Influence of Abandoning Agricultural Land Use on Hydrophysical Properties of Sandy Soil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Study Site
2.2. Evaluation of Soil Water Repellency
2.3. Determination of Basic Physical and Chemical Properties of Soil
2.4. Determination of Soil Hydraulic Properties
3. Results
3.1. Basic Soil Properties
3.2. Saturated Hydraulic Conductivity and Water Retention
3.3. Assessment of Soil Water Repellency
3.4. Surface Runoff in Soil Formerly under Arable Use
4. Discussion
5. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Czachor, H.; Flis-Bujak, M.; Ksiezpolska, A.; Niewczas, J.; Falski, M. Analysis of factors affecting the wettability of mineral soils. Acta Agrophys. 2009, 2, 84. [Google Scholar]
- Goebel, M.O.; Bachmann, J.; Reichstein, M.; Janssens, I.A.; Guggenberger, G. Soil water repellency and its implications for organic matter decomposition—Is there a link to extreme climatic events? Glob. Chang. Biol. 2011, 17, 2640–2656. [Google Scholar] [CrossRef]
- Franco, C.M.M.; Michelsen, P.P.; Oades, J.M. Amelioration of water repellency: Application of slow-release fertilisers to stimulate microbial breakdown of waxes. J. Hydrol. 2000, 231, 342–351. [Google Scholar] [CrossRef]
- Franco, C.M.M.; Tate, M.E.; Oades, J.M. Studies on non-wetting sands. 1. The role of intrinsic particulate organic-matter in the development of water-repellency in non-wetting sands. Soil Res. 1995, 33, 253–263. [Google Scholar] [CrossRef]
- Doerr, S.H.; Shakesby, R.A.; Walsh, R. Soil water repellency: Its causes, characteristics and hydro-geomorphological significance. Earth-Sci. Rev. 2000, 51, 33–65. [Google Scholar] [CrossRef]
- Lachacz, A.; Nitkiewicz, M.; Kalisz, B. Water repellency of post-boggy soils with a various content of organic matter. Biologia 2009, 64, 634–638. [Google Scholar] [CrossRef]
- Moody, J.A.; Kinner, D.A.; Úbeda, X. Linking hydraulic properties of fire-affected soils to infiltration and water repellency. J. Hydrol. 2009, 379, 291–303. [Google Scholar] [CrossRef]
- Certini, G. Effects of fire on properties of forest soils: A review. Oecologia 2005, 143, 1–10. [Google Scholar] [CrossRef]
- Granged, A.J.; Jordán, A.; Zavala, L.M.; Bárcenas, G. Fire-induced changes in soil water repellency increased fingered flow and runoff rates following the 2004 Huelva wildfire. Hydrol. Process. 2011, 25, 1614–1629. [Google Scholar] [CrossRef]
- Bogacz, A.; Łabaz, B.; Woźniczka, P. Impact of fire on values of organic material transformation Indicators. Rocz. Glebozn. Soil Sci. Annu. 2013, 64, 88–92. [Google Scholar] [CrossRef]
- Hewelke, E.; Oktaba, L.; Gozdowski, D.; Kondras, M.; Olejniczak, I.; Górska, E.B. Intensity and persistence of soil water repellency in pine forest soil in a temperate continental climate under drought conditions. Water 2018, 10, 1121. [Google Scholar] [CrossRef]
- Adams, R.H.; Osorio, F.G.; Cruz, J.Z. Water repellency in oil contaminated sandy and clayey soils. Int. J. Environ. Sci. Technol. 2008, 5, 445–454. [Google Scholar] [CrossRef]
- Takawira, A.; Gwenzi, W.; Nyamugafata, P. Does hydrocarbon contamination induce water repellency and changes in hydraulic properties in inherently wettable tropical sandy soils? Geoderma 2014, 235, 279–289. [Google Scholar] [CrossRef]
- Klamerus-Iwan, A.; Błońska, E.; Lasota, J.; Kalandyk, A.; Waligórski, P. Influence of oil contamination on physical and biological properties of forest soil after chainsaw use. Water Air Soil Pollut. 2015, 226, 389. [Google Scholar] [CrossRef]
- Hewelke, E.; Szatyłowicz, J.; Hewelke, P.; Gnatowski, T.; Aghalarov, R. The Impact of Diesel Oil Pollution on the Hydrophobicity and CO2 Efflux of Forest Soils. Water Air Soil Pollut. 2018, 229, 51. [Google Scholar] [CrossRef]
- Dekker, L.W.; Ritsema, C.J.; Oostindie, K.; Moore, D.; Wesseling, J.G. Methods for determining soil water repellency on field-moist samples. Water Resour. Res. 2009, 45. [Google Scholar] [CrossRef]
- Buczko, U.; Bens, O.; Hüttl, R.F. Variability of soil water repellency in sandy forest soils with different stand structure under Scots pine (Pinus sylvestris) and beech (Fagus sylvatica). Geoderma 2005, 126, 317–336. [Google Scholar] [CrossRef]
- Buczko, U.; Bens, O.; Hüttl, R.F. Changes in soil water repellency in a pine–beech forest transformation chronosequence: Influence of antecedent rainfall and air temperatures. Ecol. Eng. 2007, 31, 154–164. [Google Scholar] [CrossRef]
- Leighton-Boyce, G.; Doerr, S.H.; Shakesby, R.A.; Walsh, R.P.D.; Ferreira, A.J.D.; Boulet, A.K.; Coelho, C.O.A. Temporal dynamics of water repellency and soil moisture in eucalypt plantations, Portugal. Aust. J. Soil Res. 2005, 43, 269–280. [Google Scholar] [CrossRef]
- Hewelke, E.; Szatyłowicz, J.; Gnatowski, T.; Oleszczuk, R. Effects of soil water repellency on moisture patterns in a degraded Sapric Histosol. Land Degrad. Dev. 2016, 27, 955–964. [Google Scholar] [CrossRef]
- Urbanek, E.; Doerr, S.H. CO2 efflux from soils with seasonal water repellency. Biogeosciences 2017, 14, 4781–4794. [Google Scholar] [CrossRef]
- Imeson, A.C.; Verstraten, J.M.; Van Mulligen, E.J.; Sevink, J. The effects of fire and water repellency on infiltration and runoff under Mediterranean type forest. Catena 1992, 19, 345–361. [Google Scholar] [CrossRef]
- Harper, R.J.; McKissock, I.; Gilkes, R.J.; Carter, D.J.; Blackwell, P.S. A multivariate framework for interpreting the effects of soil properties, soil management and landuse on water repellency. J. Hydrol. 2000, 231, 371–383. [Google Scholar] [CrossRef]
- Mataix-Solera, J.; Arcenegui, V.; Guerrero, C.; Mayoral, A.M.; Morales, J.; González, J.; García-Orenes, F.; Gómez, I. Water repellency under different plant species in a calcareous forest soil in a semiarid Mediterranean environment. Hydrol. Process. 2007, 21, 2300–2309. [Google Scholar] [CrossRef]
- Zavala, L.M.; González, F.A.; Jordán, A. Intensity and persistence of water repellency in relation to vegetation types and soil parameters in Mediterranean SW Spain. Geoderma 2009, 152, 361–374. [Google Scholar] [CrossRef]
- Lichner, L.; Holko, L.; Zhukova, N.; Schacht, K.; Rajkai, K.; Fodor, N.; Sándor, R. Plants and biological soil crust influence the hydrophysical parameters and water flow in an aeolian sandy soil. J. Hydrol. Hydromech. 2012, 60, 309–318. [Google Scholar] [CrossRef]
- Orfánus, T.; Dlapa, P.; Fodor, N.; Rajkai, K.; Sándor, R.; Nováková, K. How severe and subcritical water repellency determines the seasonal infiltration in natural and cultivated sandy soils. Soil Tillage Res. 2014, 135, 49–59. [Google Scholar] [CrossRef]
- Prusinkiewicz, Z.; Kosakowski, A. The wettability of soil organic matter as the forming factor of the water properties of forest soils. Rocz. Glebozn.-Soil Sci. Annu. 1986, 37, 3–23. [Google Scholar]
- Pudełko, R.; Kozak, M.; Jędrejek, A.; Gałczyńska, M.; Pomianek, B. Regionalisation of unutilised agricultural area in Poland. Polish J. Soil Sci. 2018, 51, 119. [Google Scholar] [CrossRef]
- Navarro, L.M.; Pereira, H.M. Rewilding abandoned landscapes in Europe. In Rewilding European Landscapes; Springer: Cham, Switzerland, 2015; pp. 3–23. [Google Scholar]
- Verburg, P.H.; Overmars, K.P. Combining top-down and bottom-up dynamics in land use modeling: Exploring the future of abandoned farmlands in Europe with the Dyna-CLUE model. Landsc. Ecol. 2009, 24, 1167–1181. [Google Scholar] [CrossRef]
- Schwilch, G.; Lemann, T.; Berglund, Ö.; Camarotto, C.; Cerdà, A.; Daliakopoulos, I.N.; Kohnová, S.; Krzeminska, D.; Marañón, T.; Rietra, R.; et al. Assessing impacts of soil management measures on Ecosystem Services. Sustainability 2018, 10, 4416. [Google Scholar] [CrossRef]
- Borecki, T.; Łopiński, Ł.; Kędziora, W.; Orzechowski, M.; Wójcik, R.; Stępień, E. The Concept of Regulating Forest Management in a Region Subject to High Environmental Pressure. Forests 2018, 9, 539. [Google Scholar] [CrossRef]
- Borecki, T.; Orzechowski, M.; Stępień, E.; Wójcik, R. Expected impact of climate change on forest ecosystems and its consequences in forest management planning. Sylwan 2017, 161, 531–538. [Google Scholar]
- Keesstra, S.; Mol, G.; de Leeuw, J.; Okx, J.; de Cleen, M.; Visser, S. Soil-related sustainable development goals: Four concepts to make land degradation neutrality and restoration work. Land 2018, 7, 133. [Google Scholar] [CrossRef]
- Griggs, D.; Stafford-Smith, M.; Gaffney, O.; Rockström, J.; Öhman, M.C.; Shyamsundar, P.; Steffen, W.; Glaser, G.; Kanie, N.; Noble, I. Policy: Sustainable development goals for people and planet. Nature 2013, 495, 305–307. [Google Scholar] [CrossRef]
- Steffen, W.; Richardson, K.; Rockström, J.; Cornell, S.E.; Fetzer, I.; Bennett, E.M.; Biggs, R.; Carpenter, S.R.; de Vries, W.; de Wit, C.A.; et al. Planetary boundaries: Guiding human development on a changing planet. Science 2015, 347, 1259855. [Google Scholar] [CrossRef]
- Keesstra, S.; Nunes, J.P.; Saco, P.; Parsons, T.; Poeppl, R.; Masselink, R.; Cerdà, A. The way forward: Can connectivity be useful to design better measuring and modelling schemes for water and sediment dynamics? Sci. Total Environ. 2018, 644, 1557–1572. [Google Scholar] [CrossRef]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014, Update 2015 International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports No. 106; IUSS: Austria Vienna, 2015; p. 192. [Google Scholar]
- Papierowska, E.; Matysiak, W.; Szatyłowicz, J.; Debaene, G.; Urbanek, E.; Kalisz, B.; Łachacz, A. Compatibility of methods used for soil water repellency determination for organic and organo-mineral soils. Geoderma 2018, 314, 221–231. [Google Scholar] [CrossRef]
- Dekker, L.W.; Jungerius, P.D. Water repellency in the dunes with special reference to The Netherlands. Catena 1990, 18, 173–183. [Google Scholar]
- Ryżak, M.; Bartminski, P.; Bieganowski, A. Method for determination of particle size distribution of mineral soils. Acta Agrophys. 2009, 175, 1–84. [Google Scholar]
- Lityński, T.; Jurkowska, H.; Gorlach, E. Chemical and Agriculture Analysis; PWN: Warszawa, Poland, 1976; pp. 129–132. [Google Scholar]
- Klute, A. Methods of Soil Analysis. Part 1. Physical and Mineralogical Methods. Agronomy Monographs; ASA and SSA, A. Klute: Madison, WI, USA, 1986; Volume 9. [Google Scholar]
- Soil Survey Division Staff. Soil Survey Manual; United States Department of Agriculture: Washington, DC, USA, 1993; p. 315.
- Buczko, U.; Bens, O.; Huttl, R.F. Water infiltration and hydrophobicity in forest soils of a pine–beech transformation chronosequence. J. Hydrol. 2006, 331, 383–395. [Google Scholar] [CrossRef]
- Lichner, Ľ.; Capuliak, J.; Zhukova, N.; Holko, L.; Czachor, H.; Kollár, J. Pines influence hydrophysical parameters and water flow in a sandy soil. Biologia 2013, 68, 1104–1108. [Google Scholar] [CrossRef]
- Di Prima, S.; Lassabatere, L.; Rodrigo-Comino, J.; Marrosu, R.; Pulido, M.; Angulo-Jaramillo, R.; Úbeda, X.; Keesstra, S.; Cerdà, A.; Pirastru, M. Comparing transient and steady-state analysis of single-ring infiltrometer data for an abandoned field affected by fire in Eastern Spain. Water 2018, 10, 514. [Google Scholar] [CrossRef]
- Tezza, L.; Vendrame, N.; Pitacco, A. Disentangling the carbon budget of a vineyard: The role of soil management. Agric. Ecosyst. Environ. 2019, 272, 52–62. [Google Scholar] [CrossRef]
- Boczoń, A.; Kowalska, A.; Dudzińska, M.; Wróbel, M. Drought in Polish Forests in 2015. Polish J. Environ. Stud. 2016, 25, 1857–1862. [Google Scholar] [CrossRef]
- Stojanovic, M.; Drumond, A.; Nieto, R.; Gimeno, L. Anomalies in Moisture Supply during the 2003 Drought Event in Europe: A Lagrangian Analysis. Water 2018, 10, 467. [Google Scholar] [CrossRef]
- Koutroulis, A.G.; Papadimitriou, L.V.; Grillakis, M.G.; Tsanis, I.K.; Wyser, K.; Betts, R.A. Freshwater vulnerability under high end climate change. A pan-European assessment. Sci. Total Environ. 2018, 613, 271–286. [Google Scholar] [CrossRef]
- Ferreira, C.S.S.; Walsh, R.P.D.; Shakesby, R.A.; Keizer, J.J.; Soares, D.; González-Pelayo, O.; Ferreira, A.J.D. Differences in overland flow, hydrophobicity and soil moisture dynamics between Mediterranean woodland types in a peri-urban catchment in Portugal. J. Hydrol. 2016, 533, 473–485. [Google Scholar] [CrossRef]
- Rye, C.F.; Smettem, K.R.J. The effect of water repellent soil surface layers on preferential flow and bare soil evaporation. Geoderma 2017, 289, 142–149. [Google Scholar] [CrossRef]
- Hewelke, P.; Gnatowski, T.; Hewelke, E.; Tyszka, J.; Zakowicz, S. Analysis of Water Retention Capacity for Select Forest Soils in Poland. Polish J. Environ. Stud. 2015, 24, 1013–1019. [Google Scholar] [CrossRef]
- Hewelke, P.; Hewelke, E.; Chołast, S.; Żakowicz, S.; Lesak, M. Assessment of the possibility of applying selected pedotransfer functions for indicating the retention of forest soils in Poland. Sci. Rev. Eng. Environ. Sci. 2017, 26, 336–345. [Google Scholar] [CrossRef]
- Hewelke, P.; Hewelke, E.; Oleszczuk, R.; Kwas, M. The application of pedotransfer functions in the estimation of water retention in alluvial soils in Żuławy Wiślane, northern Poland. Soil Sci. Annu. 2018, 69, 3–10. [Google Scholar] [CrossRef]
- Rodrigo Comino, J.; Keesstra, S.D.; Cerdà, A. Connectivity assessment in Mediterranean vineyards using improved stock unearthing method, LiDAR and soil erosion field surveys. Earth Surface Process. Landf. 2018, 43, 2193–2206. [Google Scholar] [CrossRef]
- Siebielec, G.; Smreczak, B.; Klimkowicz-Pawlas, A.; Kowalik, M.; Kaczyński, R.; Koza, P.; Ukalska-Jaruga, A.; Łysiak, M.; Wójtowicz, U.; Poręba, L.; et al. Report on the Third Phase of the Contract “Monitoring of Arable Soil Chemistry in Poland in 2015–2017”; IUNG-PIB: Puławy, Poland, 2017; p. 190. [Google Scholar]
- Orfánus, T.; Bedrna, Z.; Lichner, L.; Hallet, P.D.; Kňava, K.; Sebíň, M. Spatial variability of water repellency in pine forest soil. Soil Water Res. 2008, 3, 123–129. [Google Scholar] [CrossRef]
- Buczko, U.; Bens, O.; Fischer, H.; Hüttl, R.F. Water repellency in sandy luvisols under different forest transformation stages in northeast Germany. Geoderma 2002, 109, 1–18. [Google Scholar] [CrossRef]
- Vogelmann, E.S.; Reichert, J.M.; Prevedello, J.; Consensa, C.O.B.; Oliveira, A.É.; Awe, G.O.; Mataix-Solera, J. Threshold water content beyond which hydrophobic soils become hydrophilic: The role of soil texture and organic matter content. Geoderma 2013, 209, 177–187. [Google Scholar] [CrossRef]
- Dekker, L.W.; Doerr, S.H.; Oostindie, K.; Ziogas, A.K.; Ritsema, C.J. Water repellency and critical soil water content in a dune sand. Soil Sci. Soc. Am. J. 2001, 65, 1667–1674. [Google Scholar] [CrossRef]
- Ziogas, A.K.; Dekker, L.W.; Oostindie, K.; Ritsema, C.J. Soil water repellency in north-eastern Greece with adverse effects of drying on the persistence. Soil Res. 2005, 43, 281–289. [Google Scholar] [CrossRef]
- Dekker, L.W.; Ritsema, C.J. Variation in water content and wetting patterns in Dutch water repellent peaty clay and clayey peat soils. Catena 1996, 28, 89–105. [Google Scholar] [CrossRef]
- Cerdà, A.; Doerr, S.H. Soil wettability, runoff and erodibility of major dry-Mediterranean land use types on calcareous soils. Hydrol. Process. 2007, 21, 2325–2336. [Google Scholar] [CrossRef]
- Miyata, S.; Kosugi, K.I.; Gomi, T.; Onda, Y.; Mizuyama, T. Surface runoff as affected by soil water repellency in a Japanese cypress forest. Hydrol. Process. Int. J. 2007, 21, 2365–2376. [Google Scholar] [CrossRef]
- Neris, J.; Tejedor, M.; Rodríguez, M.; Fuentes, J.; Jiménez, C. Effect of forest floor characteristics on water repellency, infiltration, runoff and soil loss in Andisols of Tenerife (Canary Islands, Spain). Catena 2013, 108, 50–57. [Google Scholar] [CrossRef]
- Olorunfemi, I.E.; Fasinmirin, J.T. Land use management effects on soil hydrophobicity and hydraulic properties in Ekiti State, forest vegetative zone of Nigeria. Catena 2017, 155, 170–182. [Google Scholar] [CrossRef]
- Hejduk, L.; Hejduk, A.; Baryła, A.; Hewelke, E. Influence of selected factors on erodibility in catchment scale on the basis of field investigation. J. Ecol. Eng. 2017, 18, 256–267. [Google Scholar] [CrossRef]
- Cerdà, A.; Rodrigo-Comino, J.; Novara, A.; Brevik, E.C.; Vaezi, A.R.; Pulido, M.; Giménez-Morera, A.; Keesstra, S.D. Long-term impact of rainfed agricultural land abandonment on soil erosion in the Western Mediterranean basin. Prog. Phys. Geogr. Earth Environ. 2018, 42, 202–219. [Google Scholar] [CrossRef]
- Mao, J.; Nierop, K.G.; Dekker, S.C.; Dekker, L.W.; Chen, B. Understanding the mechanisms of soil water repellency from nanoscale to ecosystem scale: A review. J. Soils Sediments 2019, 19, 1–15. [Google Scholar] [CrossRef]
- Butzen, V.; Seeger, M.; Marruedo, A.; de Jonge, L.; Wengel, R.; Ries, J.B.; Casper, M.C. Water repellency under coniferous and deciduous forest—Experimental assessment and impact on overland flow. Catena 2015, 133, 255–265. [Google Scholar] [CrossRef]
Classification | Threshold WDPT Test | Class |
---|---|---|
Hydrophilic | ≤5 s | 0 |
Slightly water repellent | 5–60 s | 1 |
Strongly water repellent | 60–600 s | 2 |
Severely water repellent | 600 s–1 h | 3 |
Extremely water repellent | 1–3 h | 4 |
Extremely water repellent | 3–6 h | 5 |
Extremely water repellent | >6 h | 6 |
Characteristic | Site 1 Forest (after Arable Usage) | Site 2 Extensive Arable Usage |
---|---|---|
Sand (%) | 94 | 94 |
Silt (%) | 4 | 4 |
Clay (%) | 2 | 2 |
Soil bulk density, n = 5 (kg m−3) | 151040.1 | 1490 ± 45.2 |
Total porosity, n = 5 (%) | 43.01 ± 0.16 | 43.8 ± 1.7 |
Soil organic carbon n = 3 (%) | 1.25 ± 0.19 | 0.89 ± 0.13 |
Nitrogen total n = 3 (%) | 0.0939 ± 0.0007 | 0.0676 ± 0.0003 |
C:N | 13.3 | 13.2 |
pH (H20) n = 3 (−) | 4. 7 ± 0.1 | 5.3 ± 0.1 |
WDPT Characteristic | Site 1 | Site 2 |
---|---|---|
Median (s) | 17,700 | 90 |
Average (s) | 17,760 | 123 |
Max (s) | 19,200 | 284 |
Min (s) | 16,080 | 38 |
Range (s) | 3120 | 246 |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hewelke, E. Influence of Abandoning Agricultural Land Use on Hydrophysical Properties of Sandy Soil. Water 2019, 11, 525. https://doi.org/10.3390/w11030525
Hewelke E. Influence of Abandoning Agricultural Land Use on Hydrophysical Properties of Sandy Soil. Water. 2019; 11(3):525. https://doi.org/10.3390/w11030525
Chicago/Turabian StyleHewelke, Edyta. 2019. "Influence of Abandoning Agricultural Land Use on Hydrophysical Properties of Sandy Soil" Water 11, no. 3: 525. https://doi.org/10.3390/w11030525
APA StyleHewelke, E. (2019). Influence of Abandoning Agricultural Land Use on Hydrophysical Properties of Sandy Soil. Water, 11(3), 525. https://doi.org/10.3390/w11030525