Influence of Pre-Hydrolysis on Sewage Treatment in an Up-Flow Anaerobic Sludge BLANKET (UASB) Reactor: A Review
Abstract
:1. Introduction
2. Sewage Treatment in High-Rate Anaerobic Systems
3. Sewage Treatment in a UASB Reactor
3.1. Sewage Treatment in a Single-Stage UASBR without Hydrolysis
3.1.1. Laboratory and Pilot-Scale Treatment
3.1.2. Full-Scale Treatment
3.2. Sewage Treatment in a Two-Phase UASBR with Hydrolysis
3.3. Kinetics of Anaerobic Digestion
4. Comparison of UASBRs with and without Pre-Hydrolysis Units
4.1. Suspended Solids Reduction
4.2. Removal of COD
4.3. Sludge Quality
5. Future Research Needs and Concluding Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Aiyuk, S.; Forrez, I.; Lieven, D.K.; van Haandel, A.; Verstraete, W. Anaerobic and complementary treatment of domestic sewage in regions with hot climates—A review. Bioresour. Technol. 2006, 97, 2225–2241. [Google Scholar] [CrossRef] [PubMed]
- Chan, Y.J.; Chong, M.F.; Law, C.L.; Hassell, D.G. A review on anaerobic-aerobic treatment of industrial and municipal wastewater. Chem. Eng. J. 2009, 155, 1–18. [Google Scholar] [CrossRef]
- Zeeman, G.; Lettinga, G. The role of anaerobic digestion of domestic sewage in closing the water and nutrient cycle at community level. Water Sci. Technol. 1999, 39, 187–194. [Google Scholar] [CrossRef]
- Mahmoud, N.; Zeeman, G.; Gijzen, H.; Lettinga, G. Anaerobic sewage treatment in a one-stage UASB reactor and a combined UASB-Digester system. Water Res. 2004, 38, 2347–2357. [Google Scholar] [CrossRef] [PubMed]
- Seghezzo, L.; Zeeman, G.; Van Lier, J.B.; Hamelers, H.V.M.; Lettinga, G. A review: The anaerobic treatment of sewage in UASB and EGSB reactors. In Bioresource Technology; Elsevier: Amsterdam, The Netherlands, 1998; Volume 65, pp. 175–190. ISBN 0960-8524. [Google Scholar]
- Chong, S.; Sen, T.K.; Kayaalp, A.; Ang, H.M. The performance enhancements of upflow anaerobic sludge blanket (UASB) reactors for domestic sludge treatment—A State-of-the-art review. Water Res. 2012, 46, 3434–3470. [Google Scholar] [CrossRef] [PubMed]
- Ekstrand, E.M.; Karlsson, M.; Truong, X.B.; Björn, A.; Karlsson, A.; Svensson, B.H.; Ejlertsson, J. High-rate anaerobic co-digestion of kraft mill fibre sludge and activated sludge by CSTRs with sludge recirculation. Waste Manag. 2016, 56, 166–172. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, M.K.; Guha, S.; Harendranath, C.S.; Tripathi, S. Influence of extrinsic factors on granulation in UASB reactor. Appl. Microbiol. Biotechnol. 2006, 71, 145–154. [Google Scholar] [CrossRef] [PubMed]
- Schellinkhout, A. UASB technology for sewage treatment: Experience with a full scale plant and its applicability in Egypt. Water Sci. Technol. 1993, 27, 173–180. [Google Scholar] [CrossRef]
- Lettinga, G.; De Man, A.; Van der Last, A.R.M.; Wiegant, W.; Van Knippenberg, K.; Frijns, J.; Van Buuren, J.C.L. Anaerobic treatment of domestic sewage and wastewater. Water Sci. Technol. 1993, 27, 67–73. [Google Scholar] [CrossRef]
- Seghezzo, L. Anaerobic Treatment of Domestic Wastewater in Subtropical Regions; Wageningen University: Wageningen, The Netherlands, 2004; Volume 58, ISBN 90-8504-029-9. [Google Scholar]
- Gomec, C.Y. High-rate anaerobic treatment of domestic wastewater at ambient operating temperatures: A review on benefits and drawbacks. J. Environ. Sci. Health Part. A Toxic/Hazard. Subst. Environ. Eng. 2010, 45, 1169–1184. [Google Scholar] [CrossRef]
- Yu, H.Q.; Fang, H.H.P.; Tay, J.H. Enhanced sludge granulation in upflow anaerobic sludge blanket (UASB) reactors by aluminum chloride. Chemosphere 2001, 44, 31–36. [Google Scholar] [CrossRef]
- Yu, H.Q.; Tay, J.H.; Fang, H.H.P. The roles of calcium in sludge granulation during UASB reactor start-up. Water Res. 2001, 35, 1052–1060. [Google Scholar] [CrossRef]
- Yu, H.Q.; Fang, H.H.; Tay, J.H. Effects of Fe2+ on sludge granulation in upflow anaerobic sludge blanket reactors. Water Sci. Technol. 2000, 41, 199–205. [Google Scholar] [CrossRef]
- Sondhi, A.; Guha, S.; Harendranath, C.S.; Singh, A. Effect of aluminum (Al3+) on granulation in upflow anaerobic sludge blanket reactor treating low-strength synthetic wastewater. Water Environ. Res. 2010, 82, 715–724. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, M.K.; Guha, S.; Harendranath, C.S.; Tripathi, S. Enhanced granulation by natural ionic polymer additives in UASB reactor treating low-strength wastewater. Water Res. 2005, 39, 3801–3810. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, M.K.; Guha, S.; Harendranath, C.S. Enhanced granulation in UASB reactor treating low-strength wastewater by natural polymers. Water Sci. Technol. 2004, 50, 235–240. [Google Scholar] [CrossRef]
- Wang, Y.; Show, K.Y.; Tay, J.H.; Sim, K.H. Effects of cationic polymer on start-up and granulation in upflow anaerobic sludge blanket reactors. J. Chem. Technol. Biotechnol. 2004, 79, 219–228. [Google Scholar] [CrossRef]
- Show, K.Y.; Wang, Y.; Foong, S.F.; Tay, J.H. Accelerated start-up and enhanced granulation in upflow anaerobic sludge blanket reactors. Water Res. 2004, 38, 2292–2303. [Google Scholar] [CrossRef]
- Mungray, A.K.; Patel, K. Coliforms removal in two UASB + ASP based systems. Int. Biodeterior. Biodegrad. 2011, 65, 23–28. [Google Scholar] [CrossRef]
- Cao, Y.S.; Ang, C.M. Coupled UASB-activated sludge process for COD and nitrogen removals in municipal sewage treatment in warm climate. Water Sci. Technol. 2009, 60, 2829–2839. [Google Scholar] [CrossRef]
- Moawad, A.; Mahmoud, U.F.; El-Khateeb, M.A.; El-Molla, E. Coupling of sequencing batch reactor and UASB reactor for domestic wastewater treatment. Desalination 2009, 242, 325–335. [Google Scholar] [CrossRef]
- Guimaraes, P.; Melo, H.N.S.; Cavalcanti, P.F.F.; van Haandel, A.C. Anaerobic-Aerobic Sewage Treatment Using the Combination UASB-SBR Activated Sludge. J. Environ. Sci. Health 2003, 38, 2633–2641. [Google Scholar] [CrossRef]
- Aiyuk, S.; Amoako, J.; Raskin, L.; Van Haandel, A.; Verstraete, W. Removal of carbon and nutrients from domestic wastewater using a low investment, integrated treatment concept. Water Res. 2004, 38, 3031–3042. [Google Scholar] [CrossRef] [PubMed]
- Kalogo, Y.; Verstraete, W. Development of anaerobic sludge bed (ASB) reactor technologies for domestic wastewater treatment: Motives and perspectives. World J. Microbiol. Biotechnol. 1999, 15, 523–534. [Google Scholar] [CrossRef]
- Leitão, R.C.; Van Haandel, A.C.; Zeeman, G.; Lettinga, G. The effects of operational and environmental variations on anaerobic wastewater treatment systems: A review. Bioresour. Technol. 2006, 97, 1105–1118. [Google Scholar] [CrossRef] [PubMed]
- Halalsheh, M.; Koppes, J.; Den Elzen, J.; Zeeman, G.; Fayyad, M.; Lettinga, G. Effect of SRT and temperature on biological conversions and the related scum-forming potential. Water Res. 2005, 39, 2475–2482. [Google Scholar] [CrossRef] [PubMed]
- Lew, B.; Tarre, S.; Belavski, M.; Green, M. UASB reactor for domestic wastewater treatment at low temperatures: A comparison between a classical UASB and hybrid UASB-filter reactor. Water Sci. Technol. 2004, 49, 295–301. [Google Scholar] [CrossRef]
- Lew, B.; Lustig, I.; Beliavski, M.; Tarre, S.; Green, M. An integrated UASB-sludge digester system for raw domestic wastewater treatment in temperate climates. Bioresour. Technol. 2011, 102, 4921–4924. [Google Scholar] [CrossRef]
- Agrawal, L.K.; Harada, H.; Okui, H. Treatment of dilute wastewater in a UASB reactor at a moderate temperature: Performance aspects. J. Ferment. Bioeng. 1997, 83, 179–184. [Google Scholar] [CrossRef]
- Wang, K. Integrated Anaerobic and Aerobic Treatment of Sewage; Wageningen Agricultural University: Wageningen, The Netherlands, 1994; Volume 90, ISBN 90-5485-232-1. [Google Scholar]
- Corstanje, R. The Anaerobic Digestion of Waste Activated Sludge in a Anaerobic Upflow Solids Removal Reactor Coupled to an Upflow Sludge Digester. Master’s Thesis, Wageningen Agricultural University, Wageningen, The Netherlands, 1996. [Google Scholar]
- Lettinga, G.; Rebac, S.; Zeeman, G. Challenge of psychrophilic anaerobic wastewater treatment. Trends Biotechnol. 2001, 19, 363–370. [Google Scholar] [CrossRef]
- Kujawa-Roeleveld, K.; Zeeman, G. Anaerobic treatment in decentralised and source-separation-based sanitation concepts. Rev. Environ. Sci. Biotechnol. 2006, 5, 115–139. [Google Scholar] [CrossRef]
- Schink, B. Anaerobic digestion: concepts, limits and perspectives. Water Sci. Technol. 2002, 45, 1–8. [Google Scholar] [CrossRef]
- Bajpai, P. Anaerobic Technology in Pulp and Paper Industry; Springer: Berlin/Heidelberg, Germany, 2017; ISBN 978-981-10-4129-7. [Google Scholar]
- Dos Santos, A.B.; Cervantes, F.J.; van Lier, J.B. Review paper on current technologies for decolourisation of textile wastewaters: Perspectives for anaerobic biotechnology. Bioresour. Technol. 2007, 98, 2369–2385. [Google Scholar] [CrossRef] [PubMed]
- Mao, C.; Feng, Y.; Wang, X.; Ren, G. Review on research achievements of biogas from anaerobic digestion. Renew. Sustain. Energy Rev. 2015, 45, 540–555. [Google Scholar] [CrossRef]
- Angenent, L.T.; Karim, K.; Al-Dahhan, M.H.; Wrenn, B.A.; Domíguez-Espinosa, R. Production of bioenergy and biochemicals from industrial and agricultural wastewater. Trends Biotechnol. 2004, 22, 477–485. [Google Scholar] [CrossRef]
- Gallert, C.; Winter, J. Bacterial Metabolism in Wastewater Treatment Systems. In Environmental Biotechnology Concepts and Applications; Jördening, H.-J., Winter, J., Eds.; WILEY-VCH Verlag GmbH & Co.: Weinheim, Germany, 2005; pp. 1–41. ISBN 3-527-30585-8. [Google Scholar]
- Khanal, S.K. Anaerobic Biotechnology for Bioenergy Production: Principles and Applications; Wiley-Blackwell, John Wiley & Sons, Ltd.: West Sussex, UK, 2008. [Google Scholar]
- Hutñan, M.; Drtil, M.; Derco, J.; Mrafková, L. Methanogenic and Nonmethanogenic Activity of Granulated Sludge in Anaerobic Baffled Reactor. Chem. Pap. 1999, 53, 374–378. [Google Scholar]
- Young, J.C.; McCarty, P.L. The anaerobic filter for waste treatment. J. Water Pollut. Control Fed. 1969, 41. [Google Scholar] [CrossRef]
- Lettinga, G.; van Velsen, A.F.M.; Hobma, S.W.; de Zeeuw, W.; Klapwijk, A. Use of the upflow sludge blanket (USB) reactor concept for biological wastewater treatment, especially for anaerobic treatment. Biotechnol. Bioeng. 1980, 22, 699–734. [Google Scholar] [CrossRef]
- Switzenbaum, M.S.; Jewell, W.J. Anaerobic attached-film expanded-bed reactor treatment. J. Water Pollut. Control Fed. 1980, 52, 1953–1965. [Google Scholar]
- Murray, W.D.; Berg, L.V.D. Effect of Support Material on the Development of Microbial Fixed Films Converting Acetic Acid to Methane. J. Appl. Bacteriol. 1981, 51, 257–265. [Google Scholar] [CrossRef]
- Barber, W.P.; Stuckey, D.C. The use of the anaerobic baffled reactor (ABR) for wastewater treatment: A review. Water Res. 1999, 33, 1559–1578. [Google Scholar] [CrossRef]
- De Man, A.W.A.; van der Last, A.R.M.; Lettinga, G. The use of EGSB and UASB anaerobic systems or low strength soluble and complex wastewaters at temperatures ranging from 8 to 30 °C. In Proceedings of the 5th International Symposium on Anaerobic Digestion; Hall, E.R., Hobson, P.N., Eds.; Monduzzi Bologna: Milano, Italy, 1988; pp. 197–208. [Google Scholar]
- Bogte, J.J.; Breure, A.M.; Van Andel, J.G.; Lettinga, G. Anaerobic treatment of domestic wastewater in small scale UASB reactors. Water Sci. Technol. 1993, 27, 75–82. [Google Scholar] [CrossRef]
- Van Lier, J.B. Thermophilic Anaerobic Wastewater Treatment: Temperature Aspects and Process Stability; Wageningen University: Wageningen, The Netherlands, 1995; ISBN 90-5485-436-7. [Google Scholar]
- Mortezaei, Y.; Amani, T.; Elyasi, S. High-rate anaerobic digestion of yogurt wastewater in a hybrid EGSB and fixed-bed reactor: Optimizing through response surface methodology. Process Saf. Environ. Prot. 2018, 113, 255–263. [Google Scholar] [CrossRef]
- Mockaitis, G.; Pantoja, J.L.R.; Rodrigues, J.A.D.; Foresti, E.; Zaiat, M. Continuous anaerobic bioreactor with a fixed-structure bed (ABFSB) for wastewater treatment with low solids and low applied organic loading content. Bioprocess Biosyst. Eng. 2014, 37, 1361–1368. [Google Scholar] [CrossRef] [PubMed]
- Elmitwalli, T.A.; Oahn, K.L.T.; Zeeman, G.; Lettinga, G. Treatment of domestic sewage in a two-step anaerobic filter/anaerobic hybrid system at low temperature. Water Res. 2002, 36, 2225–2232. [Google Scholar] [CrossRef]
- Bodkhe, S.Y. A modified anaerobic baffled reactor for municipal wastewater treatment. J. Environ. Manag. 2009, 90, 2488–2493. [Google Scholar] [CrossRef] [PubMed]
- Hickey, R.F.; Wu, W.M.; Veiga, M.C.; Jones, R. Start-up, operation, monitoring and control of high-rate anaerobic treatment systems. Water Sci. Technol. 1991, 24, 207–255. [Google Scholar] [CrossRef]
- Van der Last, A.R.M.; Lettinga, G. Anaerobic treatment of domestic sewage under moderate climatic (Dutch) conditions using upflow reactors at increased superficial velocities. Water Sci. Technol. 1992, 25, 167–178. [Google Scholar] [CrossRef]
- Lettinga, G.; Hulshoff Pol, L. UASB-Process design for various types of wastewates. Water Sci. Technol. 1991, 24, 87–107. [Google Scholar] [CrossRef]
- Van Haandel, A.; Kato, M.T.; Cavalcanti, P.F.F.; Florencio, L. Anaerobic Reactor Design Concepts for the Treatment of Domestic Wastewater. Rev. Environ. Sci. Biotechnol. 2006, 5, 21–38. [Google Scholar] [CrossRef]
- Sabry, T. Application of the UASB inoculated with flocculent and granular sludge in treating sewage at different hydraulic shock loads. Bioresour. Technol. 2008, 99, 4073–4077. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elmitwalli, T.A. Anaerobic Treatment of Domestic Sewage at Low Temperature; Wageningen University: Wageningen, The Netherlands, 2000; ISBN 90-5808-277-6. [Google Scholar]
- Verstraete, W.; Vandevivere, P. New and broader applications of anaerobic digestion. Crit. Rev. Environ. Sci. Technol. 1999, 29, 151–173. [Google Scholar]
- Van Haandel, A.C.; Lettinga, G. Anaerobic Sewage Treatment: A Practical Guide for Regions with a Hot Climate; John Wiley and Sons Ltd.: Chichester, UK, 1994; ISBN 0471951218. [Google Scholar]
- Rebac, S. Psychrophilic Anaerobic Treatment of Low Strength Wastewater; Wageningen Agricultural University: Wageningen, The Netherlands, 1998; ISBN 90-5485-943-1. [Google Scholar]
- Seghezzo, L.; Cuevas, C.M.; Trupiano, A.P.; Guerra, R.G.; González, S.M.; Zeeman, G.; Lettinga, G. Stability and activity of anaerobic sludge from UASB reactors treating sewage in subtropical regions. Water Sci. Technol. 2006, 54, 223–229. [Google Scholar] [CrossRef]
- Lettinga, G. Anaerobic digestion and wastewater treatment systems. Antonie Van Leeuwenhoek 1995, 67, 3–28. [Google Scholar] [CrossRef] [PubMed]
- Lettinga, G.; Roersma, R.; Grin, P.; de Zeeuw, W.; Pol, H.L.; van Velsen, L.; Hobma, S.; Zeeman, G. Anaerobic treatment of sewage and low strength wastewaters. In Proceedings of the 2nd International Symposium on Anaerobic Digestion, Travemünde, Germany, 6–11 September 1981; pp. 271–291. [Google Scholar]
- Technologien, N.; Wirtschaftsberatung, B. Anaerobic Treatment of Municipal Wastewater in UASB—Reactors; TBW GmbH: Frankfurt, Germany, 2001. [Google Scholar]
- Kooijmans, J.L.; Lettinga, G.; Passa, G.R. The UASB-process for domestic wastewater treatment in developing countries. J. Inst. Water Eng. Sci. 1985, 39, 437–451. [Google Scholar]
- Vieira, S.M.M.; Souza, M.E. Development of Technology for the Use of the Uasb Reactor in Domestic Sewage Treatment. Water Sci. Technol. 1987, 18, 109–121. [Google Scholar] [CrossRef]
- Schellinkhout, A.; Collazos, C.J. Full-scale application of the UASB technology for sewage treatment. Water Sci. Technol. 1992, 25, 159–166. [Google Scholar] [CrossRef]
- Draaijer, H.; Maas, J.A.W.; Schaapman, J.E.; Khan, A. Performance of the 5 MLD UASB Reactor for Sewage Treatment at Kanpur, India. Water Sci. Technol. 1992, 25, 123–133. [Google Scholar] [CrossRef]
- Khalil, N.; Sinha, R.; Raghava, A.K.; Mittal, A.K. UASB Technology for Sewage Treatment in India: Experience, Economic Evaluation and its Potential in Other Developing Countries. In Proceedings of the Twelfth International Water Technology Conference 2008, Alexandria, Egypt, 27–30 March 2008. [Google Scholar]
- Pandey, N.; Dubey, S.K. Up-flow Anaerobic Sludge Bed (UASB) based sewage treatment plant (STP) at Mirzapur: A Review. Int. Res. J. Environ. Sci. 2014, 3, 67–71. [Google Scholar]
- Heffernan, B.; Van Lier, J.B.; Van Der Lubbe, J. Performance review of large scale up-flow anaerobic sludge blanket sewage treatment plants. Water Sci. Technol. 2011, 63, 100–107. [Google Scholar] [CrossRef]
- Prashanth, S. Treatment of Sewage Using UASB Process; Indian Institute of Technology: Roorkee, India, 2003. [Google Scholar]
- Mahmoud, N.J.A. Anaerobic Pre-Treatment of Sewage under Low Temperature (15 °C) Conditions in an Integrated UASB-Digester System; Wageningen University: Wageningen, The Netherlands, 2002. [Google Scholar]
- Uemura, S.; Harada, H. Treatment of sewage by a UASB reactor under moderate to low temperature conditions. Bioresour. Technol. 2000, 72, 275–282. [Google Scholar] [CrossRef]
- Prashanth, S.; Kumar, P.; Mehrotra, I. Anaerobic Degradability: Effect of Particulate COD. J. Environ. Eng. 2006, 132, 488–496. [Google Scholar] [CrossRef]
- Singh, K.S.; Viraraghavan, T. Start-up and operation of UASB reactors at 20 C for municipal wastewater treatment. J. Ferment. Bioeng. 1998, 85, 609–614. [Google Scholar] [CrossRef]
- Ruiz, I.; Soto, M.; Veiga, M.C.; Ligero, P.; Vega, A.; Blazquez, R. Performance of and biomass characterisation in a UASB reactor treating domestic waste water at ambient temperature. Water SA 1998, 24, 215–222. [Google Scholar]
- Bodik, I.; Herdova, B.; Drtil, M. Anaerobic treatment of the municipal wastewater under psychrophilic conditions. Bioprocess Eng. 2000, 22, 385–390. [Google Scholar] [CrossRef]
- Gomec, C.; Letsiou, I.; Ozturk, I.; Eroglu, V.; Wilderer, P. Identification of Archaeal population in the granular sludge of an UASB reactor treating sewage at low temperatures. J. Environ. Sci. Health Part A Toxic/Hazard. Subst. Environ. Eng. 2008, 43, 1504–1510. [Google Scholar] [CrossRef]
- Lettinga, G.; Roersma, R.; Grin, P. Anaerobic treatment of raw domestic sewage at ambient temperatures using a granular bed UASB reactor. Biotechnol. Bioeng. 1983, 27, 1701–1723. [Google Scholar] [CrossRef]
- De Man, A.W.A.; Grin, P.C.; Roersma, R.E.; Grolle, K.C.F.; Lettinga, G. Anaerobic treatment of municipal wastewater at low temperatures. In Proceedings of the Aquatech’86 Conference—Anaerobic Treatment, Amsterdam, The Netherlands, 15–19 September1986; pp. 453–466. [Google Scholar]
- Singh, K.S.; Harada, H.; Viraraghavan, T. Low-strength wastewater treatment by a UASB reactor. Bioresour. Technol. 1996, 55, 187–194. [Google Scholar] [CrossRef]
- Leitao, R.C.; Silva-Filho, J.A.; Sanders, W.; van Haandel, A.C.; Zeeman, G.; Lettinga, G. The effect of operational conditions on the performance of UASB reactors for domestic wastewater treatment. Water Sci. Technol. 2005, 52, 299–305. [Google Scholar] [CrossRef]
- Mahmoud, N. High strength sewage treatment in a UASB reactor and an integrated UASB-digester system. Bioresour. Technol. 2008, 99, 7531–7538. [Google Scholar] [CrossRef]
- Halalsheh, M.M.; Abu Rumman, Z.M.; Field, J.A. Anaerobic wastewater treatment of concentrated sewage using a two-stage upflow anaerobic sludge blanket-anaerobic filter system. J. Environ. Sci. Health Part. A Toxic/Hazard. Subst. Environ. Eng. 2010, 45, 383–388. [Google Scholar] [CrossRef]
- Lettinga, G.; DeMan, A.; Grin, P.; Hulshoff Pol, L.W. Anaerobic wastewater treatment as an appropriate technology for developing countries. Trib. Cebedeau 1987, 40, 21–32. [Google Scholar]
- Vieira, S.M.M.; Garcia, A.D., Jr. Results and Recommendations for Design and Utilization. Water Sci. Technol. 1992, 25, 143–157. [Google Scholar] [CrossRef]
- Vieira, S.M.M.; Carvalho, J.L.; Barijan, F.P.O.; Rech, C.M. Application of the UASB technology for sewage treatment in a small community at Sumare, Sao Paulo State. Water Sci. Technol. 1994, 30, 203–210. [Google Scholar] [CrossRef]
- Monroy, O.; Fama, G.; Meraz, M.; Montoya, L.; Macarie, H. Anaerobic digestion for wastewater treatment in Mexico: State of the technology. Water Res. 2000, 34, 1803–1816. [Google Scholar] [CrossRef]
- Halalsheh, M.; Sawajneh, Z.; Zu’bi, M.; Zeeman, G.; Lier, J.; Fayyad, M.; Lettinga, G. Treatment of strong domestic sewage in a 96 m3 UASB reactor operated at ambient temperatures: two-stage versus single-stage reactor. Bioresour. Technol. 2005, 96, 577–585. [Google Scholar] [CrossRef]
- Walia, R.; Kumar, P.; Mehrotra, I. Performance of UASB based sewage treatment plant in India: Polishing by diffusers an alternative. Water Sci. Technol. 2011, 63, 680–688. [Google Scholar] [CrossRef]
- Fan, L.T.; Erickson, L.E.; Baltes, J.C.; Shah, P.S. Analysis and Optimization of Two-stage Digestion. Water Pollut. Control Fed. 2000, 45, 35–52. [Google Scholar]
- Ghosh, S. Pilot-scale demonstration of two-phase anaerobic digestion of activated sludge. Water Sci. Technol. 1991, 23, 1179–1188. [Google Scholar] [CrossRef]
- Beccari, M.; Bonemazzi, F.; Majone, M.; Riccardi, C. Interaction between acidogenesis and methanogenesis in the anaerobic treatment of olive oil mill effluents. Water Res. 1996, 30, 183–189. [Google Scholar] [CrossRef]
- Zeeman, G.; Sanders, W.T.M.; Wang, K.Y.; Lettinga, G. Anaerobic treatment of complex wastewater and waste activated sludge—Application of an upflow anaerobic solid removal (UASR) reactor for the removal and pre-hydrolysis of suspended COD. Water Sci. Technol. 1997, 35, 121–128. [Google Scholar] [CrossRef]
- Noike, T.; Endo, G.; Chang, J.-E.; Yaguchi, J.-I.; Matsumoto, J.-I. Characteristics of carbohydrate degradation and the rate-limiting step in anaerobic digestion. Biotechnol. Bioeng. 1985, 27, 1482–1489. [Google Scholar] [CrossRef] [PubMed]
- GonCalves, R.F.; Charlier, A.C.; Sammut, F. Primary fermentation of soluble and particulate organic matter for wastewater treatment. Water Sci. Technol. 1994, 30, 53–62. [Google Scholar] [CrossRef]
- Ligero, P.; De Vega, A.; Soto, M. Influence of HRT (hydraulic retention time) and SRT (solid retention time) on the hydrolytic pre-treatment of urban wastewater. Water Sci. Technol. 2001, 44, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.-Y.; Ouyang, C.-F. Up-flow Anaerobic Sludge Digestion in a Phase Separation System. Water Sci. Technol. 1993, 28, 133–138. [Google Scholar] [CrossRef]
- Pascual, A.; de la Varga, D.; Arias, C.A.; Van Oirschot, D.; Kilian, R.; Álvarez, J.A.; Soto, M. Hydrolytic anaerobic reactor and aerated constructed wetland systems for municipal wastewater treatment—HIGHWET project. Environ. Technol. 2017, 38, 209–219. [Google Scholar] [CrossRef]
- Álvarez, J.A.; Zapico, C.A.; Gómez, M.; Presas, J.; Soto, M. Anaerobic hydrolysis of a municipal wastewater in a pilot-scale digester. Water Sci. Technol. 2003, 47, 223–230. [Google Scholar] [CrossRef]
- Miron, Y.; Zeeman, G.; Van Lier, J.B.; Lettinga, G. The role of sludge retention time in the hydrolysis and acidification of lipids, carbohydrates and proteins during digestion of primary sludge in CSTR systems. Water Res. 2000, 34, 1705–1713. [Google Scholar] [CrossRef]
- Ligero, P.; Vega, A.; Soto, M. Pretreatment of urban wastewaters in a hydrolytic upflow digester. Water SA 2001, 27, 399–404. [Google Scholar] [CrossRef]
- Ligero, P.; Soto, M. Sludge granulation during anaerobic treatment of pre-hydrolysed domestic wastewater. Water SA 2002, 28, 307–311. [Google Scholar] [CrossRef]
- Barajas, M.G.; Escalas, A.; Mujeriego, R. Fermentation of a low VFA wastewater in an activated primary tank. Water SA 2002, 28, 89–98. [Google Scholar] [CrossRef]
- Speece, R.E. Anaerobic biotechnology for industrial wastewater treatment. Environ. Sci. Technol. 1983, 17, 416–427. [Google Scholar] [CrossRef] [PubMed]
- Bal, A.S.; Dhagat, N.N. Upflow anaerobic sludge blanket Reactor—A review. Indian J. Environ. Health 2001, 43, 1–82. [Google Scholar] [PubMed]
- McInerney, M.J. Anaerobic hydrolysis and fermentation of fats and proteins. In Biology of Anaerobic Microorganisms; Zehnder, A.J.B., Ed.; Wiley: New York, NY, USA, 1988; pp. 373–415. ISBN 0471882267. [Google Scholar]
- Henze, M.; Harremoes, P.; Cour Jansen, J.I.; Arvin, E. Wastewater Treatment Biological and Chemical Processes, 2nd ed.; Springer-Verlag: Berlin/Heidelberg, Germany, 1997; ISBN 978-3-662-22607-0. [Google Scholar]
- Castillo, A.; Llabres, P.; Mata-Alvarez, J. A kinetic study of a combined anaerobic-aerobic system for treatment of domestic sewage. Water Res. 1999, 33, 1742–1747. [Google Scholar] [CrossRef]
- Vavilin, V.A.; Rytov, S.V.; Lokshina, L.Y. A description of hydrolysis kinetics in anaerobic degradation of particulate organic matter. Bioresour. Technol. 1996, 56, 229–237. [Google Scholar] [CrossRef]
- Vavilin, V.A.; Rytov, S.V.; Lokshina, L.Y. Two-phase model of hydrolysis kinetics and its applications to anaerobic degradation of particulate organic matter. Appl. Biochem. Biotechnol. 1997, 63–65, 45–57. [Google Scholar] [CrossRef] [PubMed]
- Vavilin, V.A.; Fernandez, B.; Palatsi, J.; Flotats, X. Hydrolysis kinetics in anaerobic degradation of particulate organic material: An overview. Waste Manag. 2008, 28, 939–951. [Google Scholar] [CrossRef]
- Siegrist, H.; Renggli, D.; Gujer, W. Mathematical modeling of anaerobic mesophilic sewage sludge treatment. In Proceedings of the International Symposium on Anaerobic Digestion of Solid Waste, Venice, Italy, 14–17 April 1992; pp. 51–64. [Google Scholar]
- Batstone, D.J.; Keller, J.; Angelidaki, I.; Kalyuzhnyi, S.V.; Pavlostathis, S.G.; Rozzi, A.; Sanders, W.T.M.; Siegrist, H.; Vavilin, V.A. The IWA Anaerobic Digestion Model No 1 (ADM1). Water Sci. Technol. 2002, 45, 65–73. [Google Scholar] [CrossRef] [Green Version]
- Shang, Y.; Johnson, B.R.; Sieger, R. Application of the IWA Anaerobic Digestion Model (ADM1) for simulating full-scale anaerobic sewage sludge digestion. Water Sci. Technol. 2005, 52, 487–492. [Google Scholar] [CrossRef]
- Maharaj, B.C.; Mattei, M.R.; Frunzo, L.; van Hullebusch, E.D.; Esposito, G. ADM1 based mathematical model of trace element precipitation/dissolution in anaerobic digestion processes. Bioresour. Technol. 2018, 267, 666–676. [Google Scholar] [CrossRef]
- Uhlenhut, F.; Schlüter, K.; Gallert, C. Wet biowaste digestion: ADM1 model improvement by implementation of known genera and activity of propionate oxidizing bacteria. Water Res. 2018, 129, 384–393. [Google Scholar] [CrossRef] [PubMed]
- Spyridonidis, A.; Skamagkis, T.; Lambropoulos, L.; Stamatelatou, K. Modeling of anaerobic digestion of slaughterhouse wastes after thermal treatment using ADM1. J. Environ. Manag. 2018, 224, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Charnier, C.; Latrille, E.; Jimenez, J.; Torrijos, M.; Sousbie, P.; Miroux, J.; Steyer, J.P. Fast ADM1 implementation for the optimization of feeding strategy using near infrared spectroscopy. Water Res. 2017, 122, 27–35. [Google Scholar] [CrossRef]
- Ramirez, I.; Mottet, A.; Carrère, H.; Déléris, S.; Vedrenne, F.; Steyer, J.P. Modified ADM1 disintegration/hydrolysis structures for modeling batch thermophilic anaerobic digestion of thermally pretreated waste activated sludge. Water Res. 2009, 43, 3479–3492. [Google Scholar] [CrossRef] [PubMed]
- Ozgun, H. Anaerobic Digestion Model No. 1 (ADM1) for mathematical modeling of full-scale sludge digester performance in a municipal wastewater treatment plant. Biodegradation 2018, 4. [Google Scholar] [CrossRef] [PubMed]
- Sayed, S.K.I.; Fergala, M.A.A. Two-stage UASB concept for treatment of domestic sewage including sludge stabilization process. Water Sci. Technol. 1995, 32, 55–63. [Google Scholar] [CrossRef]
- Wang, K.; van der Last, A.R.M.; Lettinga, G. The hydrolysis upflow sludge bed (HUSB) and the expanded granular sludge blanket (EGSB) reactors process for sewage treatment. In Proceedings of the 8th International Conference on Anaerobic Digestion, Sendai, Japan, 1997; pp. 301–304. [Google Scholar]
- Foresti, E.; Zaiat, M.; Vallero, M. Anaerobic processes as the core technology for sustainable domestic wastewater treatment: Consolidated applications, new trends, perspectives, and challenges. Rev. Environ. Sci. Biotechnol. 2006, 5, 3–19. [Google Scholar] [CrossRef]
- Ma, S.; Ma, H.J.; Hu, H.D.; Ren, H.Q. Effect of mixing intensity on hydrolysis and acidification of sewage sludge in two-stage anaerobic digestion: Characteristics of dissolved organic matter and the key microorganisms. Water Res. 2019, 148, 359–367. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Dong, B.; Dai, X. Hydrolysis and acidification of dewatered sludge under mesophilic, thermophilic and extreme thermophilic conditions: Effect of pH. Bioresour. Technol. 2013, 148, 461–466. [Google Scholar] [CrossRef]
- Zhang, D.; Jiang, H.; Chang, J.; Sun, J.; Tu, W.; Wang, H. Effect of thermal hydrolysis pretreatment on volatile fatty acids production in sludge acidification and subsequent polyhydroxyalkanoates production. Bioresour. Technol. 2019, 279, 92–100. [Google Scholar] [CrossRef]
- Stazi, V.; Tomei, M.C. Enhancing anaerobic treatment of domestic wastewater: State of the art, innovative technologies and future perspectives. Sci. Total Environ. 2018, 635, 78–91. [Google Scholar] [CrossRef]
- Chen, Y.; Jiang, X.; Xiao, K.; Shen, N.; Zeng, R.J.; Zhou, Y. Enhanced volatile fatty acids (VFAs) production in a thermophilic fermenter with stepwise pH increase—Investigation on dissolved organic matter transformation and microbial community shift. Water Res. 2017, 112, 261–268. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Han, P.; Liu, H.; Zhou, G.; Fu, B.; Zheng, Z. Full-scale production of VFAs from sewage sludge by anaerobic alkaline fermentation to improve biological nutrients removal in domestic wastewater. Bioresour. Technol. 2018, 260, 105–114. [Google Scholar] [CrossRef]
- Vanwonterghem, I.; Jensen, P.D.; Ho, D.P.; Batstone, D.J.; Tyson, G.W. Linking microbial community structure, interactions and function in anaerobic digesters using new molecular techniques. Curr. Opin. Biotechnol. 2014, 27, 55–64. [Google Scholar] [CrossRef]
- Vanwonterghem, I.; Jensen, P.D.; Rabaey, K.; Tyson, G.W. Genome-centric resolution of microbial diversity, metabolism and interactions in anaerobic digestion. Environ. Microbiol. 2016, 18, 3144–3158. [Google Scholar] [CrossRef] [Green Version]
- Jang, H.M.; Kim, J.H.; Ha, J.H.; Park, J.M. Bacterial and methanogenic archaeal communities during the single-stage anaerobic digestion of high-strength food wastewater. Bioresour. Technol. 2014, 165, 174–182. [Google Scholar] [CrossRef] [PubMed]
- Narihiro, T.; Sekiguchi, Y. Microbial communities in anaerobic digestion processes for waste and wastewater treatment: A microbiological update. Curr. Opin. Biotechnol. 2007, 18, 273–278. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Yu, K.; Xia, Y.; Lau, F.T.K.; Tang, D.T.W.; Fung, W.C.; Fang, H.H.P.; Zhang, T. Metagenomic analysis of sludge from full-scale anaerobic digesters operated in municipal wastewater treatment plants. Appl. Microbiol. Biotechnol. 2014, 98, 5709–5718. [Google Scholar] [CrossRef]
Inocula | Influent Characteristics | OLR (kg COD/m3 day) | HRT (h) | Temperature (°C) | % Removed | Methane (CH4) Collection (L/g COD Removed) | Remarks | References | ||
---|---|---|---|---|---|---|---|---|---|---|
CODT | CODS | CODT | SS | |||||||
Digested sludge | 350–500 | 150–300 | --- | 48–10 | 20 | 60–75 | 86 | 0.21–0.26 |
| [80] |
Inoculum mix obtained from anaerobic digesters treating primary and activated sludge, fish canning and sugar wastewaters. | 693 | 322 | Increased to 3 | 24–5 | --- | 85 (at 24h HRT) 53 (at 5h HRT) | 89 (at 24h HRT) 63 (at 5h HRT) | --- |
| [81] |
Granular Sludge | 312 ± 73.2 | 114 ± 30.4 | 1.6 | 4.7 | 13–25 | 69.4 | --- | 0.16–0.26 |
| [78] |
Granular sludge | 456 ± 129 | 112 ± 34 | --- | 8 | 13 | 67 ± 18 | --- | 0.25 ± 0.04 |
| [61] |
Anaerobically digested municipal sludge | 310 | --- | --- | 12 | 15 | 48 | 44 | --- |
| [82] |
310 | --- | --- | 12 | 9 | 37 | 38 | --- | |||
Granular sludge | 600 ± 50 | 170 ± 40 | 1–2 | 4.8–10 | 33 | 84 | --- | 0.29 |
| [25] |
Flocculent sludge from municipal anaerobic digester | 700–1000 | 50–70% of CODT | --- | 15 | 25 ± 1 | 76 ± 10 | --- | --- |
| [60] |
10 | 79 ± 4 | |||||||||
8 | 83 ± 7 | |||||||||
6 | 92 ± 5 | |||||||||
4 | 89 ± 4 | |||||||||
Granular sludge from UASBR treating brewery wastewater | --- | 15 | 81 ± 11 | --- | --- | |||||
10 | 84 ± 14 | |||||||||
8 | 86 ± 8 | |||||||||
6 | 91 ± 4 | |||||||||
4 | 87 ± 3 | |||||||||
Granular sludge treating alcohol distillery wastewater | 165–270 | --- | 0.7 | 7.5 | 13 ± 2 | 24–54 | --- | --- |
| [83] |
Inocula | Influent Characteristics | OLR (kg-COD/m3 day) | HRT (h) | Temperature (°C) | % Removed | Methane (CH4) Collection (L/g COD Removed) | Remarks | References | ||
---|---|---|---|---|---|---|---|---|---|---|
CODT | CODS | CODT | SS | |||||||
Sugar beet cultivated sludge | 117–1253 | 69–666 | --- | --- | 9–19.5 | 65–89 | --- | 0.085–0.32 |
| [84] |
Granular Sludge | 100–900 | --- | --- | 9–16 | 10–18 | 46–60 | --- | --- |
| [85] |
Flocculent Sludge | 406–424 | --- | --- | 4 | 20–23 | 60–65 | 69 | 0.10–0.12 |
| [70] |
Digested sludge from an anaerobic digester treating sewage | 500 (For 200 day) 300 (For 60 day) | --- | 3 | 4 | 20–35 | 83–88 | --- | 0.141 |
| [86] |
4 | 3 | |||||||||
2 | 6 | |||||||||
1.2 | 6 | |||||||||
Flocculent sludge from a pilot scale UASBR treating domestic sewage. Digested primary sludge from a wastewater treatment plant. | 721 (UASBR) 460 (UASB-digester system) | --- | 2.88 ± 0.69 (one-stage UASBR) 1.84 ± 0.49 (two-stage UASBR) | 6 (UASBR) 21.2 ± 1.5 days (CSTR) | 15 (UASBR) 35 (CSTR) | 44 ± 9 (UASBR) 66 ± 6 (UASBR) | --- | --- |
| [4] |
Anaerobic sludge discharged from a UASBR | 816 | 566 | 3.3 | 6 | 27 ± 1 | 57 | --- | 0.472 |
| [87] |
555 | 420 | 2.2 | 60.1 | --- | 0.347 | |||||
298 | 216 | 1.2 | 64 | --- | 0.201 | |||||
195 | 120 | 0.8 | 53.3 | --- | 0.107 | |||||
92 | 55 | 0.4 | 50.4 | --- | 0.48 | |||||
770 | 450 | 4.6 | 4 | 45.5 | --- | 0.351 | ||||
787 | 512 | 9.4 | 2 | 44.1 | --- | 0.312 | ||||
716 | 486 | 17.6 | 1 | 36.6 | --- | --- | ||||
Without inoculum | 1159–1701 | 548–1176 | 3.35 ± 0.32 | 10 | Designated as hot period | 43–69 | 27.8 ± 3 | --- |
| [88] |
770–1525 | 875–1244 | 2.73 ± 0.45 | Designated as cold period | 5–57 | --- | --- | ||||
Sludge from a pilot scale UASBR | 1465 ± 60 | 783 ± 100 | 2.7 (UASBR) 3.7 (AF) | 15 (UASBR) 4 (AF) | 23.5 ± 0.5 | 32 (UASBR) 35 (AF) 55 (Total System) | --- | --- |
| [89] |
Inocula | Influent Characteristics | OLR (kg COD/m3 day) | HRT (h) | Temperature (°C) | % Removed | Methane (CH4) Collection (L/g COD Removed) | Remarks | References | ||
---|---|---|---|---|---|---|---|---|---|---|
CODT | CODS | CODT | SS | |||||||
Digested cow manure | 267 | 95 | --- | 6-8 | 25 | 75–82 | 70–80 | --- |
| [90] |
--- | 400 ± 64 | 171 ± 34 | --- | 14.5 | 19 ± 3 | 64 | --- | 0.09 |
| [91] |
403 ± 68 | 156 ± 37 | 11 | 18 ± 3 | 63 | 75 | 0.09 | ||||
407 ± 61 | 151 ± 20 | 8.8 | 21 ± 3 | 65 | 75 | 0.11 | ||||
459 ± 84 | 160 ± 17 | 7.2 | 22 ± 3 | 55 | 66 | 0.12 | ||||
374 ± 31 | 139 ± 10 | 7.0 | 22 ± 2 | 59 | 76 | 0.12 | ||||
194 ± 65 | 96 ± 31 | 7.5 | 25 ± 2 | 54 | 62 | 0.25 | ||||
188 ± 37 | 96 ± 21 | 6.1 | 28 ± 1 | 56 | 64 | 0.15 | ||||
258 ± 50 | 115 ± 29 | 6.2 | 25 ± 2 | 60 | 67 | 0.15 | ||||
307 ± 63 | 120 ± 28 | 5.1 | 21 ± 3 | 62 | 67 | 0.13 | ||||
Without inoculum | 563 | --- | --- | 6 | 20–30 | 74 | 75 | 0.05–0.10 |
| [72] |
Granular sludge grown on paper mill wastewater from full scale UASB | 391 | 164 | --- | 2–7 | ≥13 | 16–34 | --- | --- |
| [57] |
Without inoculum | 380 | --- | 2.0 (maximum) | 5–19 | --- | 66–72 | --- | --- |
| [71] |
Digested sludge added 10% (V/V) | 436 | 402 | --- | 7 | 16 (Winter average) 23 (Summer average) | 74 | 87 | --- |
| [92] |
--- | 500 | 2.0 | 6 | 20 | 75 | --- | --- |
| [93] | |
--- | 300 | --- | 1.2 | 6 | 20 | 70 | --- | --- |
| [93] |
--- | 500 | --- | 1 | 12 | 20–25 | 70–80 | --- | --- |
| [93] |
Without inoculum | 1419–1650 | --- | 3.6–5.0 & 2.9–4.6 kg COD/m3d for stage I and stage II, respectively (during 1st year). Only stage I was operated as a single-stage UASBR at half of the previous loading rate (during 2ndyr). | 8–10 (I stage) 5–6 (II stage) | 18–25 | 62 (summer) 51 (winter) | 60 (summer) 55 (winter) | 0.439 0.249 |
| [94] |
--- | 375 ± 97.6 | 246 ± 50 | --- | 9.9 | 27 ± 6 | ~46.7 | ~44.4 | --- |
| [95] |
403 ± 66.2 | 179 ± 62 | 9.6 | 28 ± 6 | ~45.4 | ~42.5 | |||||
390 ± 64 | 157 ± 54 | 9.8 | 29 ± 6 | ~38.5 | ~35.7 | |||||
443 ± 101.9 | 213 ± 58 | 10.3 | 29 ± 6 | ~41.3 | ~48.4 | |||||
318 ± 101.9 | 213 ± 58 | 9.4 | 24 ± 6 | ~62.3 | ~34.0 | |||||
--- | 440 | --- | --- | 8 | --- | 60 | 49 | --- |
| [75] |
549 | 8 | 67 | 70 |
| ||||||
544 | --- | 58 | 53 |
| ||||||
519 | 7.5 | 49 | 50 |
| ||||||
1293 | --- | 77 | 56 |
| ||||||
602 | 7.8 | 44 | 45 |
| ||||||
459 | 7.7 | 49 | 51 |
| ||||||
697 | 10.3 | 52 | 84 |
|
Treatment Used before Methane Fermenter | Type of wastewater (Temperature, °C) | HRT, h (OLR, g COD/L-day) | Performance of Hydrolysis Reactor | CODs (Effluent)/CODs (Influent) | Remarks | Reference | ||||
---|---|---|---|---|---|---|---|---|---|---|
Influent CODT mg/L (% Removal) | Influent CODS mg/L (% Removal) | Influent SS mg/L (% Removal) | Influent VSS mg/L (% Removal) | Influent VFA mg/L (Effluent VFA mg/L) | ||||||
HUSB (37 L) | Domestic Sewage (17) | 3 (---) | 697 (38%) | 197 (−2.6%) | 237 (83%) | --- (---) | 59* (107*) | 1.026 |
| [32] |
Domestic Sewagea (11) | 318 (11%) | 100 (7.3%) | 171 (77%) | --- (---) | 13 (34*) | 0.927 | ||||
Domestic Sewage (12) | 507 (37%) | 116 (16.1%) | 154 (75%) | --- (---) | 40* (73*) | 0.839 | ||||
Up-flow Sludge Blanket Fermenter (0.79 m3) | Domestic Sewage (20 ± 1) | 1.1–4.3 (---) | 462.3 (27.5%) | 213 (–7.04%) | 167.3 (60.4%) | --- (---) | 44 (88) | 1.070 |
| [101] |
UASR (7.5 L) | Domestic Sewage (14–21) | 3 (5.6) | 697 (38.0%) | 138 (31.2%) | --- (---) | --- (---) | --- (---) | 0.704 |
| [99] |
CSTR (5 L) | Domestic Sewage (25) | --- (---) | 30851 ± 210 (---) | --- (---) | --- (---) | --- (---) | --- (---) | --- (---) |
| [106] |
Hydrolytic Up-flow Digester (2 L) | Urban Wastewater (20) | 2.2–4.5 (4.42) | 525–710 (33%–47%) | 257–344 (13%–30%) | 186–268 (55%–68%) | 153–232 (52%–63%) | 6–29 (25–107) | 0.69–0.89 |
| [107] |
HUSB (485 mL) | Urban Wastewater (20) | 2.2–26.7 (0.9–7.3) | 645 (33%) | 302 (14.2%) | 239 (60.7%) | 197 (57.4%) | 21 (101) | 0.86 |
| [108] |
Prefermenter Reactor (3.3 L) | Domestic Sewage (17–20.5) | 1.3 (7.36) | 399 (25%) | 126 (9.5%) | 305 (61%) | --- | 5.1 (14) | 0.90 |
| [109] |
AF (60 L) | Domestic Sewage (13 °C) | 2–4 (---) | 425–533 (58.6–70.6) | 130–172 (53.6–55.2) | --- | --- | 33–55 (77.9–97) | 0.32–0.36 |
| [54] |
CSTR | Synthetic Wastewater (30 ± 2) | 1–6 (2.32–13.96) | 582 (38.3) | 314 (7.96) | 229 (52) | 183.5 (50) | 0 (69) | 0.45 |
| [76] |
HUSB | Domestic Wastewater (17.5–20.5) | 2.9–7.1 (1.22–3.88) | 361–469 (45.8~58.9%) | 115–121 (−28.9~−52.5%) | 188–373 (81.7~84.9%) | 169–283 (78.7~85.2%) | 6–9 (68–87) | 1.289–1.525 |
| [105] |
HUSB (0.69 m3) | Municipal Wastewater (---) | 3–7 (---) | 699–739 (33–51%) | --- | 568–634 (76–89%) | --- | --- | --- |
| [104] |
Feed, Temperature | Process | Source of Experimental Data | |||
---|---|---|---|---|---|
Hydrolysis | Acidogenesis | Acetogenesis | Methanogenesis | ||
Cellulose, 35 °C | 0.1 | 5.6 (B1), 4.1 (B2) | 0.56 | 0.56 (H) | [100] |
Sewage Sludge, 5 °C | 0.25 | 5.0 (B1), 5.0 (B2) | 0.8 | 0.5 (A), 2.0 (H) | [118] |
System Configuration (Hydrolysis Unit → Anaerobic Digestion Unit) | Temperature, °C | OLR in First Phase and Second Phase, kg COD/m3-day | HRT, h (First Phase + Second Phase, h) | Influent CODT, mg/L (% Removal) | Influent CODS, mg/L (% Removal) | Influent SS, mg/L (% Removal) | References |
---|---|---|---|---|---|---|---|
HUSB → UASB | 12,17 | --- (first phase) 2.4–5.0 (second phase) | 5 (3+2) | 318–697 (51–71%) | 100–197 (41–51%) | 154–237 (76–83%) | [32] |
UASB → UASB | 18–20 | 1.22–2.75 (first phase) 1.70–6.20 (second phase) | 10~6 (8~4+2) | 200–700 (74–82%) | 45–55% of CODT (73–100%) | 90–385 (86–93%) | [127] |
HUSB → UASB | 17 | 5.3 (first phase) 4.0 (second phase) | 5 (3+2) | 650 (69%) | 187 (79%) | 217 (83%) | [128] |
AF → AH | 13 | --- | 6–12 (2+4, 3+6, 4+8) | 425–533 (58.6–70.6%) | 130–172 (53.6–55.2%) | --- (---) | [54] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rajagopal, R.; Choudhury, M.R.; Anwar, N.; Goyette, B.; Rahaman, M.S. Influence of Pre-Hydrolysis on Sewage Treatment in an Up-Flow Anaerobic Sludge BLANKET (UASB) Reactor: A Review. Water 2019, 11, 372. https://doi.org/10.3390/w11020372
Rajagopal R, Choudhury MR, Anwar N, Goyette B, Rahaman MS. Influence of Pre-Hydrolysis on Sewage Treatment in an Up-Flow Anaerobic Sludge BLANKET (UASB) Reactor: A Review. Water. 2019; 11(2):372. https://doi.org/10.3390/w11020372
Chicago/Turabian StyleRajagopal, Rajinikanth, Mahbuboor Rahman Choudhury, Nawrin Anwar, Bernard Goyette, and Md. Saifur Rahaman. 2019. "Influence of Pre-Hydrolysis on Sewage Treatment in an Up-Flow Anaerobic Sludge BLANKET (UASB) Reactor: A Review" Water 11, no. 2: 372. https://doi.org/10.3390/w11020372
APA StyleRajagopal, R., Choudhury, M. R., Anwar, N., Goyette, B., & Rahaman, M. S. (2019). Influence of Pre-Hydrolysis on Sewage Treatment in an Up-Flow Anaerobic Sludge BLANKET (UASB) Reactor: A Review. Water, 11(2), 372. https://doi.org/10.3390/w11020372