Optimizing Chemically Enhanced Primary Treatment Processes for Simultaneous Carbon Redirection and Phosphorus Removal
Abstract
:1. Introduction
2. Materials and Methods
2.1. Full-Scale Site Layout and Sampling
2.2. Bench-Scale Jar Testing and Polymer Selection
2.3. Wet Chemistry and Statistical Analysis
3. Results and Discussion
3.1. An Evaluation of Polymer Type on Simultaneous Carbon Redirection and TP Removal
3.2. Selection of the Best Performing Polymer
3.3. Full-Scale Carbon Redirection, TP Removal and Wet Weather Flow Performance
3.4. Influence of Influent Characteristics on Removal Rates
3.5. Influence of Influent Characteristics on Removal Rates during Summer versus Winter Season
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jimenez, J.A. Carbon redirection in water reuse and recovery facilities: Technologies Overview. Proc. Water Environ. Fed. 2017, 3, 21–23. [Google Scholar] [CrossRef]
- Neupane, D.R.; Riffat, R.; Murthy, S.N.; Peric, M.R.; Wilson, T.E. Influence of Source Characteristics, Chemicals, and Flocculation on Chemically Enhanced Primary Treatment. Water Environ. Res. 2008, 80, 331–338. [Google Scholar] [CrossRef] [PubMed]
- Tchobanoglous, G.; Stensel, H.D.; Tsuchihashi, R.; Burton, F.L. Wastewater Engineering: Treatment and Resource Recovery, 5th ed.; McGraw-Hill Education: New York, NY, USA, 2014. [Google Scholar]
- Wang, H.; Li, F.; Keller, A.A.; Xu, R. Chemically enhanced primary treatment (CEPT) for removal of carbon and nutrients from municipal wastewater treatment plants: A case study of Shanghai. Water Sci. Technol. 2009, 60, 1803–1809. [Google Scholar] [CrossRef]
- Ødegaard, H. Optimized particle separation in the primary step of wastewater treatment. Water Sci. Technol. 1998, 37, 43–53. [Google Scholar] [CrossRef]
- Aiyuk, S.; Amoako, J.; Raskin, L.; Van Haandel, A.; Verstraete, W. Removal of carbon and nutrients from domestic wastewater using a low investment, integrated treatment concept. Water Res. 2004, 25, 1321–1330. [Google Scholar] [CrossRef] [PubMed]
- He, Q.; Wang, H.; Xu, C.; Zhang, J.; Zhang, W.; Zou, Z.; Yang, K. Feasibility and optimization of wastewater treatment by chemically enhanced primary treatment (CEPT): A case study of Huangshi. Chem. Spec. 2016, 28, 209–215. [Google Scholar] [CrossRef]
- Ghafari, S.; Aziz, H.A.; Isa, M.H.; Zinatizadeh, A.A. Application of response surface methodology (RSM) to optimize coagulation-flocculation treatment of leachate using poly-aluminum chloride (PAC) and alum. J. Hazard. Mater. 2009, 163, 650–656. [Google Scholar] [CrossRef] [PubMed]
- National Research Council. Wastewater Management in Urban Coastal Areas; National Academy Press: Washington, DC, USA, 1992. [Google Scholar]
- Lin, L.; Li, R.H.; Li, Y.; Xu, J.; Li, X. Recovery of organic carbon and phosphorus from wastewater by Fe-enhanced primary sedimentation and sludge fermentation. Process Biochem. 2017, 54, 135–139. [Google Scholar] [CrossRef]
- Mahmoud, E.K. Chemically enhanced primary treatment of textile industrial effluents. Polish J. Environ. Stud. 2009, 18, 651–655. [Google Scholar]
- Shi, B.; Li, G.; Wang, D.; Feng, C.; Tang, H. Removal of direct dyes by coagulation: The performance of preformed polymeric aluminum species. J. Hazard. Mater. 2007, 143, 567–574. [Google Scholar] [CrossRef] [Green Version]
- Vauxhall Wastewater Treatment Plant: 2016 Annual Report. Available online: http://www.london.ca/residents/Sewers-Flooding/Sewage-Treatment/Documents/VAUXHALL16-AODA.pdf (accessed on 9 November 2017).
- Aguilar, M.I.; Sáez, J.; Lloréns, M.; Soler, A.; Ortuño, J.F.; Meseguer, V.; Fuentes, A. Improvement of coagulation-flocculation process using anionic polyacrylamide as coagulant aid. Chemosphere 2005, 58, 47–56. [Google Scholar] [CrossRef] [PubMed]
- De Feo, G.; De Gisi, S.; Galasso, M. Definition of a practical multi-criteria procedure for selecting the best coagulant in a chemically assisted primary sedimentation process for the treatment of urban wastewater. Desalination 2008, 230, 229–238. [Google Scholar] [CrossRef]
- APHA; AWWA; WPCF. Standard Methods for the Examination of Water and Wastewater, 21st ed.; American Public Health Association: Washington, DC, USA, 2005. [Google Scholar]
- Ghasemi, A.; Zahediasl, S. Normality tests for statistical analysis: A guide for non-statisticians. Int. J. Endocrinol. Metab. 2012, 10, 486–489. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Li, R.H.; Li, X.Y. Recovery of organic resources from sewage sludge of Al-enhanced primary sedimentation by alkali pretreatment and acidogenic fermentation. J. Clean. Prod. 2018, 172, 3334–3341. [Google Scholar] [CrossRef]
- Edzwald, J.K. Coagulation in drinking water treatment: Particles, organics and coagulants. Water Sci. Technol. 1993, 27, 21–35. [Google Scholar] [CrossRef]
- Haydar, S.; Aziz, J.A. Characterization and treatability studies of tannery wastewater using chemically enhanced primary treatment (CEPT)-A case study of Saddiq Leather Works. J. Hazard. Mater. 2009, 163, 1076–1083. [Google Scholar] [CrossRef]
- Hauduc, H.; Takács, I.; Smith, S.; Szabo, A.; Murthy, S.; Daigger, G.T.; Spérandio, M. A dynamic physicochemical model for chemical phosphorus removal. Water Res. 2015, 73, 157–170. [Google Scholar] [CrossRef]
- Ratnaweera, H.; Odegaard, H.; Fettig, J. Coagulation with prepolymerized aluminium salts and their influence on particle and phosphate removal. Water Sci. Technol. 1992, 26, 1229–1237. [Google Scholar] [CrossRef]
- Wei, J.; Gao, B.; Yue, Q.; Wang, Y.; Li, W.; Zhu, X. Comparison of coagulation behavior and floc structure characteristic of different polyferric-cationic polymer dual-coagulants in humic acid solution. Water Res. 2009, 43, 724–732. [Google Scholar] [CrossRef]
- Yan, M.; Wang, D.; Ni, J.; Qu, J.; Ni, W.; Van Leeuwen, J. Natural organic matter (NOM) removal in a typical North-China water plant by enhanced coagulation: Targets and techniques. Sep. Purif. Technol. 2009, 68, 320–327. [Google Scholar] [CrossRef] [Green Version]
- Exall, K.; Marsalek, J. A coagulant survey for chemically enhanced primary treatment of synthetic CSOs. Water. Air. Soil Pollut. 2013, 224, 1414. [Google Scholar] [CrossRef]
- Szabó, A.; Takács, I.; Murthy, S.; Daigger, G.T.; Licskó, I.; Smith, S. Significance of Design and Operational Variables in Chemical Phosphorus Removal. Water Environ. Res. 2008, 80, 407–416. [Google Scholar] [CrossRef] [PubMed]
Operating Parameters | Control Clarifier | Test Clarifier |
---|---|---|
Flow (MLD) | 9 | 4.5 |
Detention time (h) | 1.7 | 1.8 |
Surface overflow rate (m3/m2/day) | 32 | 30 |
TSS, mg/L | 354 * | |
BOD, mg/L | 228 * | |
TP, mg/L | 6.3 * |
Polymer Name | Type | Composition |
---|---|---|
Polyacrylamide | Nonionic | (C3H5NO)n |
Polyacrylamide | Anionic | (C3H5NO)n |
Polyacrylamide | Cationic | (C3H5NO)n |
Poly aluminum chloride | - | (Al2(OH)3Cl3)n |
BASF 8848FS (B1) | Cationic | Unknown, proprietary |
BASF 8858FS (B2) | Cationic | Unknown, proprietary |
Alcomer | Anionic | Anionic, acrylamide-based copolymer |
Polymer Type | Optimum Dosage (mg/L) | Removal Efficiency (%) | |||
---|---|---|---|---|---|
tCOD | sCOD | TP | TSS | ||
Nonionic PAM | 0.5 | 71 | 66 | 68 | 86 |
Anionic PAM | 1 | 67 | 15 | 70 | 83 |
Cationic PAM | 0.75 | 74 | 21 | 70 | 84 |
PACL | 0.5 | 94 | 29 | 78 | 96 |
B1 | 0.75 | 68 | 26 | 67 | 96 |
B2 | 0.75 | 26 | 2 | 95 | 96 |
Alcomer | 1 | 43 | 10 | 55 | 78 |
Min = 0.5 | Max = 94 | Max = 66 | Max = 95 | Max = 96 |
Polymer Type | Criteria 1 | Average Index 4 | |||
---|---|---|---|---|---|
tCOD Removal Index 2 | TP Removal Index 2 | TSS Removal Index 2 | Dosage Index 3 | ||
PACl | 2.000 | 1.662 | 2.000 | 2.000 | 1.916 |
Nonionic PAM | 1.512 | 1.445 | 1.794 | 2.000 | 1.688 |
B1 | 1.446 | 1.426 | 1.992 | 1.333 | 1.549 |
Cationic PAM | 1.578 | 1.483 | 1.746 | 1.333 | 1.535 |
B2 | 0.560 | 2.000 | 1.996 | 1.333 | 1.472 |
Anionic PAM | 1.438 | 1.483 | 1.735 | 1.000 | 1.414 |
Alcomer | 0.922 | 1.170 | 1.629 | 1.000 | 1.180 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, T.; Shewa, W.A.; Murray, K.; Dagnew, M. Optimizing Chemically Enhanced Primary Treatment Processes for Simultaneous Carbon Redirection and Phosphorus Removal. Water 2019, 11, 547. https://doi.org/10.3390/w11030547
Dong T, Shewa WA, Murray K, Dagnew M. Optimizing Chemically Enhanced Primary Treatment Processes for Simultaneous Carbon Redirection and Phosphorus Removal. Water. 2019; 11(3):547. https://doi.org/10.3390/w11030547
Chicago/Turabian StyleDong, Tianchen, Wudneh Ayele Shewa, Kyle Murray, and Martha Dagnew. 2019. "Optimizing Chemically Enhanced Primary Treatment Processes for Simultaneous Carbon Redirection and Phosphorus Removal" Water 11, no. 3: 547. https://doi.org/10.3390/w11030547
APA StyleDong, T., Shewa, W. A., Murray, K., & Dagnew, M. (2019). Optimizing Chemically Enhanced Primary Treatment Processes for Simultaneous Carbon Redirection and Phosphorus Removal. Water, 11(3), 547. https://doi.org/10.3390/w11030547