Hydrodynamic Characterization of Sustainable Urban Drainage Systems (SuDS) by Using Beerkan Infiltration Experiments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Studied Sites and Structures
2.2. Infiltration Tests
2.3. BEST Method for Hydraulic Parameter Estimation
2.4. Statistical Analysis
3. Results and Discussion
3.1. Hydrodynamic Characteristics of SuDS
3.2. Statistical Analysis of the Three BEST Methods
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Martinelli, I. Infiltration des eaux de ruissellement pluvial et transfert de polluants associés dans un sol urbain: Vers une approche globale et pluridisciplinaire; INSA Lyon: Lyon, France, 1999. [Google Scholar]
- Mikkelsen, P.S.; Hӓfliger, M.; Ochs, M.; Tjell, J.C.; Jacobsen, P.; Boleer, M. Experimental assessment of soil and groundwater contamination from two old infiltration systems for road run-off in switzerland. Sci. Total Environ. 1996, 189/190, 341–347. [Google Scholar] [CrossRef]
- Scholz, M. Wetland Systems to Control Urban Runoff, 1st ed.; Elsevier: Oxford, UK, 2006. [Google Scholar]
- Arora, D.; Jindal, N.; Shukla, R.K.; Bansal, R. Water borne Hepatitis A and Hepatitis E in Malwa Region of Punjab, India. J. Clin. Diagn. Res. 2013, 2163–2166. [Google Scholar] [CrossRef]
- Hatt, B.E.; Fletcher, T.D.; Deletic, A. Treatment performance of gravel filter media: Implications for design and application of stormwater infiltration systems. Water Res. 2007, 41, 2513–2524. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Zlotnik, V.A.; Wedin, D.; Wally, K.D. Spatial trends in saturated hydraulic conductivity of vegetated dunes in the Nebraska Sand Hills: Effects of depth and topography. J. Hydrol. 2008, 349, 88–97. [Google Scholar] [CrossRef]
- Fletcher, T.D.; Shuster, W.; Hunt, W.F.; Ashley, R.; Butler, D.; Arthur, S.; Trowsdale, S.; Barraud, S.; Semadeni-Davies, A.; Bertrand-Krajewski, J.-L. SUDS, LID, BMPs, WSUD and more—The evolution and application of terminology surrounding urban drainage. Urban Water J. 2014, 12, 525–542. [Google Scholar] [CrossRef]
- Palhegyi, G.E. Designing storm-water controls to promote sustainable ecosystems: Science and application. J. Hydrol. Eng. 2010, 15, 504–511. [Google Scholar] [CrossRef]
- Woods Ballard, B.; Wilson, S.; Udale-Clarke, H.; Illman, S.; Scott, T.; Ashley, R.; Kellagher, R. The SuDS Manual; CIRIA C753; CIRIA: London, UK, 2015. [Google Scholar]
- Boogaard, F.C.; van de Ven, F.; Langeveld, J.G.; Kluck, J.; van de Giesen, N. Removal efficiency of storm water treatment techniques: Standardized full scale laboratory testing. Urban Water J. 2015, 14, 255–262. [Google Scholar] [CrossRef]
- Bettess, R. Infiltration Drainage-Manual of Good Practice; CIRIA R156; CIRIA: London, UK, 1996; ISBN 978-0-86017-457-8. [Google Scholar]
- BRE Digest 365. Soakway Design; Buildings Research Establishment: Bracknell, UK, 1991; ISBN 0-85125-502-7. [Google Scholar]
- Allaire, S.E.; Roulier, S.; Cessna, A.J. Quantifying preferential flow in soils: A review of different techniques. J. Hydrol. 2009, 378, 179–204. [Google Scholar] [CrossRef]
- Lamy, E.; Lassabatere, L.; Bechet, B.; Andrieu, H. Modeling the influence of an artificial macropore in sandy columns on flow and transfer. J. Hydrol. 2009, 376, 392–402. [Google Scholar] [CrossRef]
- Lassabatere, L.; Spadini, L.; Delolme, C.; Fevrier, L.; Cloutier, R.G.; Winiarski, T. Concomitant Zn-Cd and Pb retention in a carbonated fluvio-glacial deposit under both static and dynamic conditions. Chemosphere 2007, 69, 1499–1508. [Google Scholar] [CrossRef]
- Angulo-Jaramillo, R.; Bagarello, V.; Iovino, M.; Lassabatere, L. Soils with specific features infiltration. In Measurements for Soil Hydraulic Characterization; Springer: Cham, Switzerland, 2016; pp. 289–346. [Google Scholar]
- Di Prima, S.; Lassabatere, L.; Bagarello, V.; Iovino, M.; Angulo-Jaramillo, A. Testing a new automated single ring infiltrometer for Beerkan infiltration experiments. Geoderma 2015, 262, 20–34. [Google Scholar] [CrossRef]
- Lassabatere, L.; Angulo-Jaramillo, R.; Soria Ugalde, J.M.; Cuenca, R.; Braud, I.; Haverkamp, R. Beerkan estimation of soil transfer parameters through infiltration Experiments—BEST. Soil Sci. Soc. Am. J. 2006, 70, 521–532. [Google Scholar] [CrossRef]
- Haverkamp, R.; Arrue, J.L.; Vandervaere, J.-P.; Braud, I.; Boulet, G.; Laurent, J.P.; Taha, A.; Ross, P.J.; Angulo-Jaramillo, R. Hydrological and Thermal Behaviour of the Vadose Zone in the Area of Barrax and Tomelloso (Spain): Experimental Study, Analysis and Modeling; Project UE 1996; n8 EV5C-CT 92 00 90; European Union: Brussels, Belgium; p. 1996.
- van Genuchten, M.T. A closed form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 1980, 44, 892–898. [Google Scholar] [CrossRef]
- Burdine, N.T. Relative permeability calculation from pore size Distribution data. Petr. Trans. Am. Inst. Min. Metall. Eng. 1953, 198, 71–77. [Google Scholar] [CrossRef]
- Brooks, R.H.; Corey, C.T. Hydraulics Properties of Porous Media; Hydrology Paper 3; Colorado State University: Fort Collins, CO, USA, 1964. [Google Scholar]
- Haverkamp, R.; Bouraoui, F.; Zammit, C.; Angulo-Jaramillo, R.; Delleur, J.W. Soil properties and moisture movement in the unsaturated zone. In The Handbook of Groundwater Engineering; CRC: Boca Raton, FL, USA, 1999; pp. 2931–2935. [Google Scholar]
- Yilmaz, D.; Lassabatere, L.; Angulo-Jaramillo, R.; Deneele, D.; Legret, M. Hydrodynamic characterization of basic oxygen furnace slag through an adapted best method. Vadose Zone J. 2010, 9, 107–116. [Google Scholar] [CrossRef]
- Bagarello, V.; Di Prima, S.; Iovino, M.; Provenzano, G. Estimating field-saturated Soil hydraulic conductivity by a simplified beerkan infiltration experiment. Hydrol. Process. 2014, 28, 1095–1103. [Google Scholar] [CrossRef]
- White, I.; Sully, M.J. Macroscopic and microscopic capillary length and time scales from field infiltration. Water Resour. Res. 1987, 23, 1514–1522. [Google Scholar] [CrossRef]
- Warrick, A.W.; Broadbridge, P. Sorptivity and macroscopic capillary length relationships. Water Resour. Res. 1992, 28, 427–431. [Google Scholar] [CrossRef]
- Bagarello, V.; Iovino, M. Testing the BEST procedure to estimate the soil water retention curve. Geoderma 2012, 187–188, 67–76. [Google Scholar] [CrossRef]
- Mubarak, I.; Angulo-Jaramillo, R.; Mailhol, J.C.; Ruelle, P.; Khaledian, M.; Vauclin, M. Spatial analysis of soil surface hydraulic properties: Is infiltration method dependent? Agric. Water Manag. 2010, 97, 1517–1526. [Google Scholar] [CrossRef]
- Fuentes, C.; Vauclin, M.; Parlange, J.-Y.; Haverkamp, R. Soil water conductivity of a fractal soil. In Fractals in Soil Science; Baveye, P., Crawford, J.W., Rawls, W.J., Eds.; Lewis Publisher: Boca Raton, FL, USA, 1998; pp. 333–340. [Google Scholar]
- Zatarain, F.; Fuentes, C.; Haverkamp, R.; Antonino, A.C.D. Prediccion de la forma de la caracteristica de humedad del suelo a partir de la curva granulometrica, 1-9. In Proceedings of the XII Congreso Nacional De Irrigacion, Zacatecas, Mexico, 13–15 April 2003. [Google Scholar]
- Haverkamp, R.; Ross, P.J.; Smetten, K.R.J.; Parlange, J.Y. Three-dimensional analysis of infiltration from the disc infiltrometer: 2. Physically based infiltration equation. Water Resour. Res. 1994, 30, 2931–2935. [Google Scholar] [CrossRef] [Green Version]
- Smetten, K.R.J.; Parlange, J.Y.; Ross, P.J.; Haverkamp, R. Three-dimensional analysis of infiltration from the disc infiltrometer: 1. A capillary-base theory. Water Resour. Res. 1994, 30, 2925–2929. [Google Scholar] [CrossRef]
- Interpave. Permeable Pavements. Guide to the Design, Construction and Maintenance of Concrete Block Permeable Pavements, 6th ed.; Interpave: Leicester, UK, 2010. [Google Scholar]
- Täumer, K.; Stoffregen, H.; Wessolek, G. Determination of repellency distribution using soil organic matter and water content. Geoderma 2005, 125, 107–115. [Google Scholar] [CrossRef]
- Sañudo-Fontaneda, L.A.; Andrés-Valeri, V.C.; Rodriguez-Hernandez, J.; Castro-Fresno, D. Field Study of Infiltration Capacity Reduction of Porous Mixture Surfaces. Water 2014, 6, 661–669. [Google Scholar] [CrossRef] [Green Version]
- Razzaghmanesh, M.; Beecham, S. A Review of Permeable Pavement Clogging Investigations and Recommended Maintenance Regimes. Water 2018, 10, 337. [Google Scholar] [CrossRef]
- Andrés-Valeri, V.C.; Marchioni, M.; Sañudo-Fontaneda, L.A.; Giustozzi, F.; Becciu, G. Laboratory Assessment of the Infiltration Capacity Reduction in Clogged Porous Mixture Surfaces. Sustainability 2016, 8, 751. [Google Scholar] [CrossRef]
- Ebel, B.A.; Moody, J.A. Rethinking infiltration in wildfire-affected soils. Hydrol. Process. 2013, 27, 1510–1514. [Google Scholar] [CrossRef]
- FAWB. Advancing the Design of Stormwater Biofiltration; Facility for Advancing Water Biofiltration, Monash University: Victoria, Australia, 2008. [Google Scholar]
- FAWB. Stormwater Biofiltration Systems, Adoption Guidelines. Planning, Design and Practical Implementation; Facility for Advancing Water Biofiltration, Monash University: Victoria, Australia, 2009. [Google Scholar]
- Lassabatere, L.; Yilmaz, D.; Peyrard, X.; Peyneau, P.E.; Lenoir, T.; Šimůnek, J.; Angulo-Jaramillo, R. New analytical model for cumulative infiltration into dual-permeability soils. Vadoze Zone J. 2014, 13. [Google Scholar] [CrossRef]
- Youngs, E.G.; Leeds-Harrison, P.B. Aspects of transport processes in aggregated soils. J. Soil Sci. 1990, 41, 665675. [Google Scholar] [CrossRef]
- Mangala, O.S.; Toppo, P.; Ghoshal, S. Study of Infiltration Capacity of Different Soils. Int. J. Trend Res. Dev. 2016, 3, 388–390. [Google Scholar]
- Leeds-Harrison, P.B.; Youngs, E.G.; Uddin, B. A device for determining the sorptivity of soil aggregates. Eur. J. Soil Sci. 1994, 269–272. [Google Scholar]
- Lassabatere, L.; Angulo-Jaramillo, R.; Yilmaz, D.; Winiarski, T. BEST method: Characterization of soil unsaturated hydraulic properties. In Advances in Unsaturated Soils; Caicedo, B., Murillo, C., Hoyos, L., Colmenares, J.E., Berdugo, I.R., Eds.; CRC Press: Boca Raton, FL, USA, 2013. [Google Scholar]
- Mitchell, A.R.; Ellsworth, T.R.; Meek, B.D. Effect of root systems on preferential flow in swelling soil. Commun. Soil Sci. Plant Anal. 1995, 26, 2655–2666. [Google Scholar] [CrossRef] [Green Version]
- Tu, M.C.; Traver, R.G. Water table fluctuation from green infrastructure sidewalk planters in Philadelphia. J. Irrig. Drain E-ASCE 2019, 145, 05018008. [Google Scholar] [CrossRef]
Shape Parameters from Particle-Size Analysis | ||||
---|---|---|---|---|
Step-1: Fitting equation | ||||
(8) | (9) | F(D) is the cumulative frequency D diameter M and N shape parameters Dg scale parameter | ||
M, N and Dg are defined by optimizing the fit to the PSD (fraction < 1.3 mm) by the least square technique | ||||
Step-2: Solving for fractal dimension s | ||||
(10) | (11) | s fractal dimension of media ε soil porosity | ||
Step-3: Shape parameters | ||||
(12) | (13) | pm shape index m, n pore distribution index | ||
(14) | (15) | |||
(16) | η hydraulic conductivity shape parameter p tortuosity parameter * |
Axisymetrical infiltration model of Haverkamp et al. (1994) | ||||||
(17) | (18) | |||||
Constants A, B and C* | ||||||
(19) | (20) | (21) | ||||
β ≈ 0.6 and γ ≈ 0.75 ** | ||||||
BEST methods | ||||||
iexp steady state regression line slope | ||||||
bexp steady state regression line intercept | ||||||
BEST slope | BEST intercept | BEST steady | ||||
(22) | (24) | (26) | ||||
(23) | (25) | (27) | ||||
The Haverkamp equation fitting on experimental data allows to calculate the sorptivity S and subsequently the saturated hydraulic conductivity Ks. |
n | m | η | cp | |
---|---|---|---|---|
Embk 1 | 2.36 | 0.15 | 8.61 | 2.06 |
Embk 2 | 2.33 | 0.14 | 8.97 | 2.09 |
PKG-Int | 2.26 | 0.12 | 10.64 | 2.20 |
PKG-Alt | 2.26 | 0.12 | 10.64 | 2.20 |
Ditch | 2.28 | 0.12 | 10.08 | 2.17 |
Grid-PKG | 2.40 | 0.17 | 7.94 | 2.00 |
λm (mm) | Ks (mm s−1) | S (mm s−1/2) | IR (mm s−1) | Accuracy | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
BEST | BEST | BEST | |||||||||
slope | intercept | steady | slope | intercept | steady | slope | intercept | steady | |||
Embk 1 | 0.102 | 0.118 | 0.139 | 0.021 | 0.025 | 0.025 | 1.290 | 1.315 | 1.211 | 0.108 | + |
Embk 2 | 0.129 * | 0.155 * | 0.118 * | 0.002 | 0.003 | 0.002 | 0.282 | 0.274 | 0.248 | 0.012 * | - |
PKG-Int | 0.059 | 0.076 | 0.087 | 0.004 | 0.006 | 0.006 | 0.672 | 0.656 | 0.616 | 0.025 | + |
PKG-Alt | 0.108 | 0.126 | 0.136 | 0.037 | 0.042 | 0.043 | 1.425 | 1.408 | 1.346 | 0.132 | + |
Ditch | 0.078 | 0.071 | 0.069 | 0.036 | 0.025 | 0.033 | 1.412 | 1.496 | 1.265 | 0.088 | + |
Grid-PKG | 0.166 * | 0.213 * | 0.443 * | 0.011 * | 0.007 | 0.012 | 0.619 | 0.718 | 0.585 | 0.031 * | - |
Parameter | BEST | Normality | Log-Normality | ||
---|---|---|---|---|---|
D | p-value | D | p-value | ||
Ks | slope | 0.241 | 0.028 | 0.111 | 0.736 * |
intercept | 0.236 | 0.034 | 0.114 | 0.711 * | |
steady | 0.257 | 0.016 | 0.089 | 0.922 * | |
S | slope | 0.084 | 0.946 * | 0.098 | 0.861 |
intercept | 0.110 | 0.749 * | 0.088 | 0.926 | |
steady | 0.077 | 0.976 * | 0.107 | 0.781 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bouarafa, S.; Lassabatere, L.; Lipeme-Kouyi, G.; Angulo-Jaramillo, R. Hydrodynamic Characterization of Sustainable Urban Drainage Systems (SuDS) by Using Beerkan Infiltration Experiments. Water 2019, 11, 660. https://doi.org/10.3390/w11040660
Bouarafa S, Lassabatere L, Lipeme-Kouyi G, Angulo-Jaramillo R. Hydrodynamic Characterization of Sustainable Urban Drainage Systems (SuDS) by Using Beerkan Infiltration Experiments. Water. 2019; 11(4):660. https://doi.org/10.3390/w11040660
Chicago/Turabian StyleBouarafa, Sofia, Laurent Lassabatere, Gislain Lipeme-Kouyi, and Rafael Angulo-Jaramillo. 2019. "Hydrodynamic Characterization of Sustainable Urban Drainage Systems (SuDS) by Using Beerkan Infiltration Experiments" Water 11, no. 4: 660. https://doi.org/10.3390/w11040660
APA StyleBouarafa, S., Lassabatere, L., Lipeme-Kouyi, G., & Angulo-Jaramillo, R. (2019). Hydrodynamic Characterization of Sustainable Urban Drainage Systems (SuDS) by Using Beerkan Infiltration Experiments. Water, 11(4), 660. https://doi.org/10.3390/w11040660