Numerical Analysis of Recharge Rates and Contaminant Travel Time in Layered Unsaturated Soils
Abstract
:1. Introduction
2. Materials and Methods
2.1. General Assumptions
2.2. Structure and Hydraulic Properties of Soils
2.3. Initial and Boundary Conditions
2.4. Numerical Discretization
2.5. Steady-State Methods for Contaminant Travel Time
3. Results
4. Summary and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Scanlon, B.R.; Christman, M.; Reedy, R.C.; Porro, I.; Simunek, J.; Flerchinger, G.N. Intercode comparisons for simulating water balance of surficial sediments in semiarid regions. Water Resour. Res. 2002, 38. [Google Scholar] [CrossRef]
- Keese, K.E.; Scanlon, B.R.; Reedy, R.C. Assessing controls on diffuse groundwater recharge using unsaturated flow modeling. Water Resour. Res. 2005, 41. [Google Scholar] [CrossRef] [Green Version]
- Ordens, C.M.; Post, V.E.; Werner, A.D.; Hutson, J.L. Influence of model conceptualisation on one-dimensional recharge quantification: Uley South, South Australia. Hydrogeol. J. 2014, 22, 795–805. [Google Scholar] [CrossRef]
- Vero, S.E.; Ibrahim, T.G.; Creamer, R.E.; Grant, J.; Healy, M.G.; Henry, T.; Kramers, G.; Richards, K.G.; Fenton, O. Consequences of varied soil hydraulic and meteorological complexity on unsaturated zone time lag estimates. J. Contam. Hydrol. 2014, 170, 53–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, T.; Franz, T.E.; Zlotnik, V.A. Controls of soil hydraulic characteristics on modeling groundwater recharge under different climatic conditions. J. Hydrol. 2015, 521, 470–481. [Google Scholar] [CrossRef]
- Fenton, O.; Vero, S.; Ibrahim, T.G.; Murphy, P.N.C.; Sherriff, S.C.; Ó hUallacháin, D. Consequences of using different soil texture determination methodologies for soil physical quality and unsaturated zone time lag estimates. J. Contam. Hydrol. 2015, 182, 16–24. [Google Scholar] [CrossRef] [PubMed]
- Vero, S.E.; Healy, M.G.; Henry, T.; Creamer, R.E.; Ibrahim, T.G.; Richards, K.G.; Mellander, P.-E.; McDonald, N.T.; Fenton, O. A framework for determining unsaturated zone water quality time lags at catchment scale. Agric. Ecosyst. Environ. 2017, 236, 234–242. [Google Scholar] [CrossRef]
- Batalha, M.S.; Barbosa, M.C.; Faybishenko, B.; van Genuchten, M.T. Effect of temporal averaging of meteorological data on predictions of groundwater recharge. J. Hydrol. Hydromech. 2018, 66, 143–152. [Google Scholar] [CrossRef] [Green Version]
- Szymkiewicz, A.; Gumuła-Kawęcka, A.; Šimůnek, J.; Leterme, B.; Beegum, S.; Jaworska-Szulc, B.; Pruszkowska-Cacers, M.; Gorczewska-Langner, W.; Jacques, D. Simulations of freshwater lens recharge and salt/freshwater interfaces using the HYDRUS and SWI2 packages for MODFLOW. J. Hydrol. Hydromech. 2018, 66, 246–256. [Google Scholar] [CrossRef] [Green Version]
- Bashir, R.; Pastora Chevez, E. Spatial and seasonal variations of water and salt movement in the vadose zone at salt-impacted sites. Water 2018, 10, 1833. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, X.S.; Han, P.F. Depth-dependent seasonal variation of soil water in a thick vadose zone in the Badain Jaran Desert, China. Water 2018, 10, 1719. [Google Scholar] [CrossRef]
- Beegum, S.; Šimůnek, J.; Szymkiewicz, A.; Sudheer, K.P.; Nambi, I.M. Implementation of solute transport in the vadose zone into the ‘HYDRUS package for MODFLOW’. Groundwater 2018. [Google Scholar] [CrossRef]
- Šimůnek, J.; Šejna, M.; Saito, H.; Sakai, M.; van Genuchten, M.T. The HYDRUS-1D Software Package for Simulating the One-Dimensional Movement of Water, Heat, and Multiple Solutes in Variably-Saturated Media, Version 4.0; HYDRUS Software Series 3; University of California: Riverside, CA, USA, 2008. [Google Scholar]
- Kroes, J.G.; van Dam, J.C.; Bartholomeus, R.P.; Groenendijk, P.; Heinen, M.; Hendriks, R.F.A.; Mulder, H.M.; Supit, I.; van Walsum, P.E.V. SWAP Version 4. Theory Description and User Manual; Report 2780; Wageningen University & Research: Wageningen, The Netherlands, 2017. [Google Scholar]
- Fayer, M.J.; Jones, T.L. UNSAT-H Version 2.0: Unsaturated Soil Water and Heat Flow Model (No. PNL-6779); Pacific Northwest Lab.: Richland, WA, USA, 1990.
- Schroeder, P.R.; Dozier, T.S.; Zappi, P.A.; McEnroe, B.M.; Sjostrom, J.W.; Peton, R.L. The Hydrologic Evaluation of Landfill Performance (HELP) Model: Engineering Documentation for Version 3; EPA/600/R-94/168b; US. Environmental Protection Agency, Risk Reduction Engineering Laboratory: Cincinnati, OH, USA, 1994.
- Charbeneau, R.J. Groundwater Hydraulics and Pollutant Transport; Waveland Press: Long Grove, IL, USA, 2006; ISBN 1478608315. [Google Scholar]
- Fenton, O.; Schulte, R.P.; Jordan, P.; Lalor, S.T.; Richards, K.G. Time lag: A methodology for the estimation of vertical and horizontal travel and flushing timescales to nitrate threshold concentrations in Irish aquifers. Environ. Sci. Policy 2011, 14, 419–431. [Google Scholar] [CrossRef]
- Sousa, M.R.; Jones, J.P.; Frind, E.O.; Rudolph, D.L. A simple method to assess unsaturated zone time lag in the travel time from ground surface to receptor. J. Contam. Hydrol. 2013, 144, 138–151. [Google Scholar] [CrossRef]
- Potrykus, D.; Gumuła-Kawęcka, A.; Jaworska-Szulc, B.; Pruszkowska-Caceres, M.; Szymkiewicz, A. Assessing groundwater vulnerability to pollution in the Puck region (denudation moraine upland) using vertical seepage method. E3S Web Conf. 2018, 44, 00147. [Google Scholar] [CrossRef]
- Szymkiewicz, A.; Gumuła-Kawęcka, A.; Potrykus, D.; Jaworska-Szulc, B.; Pruszkowska-Caceres, M.; Gorczewska-Langner, W. Estimation of conservative contaminant travel time through vadose zone based on transient and steady flow approaches. Water 2018, 10, 1417. [Google Scholar] [CrossRef]
- Feddes, R.A.; Kowalik, P.J.; Zaradny, H. Simulation of Field Water Use and Crop Yield; Simulation Monographs; Pudoc: Wageningen, The Netherlands, 1978. [Google Scholar]
- Šimůnek, J.; van Genuchten, M.T. Modeling nonequilibrium flow and transport processes using HYDRUS. Vadose Zone J. 2008, 7, 782–797. [Google Scholar] [CrossRef]
- Szymkiewicz, A.; Lewandowska, J. Unified macroscopic model for unsaturated water flow in soils of bimodal porosity. Hydrol. Sci. J. 2006, 51, 1106–1124. [Google Scholar] [CrossRef] [Green Version]
- Van Genuchten, M.T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 1980, 44, 892–898. [Google Scholar] [CrossRef]
- Carsel, R.F.; Parrish, R.S. Developing joint probability distributions of soil water retention characteristics. Water Resour. Res. 1988, 24, 755–769. [Google Scholar] [CrossRef]
- Von Hoyningen-Hüne, J. Die Interception des Niederschlags in landwirtschaftlichen Beständen. Schr. DVWK 1983, 57, 1–53. [Google Scholar]
- Braden, H. Ein Energiehaushalts- und Verdunstungsmodell für Wasser und Stoffhaushaltuntersuchungen landwirtschaftlich genutzer Einzugsgebiete. Mitt. Deutsch.Bodenkd. Geselschaft 1985, 42, 294–299. (In German) [Google Scholar]
- Szymkiewicz, A. Approximation of internodal conductivities in numerical simulation of one-dimensional infiltration, drainage, and capillary rise in unsaturated soils. Water Resour. Res. 2009, 45, W10403. [Google Scholar] [CrossRef]
- Charbeneau, R.J.; Daniel, D.E. Contaminant transport in unsaturated flow. In Handbook of Hydrology; Maidment, D.R., Ed.; McGraw-Hill: New York, NY, USA, 1993. [Google Scholar]
- Witczak, S.; Żurek, A. Wykorzystanie map glebowo-rolniczych w ocenie ochronnej roli gleb dla wód podziemnych (Use of soil-agricultural maps in the evolution of protective role of soil for groundwater). In Metodyczne Podstawy Ochrony Wód Podziemnych; Methodical Principles of Groundwater Protection; Kleczkowski, A., Ed.; AkademiaGórniczo-Hutnicza: Kraków, Poland, 1994. (In Polish) [Google Scholar]
- Duda, R.; Winid, B.; Zdechlik, R.; Stępień, M. Metodyka Wyboru Optymalnej Metody Wyznaczania Zasięgu Stref Ochronnych Ujęć Zwykłych Wód Podziemnych z Uwzględnieniem Warunków Hydrogeologicznych Obszaru RZGW w Krakowie; Methodology of Selecting the Optimal Method of the Wellhead Protection Area Delineation Taking into Account the Hydrogeological Conditions in Areas Administered by the Regional Water Management Board in Cracow; Akademia Górniczo-Hutnicza: Kraków, Poland, 2013; ISBN 9788388927294. (In Polish) [Google Scholar]
Soil Type | θr (-) | θs (-) | α (m−1) | ng (-) | ks (m s−1) | θfield Range (-) |
---|---|---|---|---|---|---|
Sand [25] | 0.045 | 0.430 | 14.50 | 2.68 | 8.25 × 10−5 | 0.07−0.10 |
Silty clay [25] | 0.07 | 0.36 | 0.50 | 1.09 | 5.56 × 10−8 | 0.24−0.38 |
Sandy loam [25] | 0.065 | 0.41 | 7.50 | 1.89 | 1.22 × 10−5 | 0.18−0.26 |
Loam [25] | 0.078 | 0.43 | 3.60 | 1.56 | 2.89 × 10−6 | 0.24−0.38 |
Loamy sand [25] | 0.057 | 0.41 | 12.40 | 2.28 | 4.05 × 10−5 | 0.18−0.26 |
Silt [19] | 0.021 | 0.43 | 0.66 | 1.68 | 8.00 × 10−8 | 0.30−0.36 |
Gravelly silt [19] | 0.016 | 0.41 | 2.67 | 1.45 | 1.00 × 10−6 | 0.18−0.36 |
Gravel [19] | 0.001 | 0.28 | 49.30 | 2.19 | 5.00 × 10−2 | 0.05−0.10 |
Clayey sand [19] | 0.020 | 0.40 | 3.48 | 1.75 | 5.00 × 10−5 | 0.18−0.26 |
Medium sand [19] | 0.019 | 0.36 | 3.52 | 3.18 | 5.00 × 10−3 | 0.07−0.10 |
Silty sand [19] | 0.018 | 0.37 | 3.48 | 1.75 | 5.00 × 10−4 | 0.18−0.26 |
Name | Reference | Method to Calculate θ(z) |
---|---|---|
hydrostatic | [19] | θ variable in each soil layer,θ(z) = θ(h(z)), h(z) corresponds to hydrostatic equilibrium above the groundwater table |
steady flow | [19] | θ variable in each soil layer,θ(z) = θ(h(z)), h(z) obtained from the solution of steady flow equation with uniform flux equal to the average groundwater recharge |
Charbeneau and Daniel | [17,30] | θ uniform in each soil layer, calculated from Equation (6) |
Witczak and Żurek | [31,32] | θ uniform in each soil layer, chosen from a range of typical field values θfield provided in Reference [29,30] |
Quantity | Mean Annual Recharge (mm/year) | Recharge/Precipitation Ratio (-) | Arrival Time c = 0.01 mg/cm3 (days) | Arrival Time c = 0.99 mg/cm3 (days) |
---|---|---|---|---|
Profile A | 312 | 0.57 | 424 | 661 |
Profile B | 62 | 0.11 | 7962 | 10010 |
Profile C | 61 | 0.11 | 4460 | 6198 |
Profile D | 325 | 0.59 | 895 | 1535 |
Profile E | 316 | 0.57 | 746 | 1030 |
Profile F | 319 | 0.58 | 736 | 1022 |
Profile G | 320 | 0.58 | 738 | 1020 |
Profile H | 247 | 0.45 | 10512 | 12642 |
Profile I | 98 | 0.18 | 808 | 1524 |
Profile J | 195 | 0.35 | 794 | 1308 |
Method | Hydrostatic | Steady Flow | Charbeneau & Daniel [28] | Witczak & Żurek [29] |
---|---|---|---|---|
Profile A | 383 | 655 | 629 | 491–702 |
Profile B | 12,011 | 12,650 | 11,445 | 8477–11,303 |
Profile C | 7106 | 7948 | 7164 | 5565–7539 |
Profile D | 1325 | 1545 | 1453 | 1044–1415 |
Profile E | 849 | 1124 | 1030 | 758–1044 |
Profile F | 879 | 1155 | 1057 | 780–1074 |
Profile G | 880 | 1141 | 1045 | 770–1163 |
Profile H | 12,512 | 12,747 | 12,590 | 12,728–13,078 |
Profile I | 1334 | 2121 | 1419 | 1661–2875 |
Profile J | 1111 | 1310 | 830 | 2003–2883 |
Quantity | Mean Annual Recharge (mm/year) | Recharge/Precipitation Ratio (-) | Arrival Time c = 0.01 mg/cm3 (days) | Arrival Time c = 0.99 mg/cm3 (days) |
---|---|---|---|---|
Profile A | 220 | 0.40 | 531 | 806 |
Profile B | 38 | 0.07 | 11,782 | 13,555 |
Profile C | 38 | 0.07 | 6336 | 8706 |
Profile D | 223 | 0.42 | 1480 | 1876 |
Profile E | 215 | 0.39 | 851 | 1526 |
Profile F | 224 | 0.41 | 834 | 1503 |
Profile G | 224 | 0.41 | 830 | 1501 |
Profile H | 195 | 0.35 | 12,956 | 15,477 |
Profile I | 52 | 0.09 | 963 | 1852 |
Profile J | 156 | 0.28 | 1314 | 1660 |
Method | Hydrostatic | Steady Flow | Charbeneau & Daniel [28] | Witczak & Żurek [29] |
---|---|---|---|---|
Profile A | 543 | 892 | 857 | 697–995 |
Profile B | 19,598 | 20,550 | 18,392 | 13,832–21,900 |
Profile C | 11,407 | 12,630 | 11,271 | 8933–13,832 |
Profile D | 1880 | 2170 | 2027 | 1482–2295 |
Profile E | 1283 | 1661 | 1514 | 1146–1732 |
Profile F | 1241 | 1598 | 1457 | 1100–1662 |
Profile G | 1257 | 1598 | 1457 | 1100–1662 |
Profile H | 15,849 | 16,120 | 15,926 | 16,116–16,565 |
Profile I | 2513 | 3905 | 2454 | 3131–5419 |
Profile J | 1388 | 1623 | 1011 | 2504–3603 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szymkiewicz, A.; Savard, J.; Jaworska-Szulc, B. Numerical Analysis of Recharge Rates and Contaminant Travel Time in Layered Unsaturated Soils. Water 2019, 11, 545. https://doi.org/10.3390/w11030545
Szymkiewicz A, Savard J, Jaworska-Szulc B. Numerical Analysis of Recharge Rates and Contaminant Travel Time in Layered Unsaturated Soils. Water. 2019; 11(3):545. https://doi.org/10.3390/w11030545
Chicago/Turabian StyleSzymkiewicz, Adam, Julien Savard, and Beata Jaworska-Szulc. 2019. "Numerical Analysis of Recharge Rates and Contaminant Travel Time in Layered Unsaturated Soils" Water 11, no. 3: 545. https://doi.org/10.3390/w11030545
APA StyleSzymkiewicz, A., Savard, J., & Jaworska-Szulc, B. (2019). Numerical Analysis of Recharge Rates and Contaminant Travel Time in Layered Unsaturated Soils. Water, 11(3), 545. https://doi.org/10.3390/w11030545