Modeling Two-Dimensional Infiltration with Constant and Time-Variable Water Depth
Abstract
:1. Introduction
2. Materials and Methods
2.1. Numerical Solution with Finite Element Method
2.2. Solution Domain Characteristics
2.3. Border Condition in the Furrow
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Richards, L.A. Capillary conduction of liquids through porous mediums. Physics 1931, 1, 318–333. [Google Scholar] [CrossRef]
- Liu, K.; Huang, G.; Xu, X.; Xiong, Y.; Huang, Q.; Šimůnek, J. A Coupled Model for Simulating Water Flow and Solute Transport in Furrow Irrigation. Agric. Water Manag. 2019, 213, 792–802. [Google Scholar] [CrossRef]
- Dong, Q.G.; Zhang, S.; Bai, M.; Xu, D.; Feng, H. Modeling the Effects of Spatial Variability of Irrigation Parameters on Border Irrigation Performance at a Field Scale. Water 2018, 10, 1770. [Google Scholar] [CrossRef]
- Duncan, S.J.; Daly, K.R.; Sweeney, P.; Roose, T. Mathematical modelling of water and solute movement in ridged versus flat planting systems. Eur. J. Soil Sci. 2018, 69, 967–979. [Google Scholar] [CrossRef]
- Fan, Y.; Huang, N.; Gong, J.; Shao, X.; Zhang, J.; Zhao, T. A Simplified Infiltration Model Predicting Cumulative Infiltration during Vertical Line Source Irrigation. Water 2018, 10, 89. [Google Scholar] [CrossRef]
- Brunetti, G.; Šimůnek, J.; Bautista, E. A Hybrid Finite Volume-Finite Element Model for the Numerical Analysis of Furrow Irrigation and Fertigation. Comput. Electron. Agric. 2018, 150, 312–327. [Google Scholar] [CrossRef]
- Furman, A. Modeling Coupled Surface–Subsurface Flow Processes: A Review. Vadose Zone J. 2008, 7, 741. [Google Scholar] [CrossRef]
- Banti, M.; Zissis, T.; Anastasiadou-Partheniou, E. Furrow Irrigation Advance Simulation using a Surface-Subsurface Interaction Model. J. Irrig. Drain. Eng. 2011, 137, 304–314. [Google Scholar] [CrossRef]
- Bautista, E.; Warrick, A.W.; Schlegel, J.L.; Thorp, K.R.; Hunsaker, D.J. Approximate furrow infiltration model for time-variable ponding depth. J. Irrig. Drain. Eng. 2016, 142, 04016045. [Google Scholar] [CrossRef]
- Bautista, E.; Warrick, A.W.; Strelkoff, T.S. New Results for an Approximate Method for Calculating Two-Dimensional Furrow Infiltration. J. Irrig. Drain. Eng. 2014, 140, 10. [Google Scholar] [CrossRef]
- Dong, Q.; Xu, D.; Zhang, S.; Meijian, B.; Yinong, L. A Hybrid Coupled Model of Surface and Subsurface Flow for Surface Irrigation. J. Hydrol. 2013, 500, 62–74. [Google Scholar] [CrossRef]
- Soroush, F.; Fenton, J.D.; Mostafazadeh-Fard, B.; Mousavi, S.F.; Abbasi, F. Simulation of furrow irrigation using the Slow-change/slow-flow equation. Agric. Water Manag. 2013, 116, 160–174. [Google Scholar] [CrossRef]
- Wöhling, T.; GSchmitz, H. Physically based coupled model simulating 1D surface-2D subsurface flow and plant water uptake in irrigation furrows. I. Model development. J. Irrig. Drain. Eng. 2007, 133, 6. [Google Scholar] [CrossRef]
- Wöhling, T.; Fröhner, A.; Schmitz, G.H.; Liedl, R. Efficient Solution of the Coupled One-Dimensional surface-Two Dimensional Subsurface flow during Furrow Irrigation Advance. J. Irrig. Drain. Eng. 2006, 132, 4. [Google Scholar] [CrossRef]
- Wöhling, T.; Singh, R.; Schmitz, G.H. Physically Based Modeling of Interacting Surface-Subsurface Flow during Furrow Irrigation Advance. J. Irrig. Drain. Eng. 2004, 130, 349–356. [Google Scholar]
- Saucedo, H.; Zavala, M.; Fuentes, C.; Castanedo, V. Optimal flow model for plot irrigation. Tecnología y Ciencias del Agua 2013, 4, 135–148. [Google Scholar]
- López Avendaño, J.E.; Palacios, O.L.; Fuentes, C.; Rendón, L.; García, N. Two-dimensional analysis infiltration in furrow irrigation. Agrociencias 1997, 31, 259–269. [Google Scholar]
- Fuentes, C.; Haverkamp, R.; Parlange, J.Y. Parameter constraints on closed–form soil-water relationships. J. Hydrol. 1992, 134, 117–142. [Google Scholar] [CrossRef]
- Fujita, H. The exact pattern of a concentration-dependent diffusion in a semi-infinite medium, part I. Text. Res. J. 1952, 22, 757–761. [Google Scholar] [CrossRef]
- Parlange, J.Y.; Lisle, I.; Braddock, R.D.; Smith, R.E. The three parameter infiltration equation. Soil Sci. 1982, 133, 337–341. [Google Scholar] [CrossRef]
- Van Genuchten, M.T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 1980, 44, 892–898. [Google Scholar] [CrossRef]
- Burdine, N.T. Relative permeability calculation from size distributions data. Trans. AIME 1953, 198, 171–199. [Google Scholar] [CrossRef]
- Brooks, R.H.; Corey, A.T. Hydraulic Properties of Porous Media; Colorado State University: Fort Collins, CO, USA, 1994. [Google Scholar]
- Noor, K.A.; Peters, J.M. Preconditioned Conjugate Gradient Technique for the analysis of symmetric structures. Int. J. Numer. Methods Eng. 1987, 24, 2057–2070. [Google Scholar] [CrossRef]
- Neumann, S.P. Saturated-unsaturated seepage by finite elements. J. Hydraul. Div. 1973, 12, 2233–2250. [Google Scholar]
- Mori, M. The Finite Element Method and Its Applications; Macmillan: New York, NY, USA, 1983. [Google Scholar]
- Rawls, W.J.; Brakensiek, D.L. Estimating Soil Water Retention from Soil Properties. Journal of Irrigation and Drainage. Div. Am. Soc. Civil Eng. 1982, 108, 166–171. [Google Scholar]
- Saucedo, H.; Fuentes, C.; Zavala, M. El sistema de ecuaciones de Saint-Venant y Richards del riego por gravedad: 3. Verificación numérica de la hipótesis del tiempo de contacto en el riego por melgas. Ingeniería Hidráulica en México 2006, 4, 135–143. [Google Scholar]
- Strelkoff, T.; Katopodes, N. Border irrigation hydraulics with zero inertia. J. Irrig. Drain. Div. 1977, 3, 325–342. [Google Scholar]
- Fuentes, C.; de León, B.; Saucedo, H.; Parlange, J.Y. Saint-Venant and Richards’ equations system of surface irrigation: The potential law of hydraulic resistance. Ingeniería Hidráulica en México 2004, 19, 65–77. [Google Scholar]
- Selker, J.S.; Steenhuis, T.S.; Parlange, J.Y. Wetting front instability in homogeneous Sandy soils under continuous infiltration. Soil Sci. Soc. Am. J. 1991, 56, 1346–1350. [Google Scholar] [CrossRef]
- Hendrickx, J.M.H.; Tzung-Mow, Y. Prediction of wetting front stability in dry field soils using soil and precipitation data. Geoderma 1996, 70, 265–280. [Google Scholar] [CrossRef]
- Šimůnek, J.; van Genuchten, M.T.; Šejna, M. HYDRUS Technical Manual 2.0. Available online: http://www.pc-progress.com/downloads/Pgm_Hydrus3D2/HYDRUS3D%20Technical%20Manual.pdf (accessed on 20 February 2019).
- Mualem, Y. A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour. Res. 1976, 12, 513–522. [Google Scholar] [CrossRef]
Mesh | Elements | Nodes | ||
---|---|---|---|---|
1 | 575 | 334 | 10.0 | 10.0 |
2 | 1401 | 764 | 5.0 | 5.0 |
3 | 8122 | 4197 | 2.0 | 2.0 |
4 | 32,014 | 16,272 | 1.0 | 1.0 |
5 | 127,732 | 64,387 | 0.5 | 0.5 |
Soil | ||||||
---|---|---|---|---|---|---|
Sandy loam | 0.0 | 0.450 | 9.52 | 1.390 × 10−4 | 0.1004 | 13.62 |
Silt loam | 0.0 | 0.525 | 29.35 | 0.0167 × 10−4 | 0.1165 | 12.01 |
Clay loam | 0.0 | 0.475 | 34.15 | 0.0042 × 10−4 | 0.0714 | 19.30 |
Soil | |||
---|---|---|---|
Sandy Loam | Silt Loam | Clay Loam | |
Qopt (lps/m) | 0.02476 | 0.00446 | 0.00088 |
Irrigation time (h) | 1.2 | 6.2 | 31.4 |
Normal water depth (border irrigation) (cm) | 2.42 | 0.98 | 0.50 |
Normal water depth (furrow irrigation) (cm) | 8.92 | 4.99 | 3.24 |
Soil | n (n > 1) | l | |||
---|---|---|---|---|---|
Sandy loam | 0.450 | 1.390 × 10−4 | 0.1004 | 1.1116 | 0.5 |
Silt loam | 0.525 | 0.0167 × 10−4 | 0.1165 | 1.1318 | 0.5 |
Clay loam | 0.475 | 0.0042 × 10−4 | 0.0714 | 1.0769 | 0.5 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castanedo, V.; Saucedo, H.; Fuentes, C. Modeling Two-Dimensional Infiltration with Constant and Time-Variable Water Depth. Water 2019, 11, 371. https://doi.org/10.3390/w11020371
Castanedo V, Saucedo H, Fuentes C. Modeling Two-Dimensional Infiltration with Constant and Time-Variable Water Depth. Water. 2019; 11(2):371. https://doi.org/10.3390/w11020371
Chicago/Turabian StyleCastanedo, Vladimir, Heber Saucedo, and Carlos Fuentes. 2019. "Modeling Two-Dimensional Infiltration with Constant and Time-Variable Water Depth" Water 11, no. 2: 371. https://doi.org/10.3390/w11020371
APA StyleCastanedo, V., Saucedo, H., & Fuentes, C. (2019). Modeling Two-Dimensional Infiltration with Constant and Time-Variable Water Depth. Water, 11(2), 371. https://doi.org/10.3390/w11020371