Impact of Climate Forecasts on the Microbial Quality of a Drinking Water Source in Norway Using Hydrodynamic Modeling
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Lake and Catchment Characteristics
2.2. Hydrodynamic Modeling
2.2.1. Hydrological Flows into the Lake
2.2.2. Microbial Discharge into the Lake
2.2.3. Meteorological Data
2.2.4. Implementing the Hydrodynamic and Water Quality Models
2.2.5. Mesh Generation
2.2.6. Model Validation
3. Results
3.1. Hydrodynamic Model Validation
3.2. Simulated E. coli Concentration at Raw Water Intake of The Lake
3.3. Temperature and E. coli Distribution in The Lake in 2017
3.4. Predicted Temperature and E. coli in 2045 and 2075
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Patz, J.A.; Hahn, M.B. Climate change and human health: A One Health approach. Curr. Top. Microbiol. Immunol. 2013, 366, 141–171. [Google Scholar] [PubMed]
- Smith, K.R.; Woodward, A.; Campbell-Lendrum, D.; Chadee, D.D.; Honda, Y.; Liu, Q.; Sauerborn, R. Human health: Impacts, adaptation, and co-benefits. In Climate Change 2014; IPCC: Geneva, Switzerland, 2014; pp. 709–754. [Google Scholar]
- Tornevi, A.; Bergstedt, O.; Forsberg, B. Precipitation Effects on Microbial Pollution in a River: Lag Structures and Seasonal Effect Modification. PLoS ONE 2014, 9, e98546. [Google Scholar] [CrossRef] [PubMed]
- Levy, K.; Woster, A.P.; Goldstein, R.S.; Carlton, E.J. Untangling the impacts of climate change on waterborne diseases: A systematic review of relationships between diarrheal diseases and temperature, rainfall, flooding, and drought. Environ. Sci. Technol. 2016, 50, 4905–4922. [Google Scholar] [CrossRef] [Green Version]
- Soh, Y.C.; Roddick, F.; Van Leeuwen, J. The future of water in Australia: The potential effects of climate change and ozone depletion on Australian water quality, quantity and treatability. Environmentalist 2008, 28, 158–165. [Google Scholar] [CrossRef]
- Drayna, P.; McLellan, S.L.; Simpson, P.; Li, S.H.; Gorelick, M.H. Association between rainfall and pediatric emergency department visits for acute gastrointestinal illness. Environ. Health Perspect. 2010, 118, 1439–1443. [Google Scholar] [CrossRef]
- Leppi, J.C.; DeLuca, T.H.; Harrar, S.W.; Running, S.W. Impacts of climate change on August stream discharge in the Central-Rocky Mountains. Clim. Chang. 2012, 112, 997–1014. [Google Scholar] [CrossRef]
- Cann, K.F.; Thomas, D.R.; Salmon, R.L.; Wyn-Jones, A.P.; Kay, D. Extreme water-related weather events and waterborne disease. Epidemiol. Infect. 2013, 141, 671–686. [Google Scholar] [CrossRef]
- Guzman Herrador, B.; De Blasio, B.F.; Carlander, A.; Ethelberg, S.; Hygen, H.O.; Kuusi, M.; Nichols, G. Association between heavy precipitation events and waterborne outbreaks in four Nordic countries, 1992–2012. J. Water Health 2016, 14, 1019–1027. [Google Scholar] [CrossRef]
- Jagai, J.S.; Li, Q.; Wang, S.; Messier, K.P.; Wade, T.J.; Hilborn, E.D. Extreme precipitation and emergency room visits for gastrointestinal illness in areas with and without combined sewer systems: An analysis of Massachusetts data, 2003–2007. Environ. Health Perspect. 2015, 123, 873–879. [Google Scholar] [CrossRef]
- Bezirtzoglou, C.; Dekas, K.; Charvalos, E. Climate changes, environment and infection: Facts, scenarios and growing awareness from the public health community within Europe. Anaerobe 2011, 17, 337–340. [Google Scholar] [CrossRef]
- Bush, K.F.; O’Neill, M.S.; Li, S.; Mukherjee, B.; Hu, H.; Ghosh, S.; Balakrishnan, K. Associations between extreme precipitation and gastrointestinal-related hospital admissions in Chennai, India. Environ. Health Perspect. 2014, 122, 249–254. [Google Scholar] [CrossRef]
- Eisenberg, M.C.; Kujbida, G.; Tuite, A.R.; Fisman, D.N.; Tien, J.H. Examining rainfall and cholera dynamics in Haiti using statistical and dynamic modeling approaches. Epidemics 2013, 5, 197–207. [Google Scholar] [CrossRef] [Green Version]
- Khan, S.J.; Deere, D.; Leusch, F.D.; Humpage, A.; Jenkins, M.; Cunliffe, D. Extreme weather events: Should drinking water quality management systems adapt to changing risk profiles? Water Res. 2015, 85, 124–136. [Google Scholar] [CrossRef]
- Barry, M.; Chiu, C.A.; Westerhoff, P. Severe Weather Effects on Water Quality in Central Arizona. Am. Water Works Assoc. 2016, 108, E221–E231. [Google Scholar] [CrossRef]
- De Roos, A.J.; Gurian, P.L.; Robinson, L.F.; Rai, A.; Zakeri, I.; Kondo, M.C. Review of epidemiological studies of drinking-water turbidity in relation to acute gastrointestinal illness. Environ. Health Perspect. 2017, 125. [Google Scholar] [CrossRef]
- Aryal, R.; Grinham, A.; Beecham, S. Insight into dissolved organic matter fractions in Lake Wivenhoe during and after a major flood. Environ. Monit. Assess. 2016, 188, 134. [Google Scholar] [CrossRef]
- Hurst, A.M.; Edwards, M.J.; Chipps, M.; Jefferson, B.; Parsons, S.A. The impact of rainstorm events on coagulation and clarifier performance in potable water treatment. Sci. Total Environ. 2004, 321, 219–230. [Google Scholar] [CrossRef]
- Bull, R.J.; Reckhow, D.A.; Li, X.-F.; Humpage, A.R.; Joll, C.; Hrudey, S.E. Potential carcinogenic hazards of non-regulated disinfection by-products: Haloquinones, halo-cyclopentene and cyclohexene derivatives, N-halamines, halonitriles, andheterocyclic amines. Toxicology 2011, 286, 1–19. [Google Scholar] [CrossRef]
- Wang, W.; Moe, B.; Li, J.; Qian, Y.; Zheng, Q.; Li, X.F. Analytical characterization, occurrence, transformation, and removal of the emerging disinfection byproducts halobenzoquinones in water. TrAC Trends Anal. Chem. 2016, 85, 97–110. [Google Scholar] [CrossRef]
- Abokifa, A.A.; Yang, Y.J.; Cynthia, S.L.; Pratim, B. Investigating the role of biofilms in trihalomethane formation in water distribution systems with a multicomponent model. Water Res. 2016, 104, 208–219. [Google Scholar] [CrossRef]
- Ministry of the Environment. Adapting to a Changing Climate: Norway’s Vulnerability and the Need to Adapt to the Impacts of Climate Change. Norwegian Green Paper on Climate Change Adaptation, Official Norwegian Reports NOU 2010: 10. Recommendation by a Committee Appointed by Royal Decree of 5 December 2008, Submitted to the Ministry of the Environment on 15 November 2010, Oslo. Available online: https://www.regjeringen.no/contentassets/00f70698362f4f889cbe30c75bca4a48/pdfs/nou201020100010000en_pdfs.pdf (accessed on 15 March 2017).
- Delpla, I.; Jung, A.V.; Baures, E.; Clement, M.; Thomas, O. Impacts of climate change on surface water quality in relation to drinking water production. Environ. Int. 2009, 35, 1225–1233. [Google Scholar] [CrossRef]
- Tryland, I.; Robertson, L.; Blankenberg, A.G.B.; Lindholm, M.; Rohrlack, T.; Liltved, H. Impact of rainfall on microbial contamination of surface water. Int. J. Clim. Chang. Strateg. Manag. 2011, 3, 361–373. [Google Scholar] [CrossRef]
- Johannessen, G.S.; Wennberg, A.C.; Nesheim, I.; Tryland, I. Diverse land use and the impact on (irrigation) water quality and need for measures-A case study of a Norwegian river. Int. J. Environ. Res. Public Health 2015, 12, 6979–7001. [Google Scholar] [CrossRef]
- Harvell, C.D.; Mitchell, C.E.; Ward, J.R.; Altizer, S.; Dobson, A.P.; Ostfeld, R.S.; Samuel, M.D. Climate warming and disease risks for terrestrial and marine biota. Science 2002, 296, 2158–2162. [Google Scholar] [CrossRef]
- Vital, M.; Hammes, F.; Egli, T. Competition of Escherichia coli O157 with a drinking water bacterial community at low nutrient concentrations. Water Res. 2012, 46, 6279–6290. [Google Scholar] [CrossRef]
- Pachepsky, Y.A.; Blaustein, R.A.; Whelan, G.; Shelton, D.R. Comparing temperature effects on Escherichia coli, Salmonella, and Enterococcus survival in surface waters. Lett. Appl. Microbiol. 2014, 59, 278–283. [Google Scholar] [CrossRef]
- Abia, A.L.K.; Ubomba-Jaswa, E.; Momba, M.N.B. Competitive Survival of Escherichia coli, Vibrio cholerae, Salmonella typhimurium and Shigella dysenteriae in Riverbed Sediments. Microb. Ecol. 2016, 72, 881–889. [Google Scholar] [CrossRef]
- Oswald, C.J.; Rouse, W.R. Thermal characteristics and energy balance of various-size Canadian Shield lakes in the Mackenzie River Basin. J. Hydrometeorol. 2004, 5, 129–144. [Google Scholar] [CrossRef]
- Sharma, S.; Gray, D.K.; Read, J.S.; O’Reilly, C.M.; Schneider, P.; Qudrat, A.; Lenters, J.D. A global database of lake surface temperatures collected by in situ and satellite methods from 1985–2009. Sci. Data 2015, 2, 150008. [Google Scholar] [CrossRef] [Green Version]
- Sahoo, G.; Schladow, S.; Reuter, J.; Coats, R. Effects of climate change on thermal properties of lakes and reservoirs, and possible implications. Stoch. Environ. Res. Risk Assess. 2011, 25, 445–456. [Google Scholar] [CrossRef]
- Thorne, O.; Fenner, R. The impact of climate change on reservoir water quality and water treatment plant operations: A UK case study. Water Environ. J. 2011, 25, 74–87. [Google Scholar] [CrossRef]
- Brookes, J.D.; Hipsey, M.R.; Burch, M.D.; Regel, R.H.; Linden, L.G.; Ferguson, C.M.; Antenucci, J.P. Relative value of surrogate indicators for detecting pathogens in lakes and reservoirs. Environ. Sci. Technol. 2005, 39, 8614–8621. [Google Scholar] [CrossRef]
- Lawson, R.; Anderson, M.A. Stratification and mixing in Lake Elsinore, California: An assessment of axial flow pumps for improving water quality in a shallow eutrophic lake. Water Res. 2007, 41, 4457–4467. [Google Scholar] [CrossRef]
- Shade, A.; Read, J.S.; Welkie, D.G.; Kratz, T.K.; Wu, C.H.; McMahon, K.D. Resistance, resilience and recovery: Aquatic bacterial dynamics after water column disturbance. Environ. Microbiol. 2011, 13, 2752–2767. [Google Scholar] [CrossRef]
- Comeau, A.M.; Harding, T.; Galand, P.E.; Vincent, W.F.; Lovejoy, C. Vertical distribution of microbial communities in a perennially stratified Arctic lake with saline, anoxic bottom waters. Sci. Rep. 2012, 2, 604. [Google Scholar] [CrossRef]
- Refsgaard, J.C.; Henriksen, H.J. Modelling guidelines—Terminology and guiding principles. Adv. Water Resour. 2004, 27, 71–82. [Google Scholar] [CrossRef]
- Wool, T.A.; Davie, S.R.; Rodriguez, H.N. Development of Three-Dimensional Hydrodynamic and Water Quality Models to Support Total Maximum Daily Load Decision Process for the Neuse River Estuary, North Carolina. J. Water Resour. Plan. Manag. 2003, 129, 295–306. [Google Scholar] [CrossRef]
- McIntyre, N.R.; Wheater, H.S. A tool for risk-based management of surface water quality. Environ. Model. Softw. 2004, 19, 1131–1140. [Google Scholar] [CrossRef]
- Hoyer, A.B.; Schladow, S.G.; Rueda, F.J. A hydrodynamics-based approach to evaluating the risk of waterborne pathogens entering drinking water intakes in a large stratified lake. Water Res. 2015, 83, 227–236. [Google Scholar] [CrossRef]
- McCarthy, D.T.; Jovanovic, D.; Lintern, A.; Teakle, I.; Barnes, M.; Deletic, A.; Hipsey, M.R.; Bruce, L.C.; Henry, R. Source tracking using microbial community fingerprints: Method comparison with hydrodynamic modelling. Water Res. 2017, 109, 253–265. [Google Scholar] [CrossRef]
- Zhu, X.; Wang, J.D.; Solo-Gabriele, H.M.; Fleming, L.E. A water quality modeling study of non-point sources at recreational marine beaches. Water Res. 2011, 45, 2985–2995. [Google Scholar] [CrossRef]
- Guber, A.K.; Pachepsky, Y.A.; Yakirevich, A.M.; Shelton, D.R.; Whelan, G.; Goodrich, D.C.; Unkrich, C.L. Modeling runoff and microbial overland transport with KINEROS2/STWIR model: Accuracy and uncertainty as affected by source of infiltration parameters. J. Hydrol. 2014, 519, 644–655. [Google Scholar] [CrossRef]
- De Brauwere, A.; Gourgue, O.; de Brye, B.; Servais, P.; Ouattara, N.K.; Deleersnijder, E. Integrated modelling of faecal contamination in a densely populated river–sea continuum (Scheldt River and Estuary). Sci. Total Environ. 2014, 468, 31–45. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.C.; Chan, W.T. Assessment of the climate change impacts on fecal coliform contamination in a tidal estuarine system. Environ. Monit. Assess. 2015, 187, 728. [Google Scholar] [CrossRef] [PubMed]
- Sokolova, E.; Pettersson, T.J.; Bergstedt, O.; Hermansson, M. Hydrodynamic modelling of the microbial water quality in a drinking water source as input for risk reduction management. J. Hydrol. 2013, 497, 15–23. [Google Scholar] [CrossRef] [Green Version]
- Berg, T. Mapping of the Inflows into Brusdalsvatnet. Ålesund Municipality Technical sector (Ålesund Kommune, Teknisk sektor), VAR-avd. 2002. Available online: http://alesund.kommune.no/fakta-om-alesund/om kommunen/ organisasjonen/ item/vann-avlop-og-renovasjon (accessed on 23 June 2016).
- Mohammed, H.; Tveten, A.K.; Seidu, R. Modelling the impact of climate change on flow and E. coli concentration in the catchment of an ungauged drinking water source in Norway. 2018; submitted. [Google Scholar]
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large area hydrologic modeling and assessment part I: Model development. JAWRA J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Arnold, J.G.; Moriasi, D.N.; Gassman, P.W.; Abbaspour, K.C.; White, M.J.; Srinivasan, R.; Kannan, N. SWAT: Model use, calibration, and validation. Trans. Asabe 2012, 55, 1491–1508. [Google Scholar] [CrossRef]
- Bárdossy, A. Calibration of hydrological model parameters for ungauged catchments. Hydrol. Earth Syst. Sci. Discuss. 2007, 11, 703–710. [Google Scholar] [CrossRef] [Green Version]
- ISO 9308-1. Water Quality—Enumeration of Escherichia coli and Coliform Bacteria—Part1: Membrane Filtration Method; International Standards Organization: Geneva, Switzerland, 2000. [Google Scholar]
- Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Williams, J.R. Soil and Water Assessment Tool Theoretical Documentation Version 2009; Texas Water Resources Institute: College Station, TX, USA, 2011. [Google Scholar]
- ERM. GEMSS-HDM Hydrodynamic and Transport Module, Technical Documentation; GEMSS Development Team, Surface Water Modeling Group (SMG), ERM Inc.: London, UK, 2006; Available online: http://www.erm-smg.com/gemss.html (accessed on 23 April 2016).
- Teutschbein, C.; Seibert, J. Bias correction of regional climate model simulations for hydrological climate-change impact studies: Review and evaluation of different methods. J. Hydrol. 2012, 456–457, 12–29. [Google Scholar] [CrossRef]
- Shrestha, M.; Acharya, S.C.; Shrestha, P.K. Bias correction of climate models for hydrological modelling–are simple methods still useful? Meteorol. Appl. 2017, 24, 531–539. [Google Scholar] [CrossRef]
- ERM. Generalized Environmental Modeling System for Surfacewaters (GEMSS). Environmental Resources Management, Inc. 2006. Available online: http://www.erm-smg.com/gemss.html (accessed on 23 April 2016).
- Leonard, A. A stable and accurate convective modeling procedure based on quadratic upstream interpolation. Comp. Methods Appl. Mech. Eng. 1979, 19, 59–98. [Google Scholar] [CrossRef]
- Leonard, B.P. The ULTIMATE conservative difference scheme applied to unsteady one dimensional advection. Comp. Methods Appl. Mech. Eng. 1991, 88, 17–74. [Google Scholar] [CrossRef]
- Buchak, E.M.; Edinger, J.E. Generalized Longitudinal-Vertical Hydrodynamics and Transport Development, Programming and Applications; Prepared for U.S. Army Corps of Engineers Waterways Experiment Station, Vicksburg, Miss. Contract No. DACW39-84-M-1636. Prepared by J. E. Edinger Associates Wayne, PA. Document No. 84-18-R. June; J. E. Edinger Associates, Inc.: Wayne, PA, USA, 1984. [Google Scholar]
- Bayer, T.K.; Burns, C.W.; Schallenberg, M. Application of a numerical model to predict impacts of climate change on water temperatures in two deep, oligotrophic lakes in New Zealand. Hydrobiologia 2013, 713, 53–71. [Google Scholar] [CrossRef]
- Huang, A.; Rao, Y.R.; Lu, Y. Evaluation of a 3-D hydrodynamic model and atmospheric forecast forcing using observations in Lake Ontario. J. Geophys. Res. Oceans 2010, 115, C02004. [Google Scholar] [CrossRef]
- Smith, P.E. A Semi-Implicit, Three-Dimensional Model for Estuarine Circulation (Report No. 2006-1004); USGS: Sacramento, CA, USA, 2006. [CrossRef]
- Sokolova, E.; Petterson, S.R.; Dienus, O.; Nyström, F.; Lindgren, P.E.; Pettersson, T.J. Microbial risk assessment of drinking water based on hydrodynamic modelling of pathogen concentrations in source water. Sci. Total Environ. 2015, 526, 177–186. [Google Scholar] [CrossRef] [Green Version]
- Blaustein, R.A.; Pachepsky, Y.; Hill, R.L.; Shelton, D.R.; Whelan, G. Escherichia coli survival in waters: Temperature dependence. Water Res. 2013, 47, 569–578. [Google Scholar] [CrossRef]
- Schijven, J.; Bouwknegt, M.; Husman, R.; Maria, A.; Rutjes, S.; Sudre, B.; Semenza, J.C. A decision support tool to compare waterborne and foodborne infection and/or illness risks associated with climate change. Risk Anal. 2013, 33, 2154–2167. [Google Scholar] [CrossRef]
- An, Y.J.; Kampbell, D.H.; Breidenbach, G.P. Escherichia coli and total coliforms in water and sediments at lake marinas. Environ. Pollut. 2002, 120, 771–778. [Google Scholar] [CrossRef]
- Whitman, R.L.; Nevers, M.B.; Korinek, G.C.; Byappanahalli, M.N. Solar and temporal effects on Escherichia coli concentration at a Lake Michigan swimming beach. Appl. Environ. Microbiol. 2004, 70, 4276–4285. [Google Scholar] [CrossRef]
- Liu, L.; Phanikumar, M.S.; Molloy, S.L.; Whitman, R.L.; Shively, D.A.; Nevers, M.B.; Rose, J.B. Modeling the transport and inactivation of E. coli and enterococci in the near-shore region of Lake Michigan. Environ. Sci. Technol. 2006, 40, 5022–5028. [Google Scholar] [CrossRef]
- Boehrer, B.; Schultze, M. Stratification of lakes. Rev. Geophys. 2008, 46. [Google Scholar] [CrossRef] [Green Version]
Stream | Flow (Historical) m3/s | Flow (2045) m3/s | Flow (2075) m3/s |
---|---|---|---|
Arsetelva | 0.215 | 0.248 | 0.257 |
Vasstrandelva | 0.273 | 0.246 | 0.252 |
Slettebakk | 0.084 | 0.092 | 0.098 |
Brusdalen | 0.044 | 0.041 | 0.043 |
S1 | 0.028 | 0.028 | 0.028 |
S2 | 0.021 | 0.021 | 0.021 |
S3 | 0.021 | 0.021 | 0.021 |
S4 | 0.023 | 0.023 | 0.023 |
Model /Stream | Nash-Sutcliff Efficiency (NS) | Coefficient of Determination (R2) |
---|---|---|
Slettebakk | 0.68 | 0.72 |
Brusdalen | 0.70 | 0.74 |
Arsetelva | 0.71 | 0.74 |
Vasstrandelva | 0.66 | 0.70 |
Source | Average Concentration of E. coli (CFU/100 mL) | ||
---|---|---|---|
2017 | 2045 | 2075 | |
Årsetelva | |||
Vasstrandelva | |||
Slettebakk | |||
Brusdalen | |||
Stream 1 | |||
Stream 2 | |||
Stream 3 | |||
Stream 4 |
Model /Stream | Nash-Sutcliff Efficiency (NS) | Coefficient of Determination (R2) |
---|---|---|
Slettebakk | 0.30 | 0.31 |
Brusdalen | 0.24 | 0.26 |
Arsetelva | 0.32 | 0.31 |
Vasstrandelva | 0.36 | 0.33 |
Year | Winter | Spring | Summer | Autumn |
---|---|---|---|---|
Precipitation | ||||
2045 | 0.158 | 14.218 | 9.789 | −13.17 |
2075 | −0.121 | 17.252 | 14.263 | −10.78 |
Temperature | ||||
2045 | 1.922 | 1.779 | 1.743 | 1.975 |
2075 | 3.374 | 3.241 | 3.112 | 3.409 |
Transport Scheme | RMSE | R2 | Adjusted R2 |
---|---|---|---|
First order | 1.22 | 0.65 | 0.62 |
QUICKEST with ULTIMATE | 1.42 | 0.57 | 0.53 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohammed, H.; Longva, A.; Seidu, R. Impact of Climate Forecasts on the Microbial Quality of a Drinking Water Source in Norway Using Hydrodynamic Modeling. Water 2019, 11, 527. https://doi.org/10.3390/w11030527
Mohammed H, Longva A, Seidu R. Impact of Climate Forecasts on the Microbial Quality of a Drinking Water Source in Norway Using Hydrodynamic Modeling. Water. 2019; 11(3):527. https://doi.org/10.3390/w11030527
Chicago/Turabian StyleMohammed, Hadi, Andreas Longva, and Razak Seidu. 2019. "Impact of Climate Forecasts on the Microbial Quality of a Drinking Water Source in Norway Using Hydrodynamic Modeling" Water 11, no. 3: 527. https://doi.org/10.3390/w11030527
APA StyleMohammed, H., Longva, A., & Seidu, R. (2019). Impact of Climate Forecasts on the Microbial Quality of a Drinking Water Source in Norway Using Hydrodynamic Modeling. Water, 11(3), 527. https://doi.org/10.3390/w11030527