Sorption and Degradation Potential of Pharmaceuticals in Sediments from a Stormwater Retention Pond
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sampling
2.3. Sorption Experiment
2.4. Removal Kinetics in Microcosm
2.5. Extraction
2.6. Chemical Analysis
3. Results and Discussion
3.1. Sorption
3.2. Sorption and Degradation in Cosms
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Daughton, C.G. Non-regulated water contaminants: Emerging research. Environ. Impact Assess. Rev. 2004, 24, 711–732. [Google Scholar] [CrossRef]
- Clara, M.; Strenn, B.; Gans, O.; Martinez, E.; Kreuzingeru, N.; Kroissk, H. Removal of selected pharmaceuticals, fragrances and endocrine disrupting compounds in a membrane bioreactor and conventional wastewater treatment plants. Water Res. 2005, 39, 4797–4807. [Google Scholar] [CrossRef] [PubMed]
- Verlicchi, P.; Galletti, A.; Petrovic, M.; Barceló, D.; Al Aukidy, M.; Zambello, E. Removal of selected pharmaceuticals from domestic wastewater in an activated sludge system followed by a horizontal subsurface flow bed—Analysis of their respective contributions. Sci. Total Environ. 2013, 454–455, 411–425. [Google Scholar] [CrossRef] [PubMed]
- Launay, M.A.; Dittmeri, U.; Steinmetzd, H. Organic micropollutants discharged by combined sewer overflows-Characterisation of pollutant sources and stormwater-related processes. Water Res. 2016, 104, 82–92. [Google Scholar] [CrossRef]
- Revitt, D.M.; Ellis, J.B. Urban surface water pollution problems arising from misconnections. Sci. Total Environ. 2016, 551–552, 163–174. [Google Scholar] [CrossRef]
- Hvitved-Jacobsen, T.; Vollertsen, J.; Nielsen, A.H. Urban and Highway Stormwater Pollution: Concepts and Engineering; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2010. [Google Scholar]
- Panasiuk, O.; Hedström, A.; Marsalek, J.; Ashley, R.M.; Viklander, M. Contamination of stormwater by wastewater: A review of detection methods. J. Environ. Manag. 2015, 152, 241–250. [Google Scholar] [CrossRef]
- Beckers, L.M.; Busch, W.; Krauss, M.; Schulze, T.; Brack, W. Characterization and risk assessment of seasonal and weather dynamics in organic pollutant mixtures from discharge of a separate sewer system. Water Res. 2018, 135, 122–133. [Google Scholar] [CrossRef]
- Pongmala, K.; Autixier, L.; Madoux-Humery, A.; Fuamba, M.; Galarneau, M.; Sauvé, S.; Prévost, M.; Dorner, S. Modelling total suspended solids, E. coli and carbamazepine, a tracer of wastewater contamination from combined sewer overflows. J. Hydrol. 2015, 531, 830–839. [Google Scholar] [CrossRef]
- Al Aukidy, M.; Verlicchi, P.; Jelic, A.; Petrovic, M.; Barcelò, D. Monitoring release of pharmaceutical compounds: Occurrence and environmental risk assessment of two WWTP effluents and their receiving bodies in the Po Valley, Italy. Sci. Total Environ. 2012, 438, 15–25. [Google Scholar] [CrossRef]
- Christoffels, E.; Brunsch, A.; Wunderlich-Pfeiffer, J.; Mertens, F.M. Monitoring micropollutants in the Swist river basin. Water Sci. Technol. 2016, 74, 2280–2296. [Google Scholar] [CrossRef]
- Revitt, D.M.; Shutes, R.B.E.; Jones, R.H.; Forshaw, M.; Winter, B. The performances of vegetative treatment systems for highway runoff during dry and wet conditions. Sci. Total Environ. 2004, 334–335, 261–270. [Google Scholar] [CrossRef]
- Mohanty, S.K.; Valenca, R.; Berger, A.W.; Iris, K.M.; Xiong, X.; Saunders, T.M.; Tsang, D.C.W. Plenty of room for carbon on the ground: Potential applications of biochar for stormwater treatment. Sci. Total Environ. 2018, 625, 1644–1658. [Google Scholar] [CrossRef]
- Koumaki, E.; Mamais, D.; Noutsopoulos, C. Environmental fate of non-steroidal anti-inflammatory drugs in river water/sediment systems. J. Hazard. Mater. 2017, 323, 233–241. [Google Scholar] [CrossRef]
- Thomsen, A.B.; Henriksen, K.; Grøn, C.; Møldrup, P. Sorption, transport, and degradation of quinoline in unsaturated soil. Environ. Sci. Technol. 1999, 33, 2891–2898. [Google Scholar] [CrossRef]
- Arias-Estévez, M.; López-Periago, E.; Martínez-Carballo, E.; Simal-Gándara, J.; Mejuto, J.C.; García-Río, L. The mobility and degradation of pesticides in soils and the pollution of groundwater resources. Agric. Ecosyst. Environ. 2008, 123, 247–260. [Google Scholar] [CrossRef]
- Meng, P.; Pei, H.; Hu, W.; Shao, Y.; Li, Z. How to increase microbial degradation in constructed wetlands: Influencing factors and improvement measures. Bioresour. Technol. 2014, 157, 316–326. [Google Scholar] [CrossRef]
- Kim, H.B.; Kim, S.H.; Jeon, E.K.; Kim, D.H.; Tsang, D.C.W.; Alessi, D.S.; Kwon, E.E.; Baek, K. Effect of dissolved organic carbon from sludge, Rice straw and spent coffee ground biochar on the mobility of arsenic in soil. Sci. Total Environ. 2018, 636, 1241–1248. [Google Scholar] [CrossRef]
- Murdoch, R.W.; Hay, A.G. Genetic and chemical characterization of ibuprofen degradation by Sphingomonas Ibu-2. Microbiology 2013, 159, 621–632. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Wang, Z.; Xie, S. Aerobic biodegradation of bisphenol A in river sediment and associated bacterial community change. Sci. Total Environ. 2014, 470–471, 1184–1188. [Google Scholar] [CrossRef]
- Delaune, R.D.; Devai, I.; Mulbah, C.; Crozier, C.; Lindau, C.W. The influence of soil redox conditions on atrazine degradation in wetlands. Agric. Ecosyst. Environ. 1997, 66, 41–46. [Google Scholar] [CrossRef]
- Faulwetter, J.L.; Gagnon, V.; Sundberg, C.; Chazarenc, F.; Burr, M.D.; Brisson, J.; Camper, A.K.; Stein, O.R. Microbial processes influencing performance of treatment wetlands: A review. Ecol. Eng. 2009, 35, 987–1004. [Google Scholar] [CrossRef]
- Banzhaf, S.; Nödler, K.; Licha, T.; Krein, A.; Scheytt, T. Redox-sensitivity and mobility of selected pharmaceutical compounds in a low flow column experiment. Sci. Total Environ. 2012, 438, 113–121. [Google Scholar] [CrossRef]
- Istenič, D.; Arias, C.A.; Matamoros, V.; Vollertsen, J.; Brix, H. Elimination and accumulation of polycyclic aromatic hydrocarbons in urban stormwater wet detention ponds. Water Sci. Technol. 2011, 64, 818–825. [Google Scholar] [CrossRef]
- Istenič, D.; Arias, C.A.; Vollertsen, J.; Nielsen, A.H.; Wium-Andersen, T.; Hvitved-Jacobsen, T. Improved urban stormwater treatment and pollutant removal pathways in amended wet detention ponds. J. Environ. Sci. Health Part A 2012, 47, 1466–1477. [Google Scholar] [CrossRef]
- Minelgaite, G.; Nielsen, A.H.; Pedersen, M.L.; Vollertsen, J. Photodegradation of three stormwater biocides. Urban Water J. 2017, 14, 53–60. [Google Scholar] [CrossRef]
- Daughton, C.G.; Ternes, T.A. Pharmaceuticals and Personal Care Products in the Environment: Agents of Subtle Change? Environ. Health Perspect. 1999, 107, 907–938. [Google Scholar] [CrossRef]
- Hörsing, M.; Ledin, A.; Grabic, R.; Fick, J.; Tysklind, M.; la Cour Jansen, C.; Andersen, H.R. Determination of sorption of seventy-five pharmaceuticals in sewage sludge. Water Res. 2011, 45, 4470–4482. [Google Scholar] [CrossRef] [Green Version]
- Grossberger, A.; Hadar, Y.; Borch, T.; Chefetz, B. Biodegradability of pharmaceutical compounds in agricultural soils irrigated with treated wastewater. Environ. Pollut. 2014, 185, 168–177. [Google Scholar] [CrossRef]
- Roberts, J.; Kumar, A.; Du, J.; Hepplewhite, C.; Ellis, D.J.; Christy, A.G.; Beavis, S.G. Pharmaceuticals and personal care products (PPCPs) in Australia’s largest inland sewage treatment plant, and its contribution to a major Australian river during high and low flow. Sci. Total Environ. 2016, 541, 1625–1637. [Google Scholar] [CrossRef]
- OECD. Test No. 106: Adsorption—Desorption Using A Batch Equilibrium Method; OECD: Paris, France, 2000. [Google Scholar] [CrossRef]
- Hou, J.; Pan, B.; Niu, X.; Chen, J.; Xing, B. Sulfamethoxazole sorption by sediment fractions in comparison to pyrene and bisphenol A. Environ. Pollut. 2010, 158, 2826–2832. [Google Scholar] [CrossRef]
- Le Guet, T.; Hsini, I.; Labanowski, J.; Mondamert, L. Sorption of selected pharmaceuticals by a river sediment: Role and mechanisms of sediment or Aldrich humic substances. Environ. Sci. Pollut. Res. 2018, 1–12. [Google Scholar] [CrossRef]
- Shen, G.; Zhang, Y.; Hu, S.; Zhang, H.; Yuan, Z.; Zhang, W. Adsorption and degradation of sulfadiazine and sulfamethoxazole in an agricultural soil system under an anaerobic condition: Kinetics and environmental risks. Chemosphere 2018, 194, 266–274. [Google Scholar] [CrossRef]
- Karickhoff, S.W.; Brown, D.S.; Scott, T.A. Sorption of hydrophobic pollutants on natural sediments. Water Res. 1979, 13, 241–248. [Google Scholar] [CrossRef]
- Franco, A.; Trapp, S. Estimation of the soil—Water partition coefficient normalized to organic carbon for ionizable organic chemicals. Environ. Toxicol. Chem. 2008, 27, 1995–2004. [Google Scholar] [CrossRef]
- Wium-Andersen, T.; Nielsen, A.H.; Hvitved-Jacobsen, T.; Brix, H.; Arias, C.A.; Vollertsen, J. Modeling the eutrophication of two mature planted stormwater ponds for runoff control. Ecol. Eng. 2013, 61, 601–613. [Google Scholar] [CrossRef]
- Varga, M.; Dobor, J.; Helenkár, A.; Jurecska, L.; Yao, J.; Záray, G. Investigation of acidic pharmaceuticals in river water and sediment by microwave-assisted extraction and gas chromatography-mass spectrometry. Microchem. J. 2010, 95, 353–358. [Google Scholar] [CrossRef]
- Schaffer, M.; Boxberger, N.; Börnick, H.; Licha, T.; Worch, E. Sorption influenced transport of ionizable pharmaceuticals onto a natural sandy aquifer sediment at different pH. Chemosphere 2012, 87, 513–520. [Google Scholar] [CrossRef]
- Klement, A.; Kodešová, R.; Bauerová, M.; Golovko, O.; Kočárek, M.; Fér, M.; Nikodem, A.; Grabic, R. Sorption of citalopram, irbesartan and fexofenadine in soils: Estimation of sorption coefficients from soil properties. Chemosphere 2018, 195, 615–623. [Google Scholar] [CrossRef]
- Martínez-Hernández, V.; Meffe, R.; Herrera, S.; Arranz, E.; de Bustamante, I. Sorption/desorption of non-hydrophobic and ionisable pharmaceutical and personal care products from reclaimed water onto/from a natural sediment. Sci. Total Environ. 2014, 472, 273–281. [Google Scholar] [CrossRef]
- Gao, J.; Pedersen, J.A. Adsorption of sulfonamide antimicrobial agents to clay minerals. Environ. Sci. Technol. 2005, 39, 9509–9516. [Google Scholar] [CrossRef]
- Kahle, M.; Stamm, C. Sorption of the veterinary antimicrobial sulfathiazole to organic materials of different origin. Environ. Sci. Technol. 2007, 41, 132–138. [Google Scholar] [CrossRef]
- Figueroa-Diva, R.A.; Vasudevan, D.; Mackay, A.A. Trends in soil sorption coefficients within common antimicrobial families. Chemosphere 2010, 79, 786–793. [Google Scholar] [CrossRef]
- Park, J.Y.; Huwe, B. Effect of pH and soil structure on transport of sulfonamide antibiotics in agricultural soils. Environ. Pollut. 2016, 213, 561–570. [Google Scholar] [CrossRef]
- Chen, K.L.; Liu, L.C.; Chen, W.R. Adsorption of sulfamethoxazole and sulfapyridine antibiotics in high organic content soils. Environ. Pollut. 2017, 231, 1163–1171. [Google Scholar] [CrossRef]
- Białk-Bielińska, A.; Maszkowska, J.; Mrozik, W.; Bielawska, A.; Kołodziejska, M.; Palavinskas, R.; Stepnowski, P.; Kumirska, J. Sulfadimethoxine and sulfaguanidine: Their sorption potential on natural soils. Chemosphere 2012, 86, 1059–1065. [Google Scholar] [CrossRef]
- Karcı, A.; Balcıoğlu, I.A. Investigation of the tetracycline, sulfonamide, and fluoroquinolone antimicrobial compounds in animal manure and agricultural soils in Turkey. Sci. Total Environ. 2009, 407, 4652–4664. [Google Scholar] [CrossRef]
- Figueroa, R.A.; Mackay, A.A. Sorption of oxytetracycline to iron oxides and iron oxide-rich soils. Environ. Sci. Technol. 2005, 39, 6664–6671. [Google Scholar] [CrossRef]
- Maskaoui, K.; Hibberd, A.; Zhou, J.L. Assessment of the interaction between aquatic colloids and pharmaceuticals facilitated by cross-Flow ultrafiltration. Environ. Sci. Technol. 2007, 41, 8038–8043. [Google Scholar] [CrossRef]
- Ternes, T.A. Occurrence of drugs in German sewage treatment plants and rivers. Water Res. 1998, 32, 3245–3260. [Google Scholar] [CrossRef]
- Löffler, D.; Römbke, J.; Meller, M.; Ternes, T.A. Environmental Fate of Pharmaceuticals in Water/Sediment Systems. Environ. Sci. Technol. 2005, 39, 5209–5218. [Google Scholar] [CrossRef]
- Yagi, N.; Kenmotsu, H.; Sekikawa, H.; Takada, M. Studies on the photolysis and hydrolysis of furosemide in aqueous solution. Chem. Pharm. Bull. 1991, 39, 454–457. [Google Scholar] [CrossRef]
- Chen, Y.; Vymazal, J.; Březinová, T.; Koželuh, M.; Kule, L.; Huang, J.; Chen, Z. Occurrence, removal and environmental risk assessment of pharmaceuticals and personal care products in rural wastewater treatment wetlands. Sci. Total Environ. 2016, 566–567, 1660–1669. [Google Scholar] [CrossRef]
- Maeng, S.K.; Sharma, S.K.; Abel, C.D.; Magic-Knezev, A.; Amy, G.L. Role of biodegradation in the removal of pharmaceutically active compounds with different bulk organic matter characteristics through managed aquifer recharge: Batch and column studies. Water Res. 2011, 45, 4722–4736. [Google Scholar] [CrossRef]
- De Wilt, A.; He, Y.; Sutton, N.; Langenhoff, A.; Rijnaarts, H. Sorption and biodegradation of six pharmaceutically active compounds under four different redox conditions. Chemosphere 2018, 193, 811–819. [Google Scholar] [CrossRef]
Name and CAS Number | Structure | Physical and Chemical Characteristics | Therapeutic Category | Species at pH | |||
---|---|---|---|---|---|---|---|
5 | 6 | 7 | 8 | ||||
Naproxen 22204-53-1 | MW: 230.3 log KOW: 3.18 pKa: 4.15 | Anti-inflammatory | − | − | − | − | |
Carbamazepine 298-46-4 | MW: 236.3 log KOW: 2.45 pKa: 13.9 | Antiepileptic agent | 0 | 0 | 0 | 0 | |
Sulfamethoxazole 723-46-6 | MW: 253.3 log KOW: 0.89 pKa: 1.6, 5.7 | Antibiotic | 0/− | 0/− | − | − | |
Furosemide 54-31-9 | MW: 330.7 log KOW: 2.03 pKa: 3.9 | Diuretic | +/− (a) | − | − | − | |
Fenofibrate 49562-28-9 | MW: 360.8 log KOW: 5.19 pKa: – | Lipid regulator | 0 | 0 | 0 | 0 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, F.; Nielsen, A.H.; Vollertsen, J. Sorption and Degradation Potential of Pharmaceuticals in Sediments from a Stormwater Retention Pond. Water 2019, 11, 526. https://doi.org/10.3390/w11030526
Liu F, Nielsen AH, Vollertsen J. Sorption and Degradation Potential of Pharmaceuticals in Sediments from a Stormwater Retention Pond. Water. 2019; 11(3):526. https://doi.org/10.3390/w11030526
Chicago/Turabian StyleLiu, Fan, Asbjørn Haaning Nielsen, and Jes Vollertsen. 2019. "Sorption and Degradation Potential of Pharmaceuticals in Sediments from a Stormwater Retention Pond" Water 11, no. 3: 526. https://doi.org/10.3390/w11030526
APA StyleLiu, F., Nielsen, A. H., & Vollertsen, J. (2019). Sorption and Degradation Potential of Pharmaceuticals in Sediments from a Stormwater Retention Pond. Water, 11(3), 526. https://doi.org/10.3390/w11030526