]
- Yu, K. Ecological Security Patterns in Landscapes and GIS Application. Ann. Gis 1995, 1, 88–102. [Google Scholar] [CrossRef]
- Mu, B.; Mayer, A.L.; He, R.Z.; Tian, G.H. Land use dynamics and policy implications in Central China: A case study of Zhengzhou. Cities 2016, 58, 39–49. [Google Scholar] [CrossRef]
- Chen, K.; He, R.; Liang, T.; Tian, G. Optimization Approach of Urban Green Space Based on Concept of Sponge City. Bull. Soil Water Conserv. 2016, 36, 258–264. [Google Scholar]
- Saaty, T.L. Decision making with the analytic hierarchy process. Int. J. Serv. Sci. 2008, 1, 83–98. [Google Scholar] [CrossRef]
- Saaty, T.L. Decision Making for Leaders: The Analytic Hierarchy Process for Decisions in a Complex World; RWS Publications: Pittsburgh, PA, USA, 1990. [Google Scholar]
- Linstone, H.A.; Turoff, M. The Delphi Method; Addison-Wesley: Reading, MA, USA, 1975. [Google Scholar]
- Dong, R.C.; Liu, X.; Liu, M.L.; Feng, Q.Y.; Su, X.D.; Wu, G. Landsenses ecological planning for the Xianghe Segment of China’s Grand Canal. Int. J. Sustain. Dev. World Ecol. 2016, 23, 298–304. [Google Scholar] [CrossRef]
- Peng, J.; Guo, X.; Hu, Y.; Liu, Y. Constructing ecological security patterns in mountain areas based on geological disaster sensitivity: A case study in Yuxi City, Yunnan Province, China. Chin. J. Appl. Ecol. 2017, 28, 627–635. [Google Scholar]
- Hu, D.; Zong, Y.; Xu, W. Research on the Construction of Landscape Ecological Security Pattern in the New Urban Region Development based on Ecology Network Analysis. Urban Dev. Stud. 2011, 6, 37–43. [Google Scholar]
- Mu, B.; Li, H.; Yao, E.; He, R.; Tian, G. Dynamic changes of urban-rural landscape spatial pattern indifferent topographic features in Zhengzhou City. J. Henan Agric. Univ. 2016, 50, 789–798. [Google Scholar]
- Zhou, C.; Cheng, W.; Qian, J.; Li, B.; Zhang, B. Research on the Classification System of Digital Land Geomorphology of 1:100,000 in China. J. Eco-Inf. Sci. 2009, 11, 707–724. [Google Scholar]
- Devantier, B.A.; Feldman, A.D. Review of GIS Applications in Hydrologic Modeling. J. Water Resour. Plan. Manag. 1993, 119, 246–261. [Google Scholar] [CrossRef]
- Gleyzer, A.; Denisyuk, M.; Rimmer, A.; Salingar, Y. A fast recursive GIS algorithm for computing strahler stream order in braided and nonbraided networks. J. Am. Water Resour. Assoc. 2010, 40, 10. [Google Scholar] [CrossRef]
- Li, B.; Pan, B.; Han, J. Basic Terrestrial Geomorphological Types in China and Their Circumscriptions. Quat. Sci. 2008, 28, 535–543. [Google Scholar]
- Zhao, Y.-B.; Yang, M.-Z.; Ni, H.-G. An emergy-GIS method of selecting areas for sponge-like urban reconstruction. J. Hydrol. 2018, 564, 640–650. [Google Scholar] [CrossRef]
- Zhang, J.; Fu, D.; Wang, Y.; Singh, R.P. Detailed sponge city planning based on hierarchical fuzzy decision-making: A case study on Yangchen Lake. Water 2017, 9, 903. [Google Scholar] [CrossRef]
- Wang, H.; Mei, C.; Liu, J.H.; Shao, W.W. A new strategy for integrated urban water management in China: Sponge city. Sci. China Technol. Sci. 2018, 61, 317–329. [Google Scholar] [CrossRef]
- Yang, T.; Liu, J.; Chen, Q. Assessment of plain river ecosystem function based on improved gray system model and analytic hierarchy process for the Fuyang River, Haihe River Basin, China. Ecol. Model. 2013, 268, 37–47. [Google Scholar] [CrossRef]
- Yu, Q.; Jiang, Q.O.; Yang, D.; Yue, D.; Ma, H.; Huang, Y.; Zhang, Q.; Fang, M. Incorporating Temporal and Spatial Variations of Groundwater into the Construction of a Water-Based Ecological Network: A Case Study in Denko County. Water 2017, 9, 864. [Google Scholar] [CrossRef]
- He, X.; Hörmann, G.; Strehmel, A.; Guo, H.; Fohrer, N. Natural and anthropogenic causes of vegetation changes in riparian wetlands along the lower reaches of the Yellow River, China. Wetlands 2015, 35, 391–399. [Google Scholar] [CrossRef]
- Song, X.; Yan, C.; Xie, J.; Li, S. Assessment of changes in the area of the water conservation forest in the Qilian Mountains of China’s Gansu province, and the effects on water conservation. Environ. Earth Sci. 2012, 66, 2441–2448. [Google Scholar] [CrossRef]
- Benítez, G.; Pérez-Vázquez, A.; Nava-Tablada, M.; Equihua, M.; Álvarez-Palacios, J.L. Urban expansion and the environmental effects of informal settlements on the outskirts of Xalapa city, Veracruz, Mexico. Environ. Urban. 2012, 24, 149–166. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Ngo, H.H.; Guo, W.; Wang, X.C.; Ren, N.; Li, G.; Ding, J.; Liang, H. Implementation of a specific urban water management-Sponge City. Sci. Total Environ. 2019, 652, 147–162. [Google Scholar] [CrossRef]
- Mei, C.; Liu, J.H.; Wang, H.; Yang, Z.Y.; Ding, X.Y.; Shao, W.W. Integrated assessments of green infrastructure for flood mitigation to support robust decision-making for sponge city construction in an urbanized watershed. Sci. Total Environ. 2018, 639, 1394–1407. [Google Scholar] [CrossRef]
- Liu, S.; Wang, D.; Li, H.; Li, W.; Wu, W.; Zhu, Y. The Ecological Security Pattern and Its Constraint on Urban Expansion of a Black Soil Farming Area in Northeast China. ISPRS Int. J. Geo-Inf. 2017, 6, 263. [Google Scholar] [CrossRef]
- Lyu, H.-M.; Shen, J.S.; Arulrajah, A. Assessment of geohazards and preventative countermeasures using AHP incorporated with GIS in Lanzhou, China. Sustainability 2018, 10, 304. [Google Scholar] [CrossRef]
- Cinelli, M.; Coles, S.R.; Kirwan, K. Analysis of the potentials of multi criteria decision analysis methods to conduct sustainability assessment. Ecol. Indic. 2014, 46, 138–148. [Google Scholar] [CrossRef]
- Pourghasemi, H.; Moradi, H.; Aghda, S.F. Landslide susceptibility mapping by binary logistic regression, analytical hierarchy process, and statistical index models and assessment of their performances. Nat. Hazards 2013, 69, 749–779. [Google Scholar] [CrossRef]
- Van der Merwe, J.H. GIS-aided land evaluation and decision-making for regulating urban expansion: A South African case study. GeoJournal 1997, 43, 135–151. [Google Scholar] [CrossRef]
- Dai, F.; Lee, C.; Zhang, X. GIS-based geo-environmental evaluation for urban land-use planning: A case study. Eng. Geol. 2001, 61, 257–271. [Google Scholar] [CrossRef]
- Peng, J.; Yang, Y.; Liu, Y.; Du, Y.; Meersmans, J.; Qiu, S. Linking ecosystem services and circuit theory to identify ecological security patterns. Sci. Total Environ. 2018, 644, 781–790. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.; Liu, X. Assessment of landscape ecological security and optimization of landscape pattern based on spatial principal component analysis and resistance model in arid inland area: A case study of Ganzhou District, Zhangye City, Northwest China. Chin. J. Appl. Ecol. 2015, 26, 3126–3136. [Google Scholar]
- Peng, J.; Zhao, H.; Liu, Y. Urban ecological corridors construction: A review. Acta Ecol. Sin. 2017, 37, 23–30. [Google Scholar] [CrossRef]
Target Layer | Criterion Layer | Index Layer |
---|---|---|
water ecological sensitivity for the sponge city | existing water ecological factors (0.2746) | wetland (0.5695) |
vegetation-covered areas (0.3331) | ||
farmland (0.0974) | ||
significant water safety factors (0.5753) | drinking water reserves (0.3196) | |
major water conservancy projects (0.5584) | ||
natural scenic regions (0.1220) | ||
indirect water environment factors (0.0911) | elevation (0.4000) | |
slop (0.6000) | ||
potential sponge body factors (0.0589) | potential catchment corridor (0.5000) | |
low-lying areas (0.5000) |
Ranks of Ecological Sensitivity | Range of Ecological Sensitivity Index |
---|---|
highest sensitivity area | ≥0.8996 |
higher sensitivity area | 0.6399–0.8996 |
moderate sensitivity area | 0.3802–0.6399 |
lower sensitivity area | 0.1206–0.3802 |
lowest sensitivity area | <0.1206 |
Ranks of Ecological Sensitive Areas | Area (km2) | Proportion (%) | Main Distribution |
---|---|---|---|
highest sensitivity area | 697.97 | 9.22 | Yellow River wetland areas, the protection zones of the South-to-North Water Diversion Project, and source protection zones. |
higher sensitivity area | 1135.33 | 15.00 | river systems and high mountainous covered with vegetation. |
moderate sensitivity area | 1363.30 | 18.02 | buffer zones around the river and hills covered with vegetation. 1 |
lower sensitivity area | 2968.31 | 39.21 | farmland. |
lowest sensitivity area | 1402.00 | 18.53 | construction land. |
Ranks of Ecological Sensitivity | Ecological Sensitive Zoning | Resistance Value |
---|---|---|
≥0.6399 | highest and higher sensitivity area | 0 |
0.5101–0.6399 | more moderate sensitivity area | 10 |
0.3802–0.5101 | less moderate sensitivity area | 20 |
0.2504–0.3802 | little lower sensitivity area | 30 |
0.1206–0.2504 | much lower sensitivity area | 40 |
<0.1206 | lowest sensitivity area | 50 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, R.; Zhang, X.; Li, H. Constructing the Ecological Security Pattern for Sponge City: A Case Study in Zhengzhou, China. Water 2019, 11, 284. https://doi.org/10.3390/w11020284
Dong R, Zhang X, Li H. Constructing the Ecological Security Pattern for Sponge City: A Case Study in Zhengzhou, China. Water. 2019; 11(2):284. https://doi.org/10.3390/w11020284
Chicago/Turabian StyleDong, Rencai, Xueqi Zhang, and Huanhuan Li. 2019. "Constructing the Ecological Security Pattern for Sponge City: A Case Study in Zhengzhou, China" Water 11, no. 2: 284. https://doi.org/10.3390/w11020284
APA StyleDong, R., Zhang, X., & Li, H. (2019). Constructing the Ecological Security Pattern for Sponge City: A Case Study in Zhengzhou, China. Water, 11(2), 284. https://doi.org/10.3390/w11020284