An Analysis of the Factors Affecting Hyporheic Exchange based on Numerical Modeling
Abstract
:1. Introduction
2. Methodology
2.1. Governing Equations for Fluid Flow
2.2. Calculation Model
2.3. Grid Division and Boundary Conditions
2.4. Model Evaluation
2.5. Orthogonal Tests
3. Results and Discussion
3.1. Model Validation
3.2. Effects of Flow Velocity on Hyporheic Exchange
3.3. Effects of Water Depth on Hyporheic Exchange
3.4. Effects of Dune Wave Height on Hyporheic Exchange
3.5. Effects of Bed Substrate Permeability on Hyporheic Exchange
3.6. Sensitivity Analysis
3.7. Migration Routes of Solutes
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Angermann, L.; Lewandowski, J.; Fleckenstein, J.H.; Nutzmann, G. A 3D analysis algorithm to improve interpretation of heat pulse sensor results for the determination of small−scale flow directions and velocities in the hyporheic zone. J. Hydrol. 2012, 475, 1–11. [Google Scholar] [CrossRef]
- Boano, F.; Harvey, J.W.; Marion, A.; Packman, A.I.; Revelli, R.; Ridolfi, L.; Worman, A. Hyporheic flow and transport processes: Mechanisms, models, and biogeochemical implications. Rev. Geophys. 2014, 52, 603–679. [Google Scholar] [CrossRef] [Green Version]
- Bencala, K.E. Hyporheic zone hydrological processes. Hydrol. Process. 2000, 14, 2797–2798. [Google Scholar] [CrossRef]
- Boano, F.; Poggi, D.; Revelli, R.; Ridolfi, L. Gravity-driven water exchange between streams and hyporheic zones. Geophys. Res. 2009, 36, 146–158. [Google Scholar] [CrossRef]
- Zheng, L.; Cardenas, M.B.; Wang, L. Temperature effects on nitrogen cycling and nitrate removal−production efficiency in bed form−induced hyporheic zones. J. Geophys. Res. 2016, 121, 1086–1103. [Google Scholar] [CrossRef]
- Packman, A.I.; Salehin, M.; Zaramella, M. Hyporheic Exchange with Gravel Beds: Basic Hydrodynamic Interactions and Bedform−Induced Advective Flows. J. Hydraul. Eng. 2004, 130, 647–656. [Google Scholar] [CrossRef]
- Pinay, G.; Okeefe, T.C.; Edwards, R.T.; Naiman, R.J. Nitrate removal in the hyporheic zone of a salmon river in Alaska. River Res. Appl. 2009, 25, 367–375. [Google Scholar] [CrossRef]
- Jones, J.B.; Mulholland, P.J. Streams and Ground Waters; Academic: San Diego, CA, USA, 2000. [Google Scholar]
- Boulton, A.J.; Hancock, P.J. Rivers as groundwater−dependent ecosystems: A review of degrees of dependency, riverine processes and management implications. Aust. J. Bot. 2006, 54, 133–144. [Google Scholar] [CrossRef]
- Fleckenstein, J.H.; Krause, S.; Hannah, D.M.; Boano, F. Groundwater−surface water interactions: New methods and models to improve understanding of processes and dynamics. Adv. Water Resour. 2010, 33, 1291–1295. [Google Scholar] [CrossRef]
- Swanson, T.E.; Cardenas, M.B. Diel heat transport within the hyporheic zone of a pool−riffle−pool sequence of a losing stream and evaluation of models for fluid flux estimation using heat. Limnol. Oceanogr. 2010, 55, 1741–1754. [Google Scholar] [CrossRef]
- Norman, F.A.; Cardenas, M.B. Heat transport in hyporheic zones due to bedforms: An experimental study. Water Resour. Res. 2014, 50, 3568–3582. [Google Scholar] [CrossRef] [Green Version]
- Marion, A.; Zaramella, M. Diffusive behavior of bedform−induced hyporheic exchange in rivers. J. Environ. Eng. 2005, 131, 1260–1266. [Google Scholar] [CrossRef]
- Lautz, L.K.; Siegel, D.I.; Bauer, R.L. Impact of debris dams on hyporheic interaction along a semi-arid stream. Hydrol. Process. 2006, 20, 183–196. [Google Scholar] [CrossRef]
- Bardini, L.; Boano, F.; Cardenas, M.B.; Revelli, R.; Ridolfi, L. Nutrient cycling in bedform induced hyporheic zones. Geochim. Cosmochim. Acta 2012, 84, 47–61. [Google Scholar] [CrossRef] [Green Version]
- Zarnetske, J.P.; Haggerty, R.; Wondzell, S.M.; Baker, M.A. Dynamics of nitrate production and removal as a function of residence time in the hyporheic zone. J. Geophys. Res. 2011, 116, 1–12. [Google Scholar] [CrossRef]
- Battin, T.J.; Kaplan, L.A.; Findlay, S.E.; Hopkinson, C.S.; Marti, E.; Packman, A.I.; Newbold, J.D.; Sabater, F. Biophysical controls on organic carbon fluxes in fluvial networks. Nat. Geosci. 2008, 1, 95–100. [Google Scholar] [CrossRef]
- Boano, F.; Revelli, R.; Ridolfi, L. Effect of streamflow stochasticity on bedform−driven hyporheic exchange. Adv. Water Resour. 2010, 33, 1367–1374. [Google Scholar] [CrossRef]
- Karwan, D.L.; Saiers, J.E. Hyporheic exchange and streambed filtration of suspended particles. Water Resour. Res. 2012, 48. [Google Scholar] [CrossRef]
- Liu, D.; Zhao, J.; Chen, X.; Li, Y.; Weiyan, S.; Feng, M. Dynamic processes of hyporheic exchange and temperature distribution in the riparian zone in response to dam−induced water fluctuations. Geosci. J. 2018, 22, 465–475. [Google Scholar] [CrossRef]
- Hester, E.T.; Doyle, M.W. In-stream geomorphic structures as drivers of hyporheic exchange. Water Resour. Res. 2008, 44. [Google Scholar] [CrossRef] [Green Version]
- Menichino, G.T.; Hester, E.T. Hydraulic and thermal effects of in−stream structure−induced hyporheic exchange across a range of hydraulic conductivities. Water Resour. Res. 2014, 50, 4643–4661. [Google Scholar] [CrossRef]
- Rana, S.M.M.; Scott, D.T.; Hester, E.T. Effects of in−stream structures and channel flow rate variation on transient storage. J. Hydrol. 2017, 548, 157–169. [Google Scholar] [CrossRef]
- Worman, A.; Packman, A.I.; Marklund, L.; Harvey, J.W.; Stone, S.H. Exact three-dimensional spectral solution to surface-groundwater interactions with arbitrary surface topography. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef] [Green Version]
- Cardenas, M.B.; Wilson, J.L. Hydrodynamics of coupled flow above and below a sediment−water interface with triangular bedforms. Adv. Water Resour. 2007, 30, 301–313. [Google Scholar] [CrossRef]
- Caruso, A.; Ridolfi, L.; Boano, F. Impact of watershed topography on hyporheic exchange. Adv. Water Resour. 2016, 94, 400–411. [Google Scholar] [CrossRef]
- Fox, A.; Laube, G.; Schmidt, C.; Fleckenstein, J.H.; Arnon, S. The effect of losing and gaining flow conditions on hyporheic exchange in heterogeneous streambeds. Water Resour. Res. 2016, 52, 7460–7477. [Google Scholar] [CrossRef]
- Pryshlak, T.T.; Sawyer, A.H.; Stonedahl, S.H.; Soltanian, M.R. Multiscale hyporheic exchange through strongly heterogeneous sediments. Water Resour. Res. 2015, 51, 9127–9140. [Google Scholar] [CrossRef]
- Su, X.; Shu, L.; Lu, C. Impact of a low-permeability lens on dune−induced hyporheic exchange. Hydrolog. Sci. J. 2018, 63, 818–835. [Google Scholar] [CrossRef]
- Bhaskar, A.S.; Harvey, J.W.; Henry, E.J. Resolving hyporheic and groundwater components of streambed water flux using heat as a tracer. Water Resour. Res. 2012, 48. [Google Scholar] [CrossRef]
- Chen, X.; Cardenas, M.B.; Chen, L. Three−dimensional versus two dimensional bed form−induced hyporheic exchange. Water Resour. Res. 2015, 51, 2923–2936. [Google Scholar] [CrossRef]
- Endreny, T.; Lautz, L.; Siegel, D. Hyporheic flow path response to hydraulic jumps at river steps: Hydrostatic model simulations. Water Resour. Res. 2011, 47, 1198–1204. [Google Scholar] [CrossRef]
- Laattoe, T.; Werner, A.D.; Post, V.E.A. Spatial periodicity in bed form−scale solute and thermal transport models of the hyporheic zone. Water Resour. Res. 2014, 50, 7886–7899. [Google Scholar] [CrossRef]
- Langston, G.; Hayashi, M.; Roy, J.W. Quantifying groundwater−surface water interactions in a proglacial moraine using heat and solute tracers. Water Resour. Res. 2013, 49, 5411–5426. [Google Scholar] [CrossRef]
- Stonedahl, S.H.; Harvey, J.W.; Wörman, A.; Salehin, M.; Packman, A.I. A multiscale model for integrating hyporheic exchange from ripples to meanders. Water Resour. Res. 2010, 46, 308–316. [Google Scholar] [CrossRef]
- Trauth, N.; Schmidt, C.; Maier, U.; Vieweg, M.; Fleckenstein, J.H. Coupled 3−D stream flow and hyporheic flow model under varying stream and ambient groundwater flow conditions in a pool−riffle system. Water Resour. Res. 2013, 49, 5834–5850. [Google Scholar] [CrossRef]
- Harvey, J.W.; Wagner, B.J. Quantifying hydrologic interactions between streams and their subsurface hyporheic zones. In Streams Ground Waters; Academic Press: Cambridge, MA, USA, 2000; pp. 3–44. [Google Scholar]
- Cardenas, M.B.; Wilson, J.L. Dunes, turbulent eddies, and interfacial exchange with permeable sediments. Water Resour. Res. 2007, 430, 199–212. [Google Scholar] [CrossRef]
- Cardenas, M.B.; Wilson, J.L. Exchange across a sediment-water interface with ambient groundwater discharge. J. Hydrol. 2007, 346, 69–80. [Google Scholar] [CrossRef]
- Sawyer, A.H.; Cardenas, M.B.; Buttles, J. Hyporheic exchange due to channel−spanning logs. Water Resour. Res. 2011, 47, W08502. [Google Scholar] [CrossRef]
- Schmadel, N.M.; Ward, A.S.; Lowry, C.S.; Malzone, J.M. Hyporheic exchange controlled by dynamic hydrologic boundary conditions. Geophys. Res. Lett. 2016, 43, 4408–4417. [Google Scholar] [CrossRef]
- Peng, Y.; Zhou, J.G.; Burrows, R. Modelling the free surface flow in rectangular shallow basins by lattice Boltzmann method. J. Hydraul. Eng. 2011, 137, 1680–1685. [Google Scholar] [CrossRef]
- Peng, Y.; Zhou, J.G.; Burrows, R. Modelling solute transport in shallow water with the lattice boltzmann method. Comput. Fluids 2011, 50, 181–188. [Google Scholar] [CrossRef]
- Peng, Y.; Zhang, J.M.; Zhou, J.G. Lattice Boltzmann Model Using Two−Relaxation−Time for Shallow Water Equations. J. Hydraul. Eng. 2016, 142, 06015017. [Google Scholar] [CrossRef]
- Peng, Y.; Zhang, J.M.; Meng, J.P. Second order force scheme for lattice Boltzmann model of shallow water flows. J. Hydraul. Res. 2017, 55, 592–597. [Google Scholar] [CrossRef]
- Elliott, A.H.; Brooks, N.H. Transfer of nonsorbing solutes to a streambed with bed forms: Laboratory experiments. Water Resour. Res. 1997, 33, 137–151. [Google Scholar] [CrossRef] [Green Version]
- Ju, L.; Zhang, J.J.; Chen, C.; Wu, L.S.; Zeng, L.Z. Water flux characterization through hydraulic head and temperature data assimilation: Numerical modeling and sandbox experiments. J. Hydrol. 2018, 558, 104–114. [Google Scholar] [CrossRef]
- Stonedahl, S.H.; Roche, K.R.; Stonedahl, F.; Packman, A.I. Visualizing hyporheic flow through bedforms using dye experiments and simulation. J. Vis. Exp. 2015, 105. [Google Scholar] [CrossRef]
- Zhou, T.; Endreny, T.A. Reshaping of the hyporheic zone beneath river restoration structures: Flume and hydrodynamic experiments. Water Resour. Res. 2013, 49, 5009–5020. [Google Scholar] [CrossRef] [Green Version]
- Tonina, D.; Buffington, J.M. Hyporheic exchange in gravel bed rivers with pool−riffle morphology: Laboratory experiments and three−dimensional modeling. Water Resour. Res. 2007, 43, 208–214. [Google Scholar] [CrossRef]
- Wu, Y.X.; Hunkeler, D. Hyporheic exchange in a karst conduit and sediment system—A laboratory analog study. J. Hydrol. 2013, 501, 125–132. [Google Scholar] [CrossRef]
- Sawyer, A.H.; Cardenas, M.B.; Buttles, J. Hyporheic temperature dynamics and heat exchange near channel−spanning logs. Water Resour. Res. 2012, 48. [Google Scholar] [CrossRef]
- Fox, A.; Boano, F.; Arnon, S. Impact of losing and gaining streamflow conditions on hyporheic exchange fluxes induced by dune−shaped bed forms. Water Resour. Res. 2014, 50, 1895–1907. [Google Scholar] [CrossRef]
- Lu, C.; Zhuang, W.; Wang, S.; Zhu, X.; Li, H. Experimental study on hyporheic flow varied by the clay lens and stream flow. Environ. Earth Sci. 2018, 77, 482. [Google Scholar] [CrossRef]
- Janssen, F.; Cardenas, M.B.; Sawyer, A.H.; Dammrich, T.; Krietsch, J.; Beer, D. A comparative experimental and multiphysics computational fluid dynamics study of coupled surface-subsurface flow in bed forms. Water Resour. Res. 2012, 48, 8514. [Google Scholar] [CrossRef]
- Wilcox, D.C. Turbulence Modeling for CFD; DCW Industries, Inc.: La Canada, CA, USA, 1998; 540p. [Google Scholar]
- Yoon, J.Y.; Patel, V.C. Numerical model of turbulent flow oversand dune. J. Hydraul. Eng. 1996, 122, 10–18. [Google Scholar] [CrossRef]
- Cardenas, M.B.; Wilson, J.L. Comment on ‘‘Flow resistanceand bed form geometry in a wide alluvial channel’’ by Shu-Qing Yang, Soon-KeatTan, and Siow-Yong Lim. Water Resour. Res. 2006, 42. [Google Scholar] [CrossRef]
- Cardenas, M.B.; Wilson, J.L.; Haggerty, R. Residence time of bedform−driven hyporheic exchange. Adv. Water Resour. 2008, 31, 1382–1386. [Google Scholar] [CrossRef]
- de Marsily, G. Quantitative Hydrogeology: Groundwater Hydrology for Engineers; Academic Press: Orlando, FL, USA, 1986. [Google Scholar]
- Mentaschi, L.; Besio, G.; Cassola, F.; Mazzino, A. Problems in RMSE−based wave model validations. Ocean Model. 2013, 72, 53–58. [Google Scholar] [CrossRef]
- Quinino, R.C.; Reis, E.A.; Bessegato, L.F. Using the coefficient of determination R2 to test the significance of multiple linear regression. Teach. Stat. 2013, 35, 84–88. [Google Scholar] [CrossRef]
- Suñé, V.; Carrasco, J.A. Efficient implementations of the randomization method with control of the relative error. Comput. Oper. Res. 2005, 32, 1089–1114. [Google Scholar] [CrossRef] [Green Version]
- Wörman, A.; Packman, A.I.; Johansson, H.; Jonsson, K. Effect of flow-induced exchange in hyporheic zones on longitudinal transport of solutes in streams and rivers. Water Resour. Res. 2002, 38, 2-1–2-15. [Google Scholar] [CrossRef]
Fluid Density ρ (kg m−3) | Kinematic Eddy Viscosity νt (m2 s−1) | Porosity θ (%) | Permeability κ (m2) | Molecular Diffusion Coefficient Dm (m2 s−1) |
---|---|---|---|---|
998.8 | 1.10 × 10−6 | 40 | 1.50 × 10−11 | 5.00 × 10−11 |
Factor Level | u (m s−1) | H (m) | h (m) | L (m) | Κ (m2) | Θ (%) | Dm (m2 s−1) |
---|---|---|---|---|---|---|---|
1 | 0.056 | 0.080 | 0.016 | 0.160 | 1.2 × 10−11 | 32 | 4.0 × 10−11 |
2 | 0.070 | 0.100 | 0.020 | 0.200 | 1.5 × 10−11 | 40 | 5.0 × 10−11 |
3 | 0.084 | 0.120 | 0.024 | 0.240 | 1.8 × 10−11 | 48 | 6.0 × 10−11 |
Monitoring Points | RMSE (m s−1) | R2 | Re % |
---|---|---|---|
a | 0.0046 | 0.8831 | 5.61 |
b | 0.0033 | 0.9918 | 4.70 |
c | 0.0044 | 0.9890 | 5.81 |
d | 0.0047 | 0.9808 | 6.48 |
e | 0.0054 | 0.9653 | 7.13 |
f | 0.0055 | 0.9242 | 6.76 |
g | 0.0050 | 0.9606 | 6.53 |
h | 0.0053 | 0.9038 | 6.59 |
i | 0.0044 | 0.8935 | 5.13 |
j | 0.0034 | 0.9009 | 3.79 |
k | 0.0042 | 0.9480 | 4.93 |
l | 0.0041 | 0.9856 | 5.25 |
m | 0.0025 | 0.9957 | 3.26 |
n | 0.0063 | 0.9553 | 8.53 |
o | 0.0039 | 0.976 | 5.05 |
Vertical Water Flux on the Upstream Face (m2 s−1) | Vertical Water Flux on the Downstream Face (m2 s−1) | Overall Water Flux at the Interface (m2 s−1) | Overall Solute Flux at the Interface (mol m−1 s−1) | |
---|---|---|---|---|
u = 0.056 m s−1 | −1.42 × 10−8 | 5.20 × 10−9 | 8.12 × 10−8 | 2.49 × 10−7 |
u = 0.070 m s−1 | −2.25 × 10−8 | 8.28 × 10−9 | 1.29 × 10−7 | 4.26 × 10−7 |
u = 0.084 m s−1 | −3.28 × 10−8 | 1.21 × 10−8 | 1.88 × 10−7 | 6.51 × 10−7 |
Vertical Water Flux on the Upstream Face (m2 s−1) | Vertical Water Flux on the Downstream Face (m2 s−1) | Overall Water Flux at the Interface (m2 s−1) | Overall Solute Flux at the Interface (mol m−1 s−1) | |
---|---|---|---|---|
H = 0.08 m | −2.86 × 10−8 | 1.70 × 10−8 | 1.62 × 10−7 | 5.50 × 10−7 |
H = 0.10 m | −2.25 × 10−8 | 8.28 × 10−9 | 1.29 × 10−7 | 4.26 × 10−7 |
H = 0.12 m | −2.05 × 10−8 | 7.45 × 10−9 | 1.19 × 10−7 | 3.86 × 10−7 |
Vertical Water Flux on the Upstream Face (m2 s−1) | Vertical Water Flux on the Downstream Face (m2 s−1) | Overall Water Flux at the Interface (m2 s−1) | Overall Solute Flux at the Interface (mol m−1 s−1) | |
---|---|---|---|---|
h = 0.16 m | −1.62 × 10−8 | 8.18 × 10−9 | 1.03 × 10−7 | 3.20 × 10−7 |
h = 0.20 m | −2.25 × 10−8 | 8.28 × 10−9 | 1.29 × 10−7 | 4.26 × 10−7 |
h = 0.24 m | −2.93 × 10−8 | 8.63 × 10−9 | 1.58 × 10−7 | 5.53 × 10−7 |
Vertical Water Flux on the Upstream Face (m2 s−1) | Vertical Water Flux on the Downstream Face (m2 s−1) | Overall Water Flux at the Interface (m2 s−1) | Overall Solute Flux at the Interface (mol m−1 s−1) | |
---|---|---|---|---|
κ = 1.2 × 10−11 m2 | −1.80 × 10−8 | 6.63 × 10−9 | 1.03 × 10−7 | 3.30 × 10−7 |
κ = 1.5 × 10−11 m2 | −2.25 × 10−8 | 8.28 × 10−9 | 1.29 × 10−7 | 4.26 × 10−7 |
κ = 1.8 × 10−11 m2 | −2.70 × 10−8 | 9.94 × 10−9 | 1.55 × 10−7 | 5.23 × 10−7 |
Test | Empty | u (m s−1) | H (m) | h (m) | L (m) | κ (m2) | θ (%) | Dm (m2 s−1) | tI (min) | tII (min) | tIII (min) |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 1 | 0.056 | 0.08 | 0.016 | 0.16 | 1.20 × 10−11 | 32 | 4.00 × 10−11 | 3183 | 2155 | 3411 |
2 | 1 | 0.056 | 0.1 | 0.02 | 0.2 | 1.50 × 10−11 | 40 | 5.00 × 10−11 | 3800 | 2776 | 4027 |
3 | 1 | 0.056 | 0.12 | 0.024 | 0.24 | 1.80 × 10−11 | 48 | 6.00 × 10−11 | 4537 | 3485 | 4949 |
4 | 1 | 0.07 | 0.08 | 0.016 | 0.2 | 1.50 × 10−11 | 48 | 6.00 × 10−11 | 2390 | 1852 | 2621 |
5 | 1 | 0.07 | 0.1 | 0.02 | 0.24 | 1.80 × 10−11 | 32 | 4.00 × 10−11 | 884 | 714 | 952 |
6 | 1 | 0.07 | 0.12 | 0.024 | 0.16 | 1.20 × 10−11 | 40 | 5.00 × 10−11 | 3493 | 2590 | 3718 |
7 | 1 | 0.084 | 0.08 | 0.02 | 0.16 | 1.80 × 10−11 | 40 | 6.00 × 10−11 | 758 | 557 | 791 |
8 | 1 | 0.084 | 0.1 | 0.024 | 0.2 | 1.20 × 10−11 | 48 | 4.00 × 10−11 | 1661 | 1132 | 1727 |
9 | 1 | 0.084 | 0.12 | 0.016 | 0.24 | 1.50 × 10−11 | 32 | 5.00 × 10−11 | 885 | 852 | 986 |
10 | 2 | 0.056 | 0.08 | 0.024 | 0.24 | 1.50 × 10−11 | 40 | 4.00 × 10−11 | 2013 | 1347 | 2080 |
11 | 2 | 0.056 | 0.1 | 0.016 | 0.16 | 1.80 × 10−11 | 48 | 5.00 × 10−11 | 3760 | 2819 | 3995 |
12 | 2 | 0.056 | 0.12 | 0.02 | 0.2 | 1.20 × 10−11 | 32 | 6.00 × 10−11 | 4702 | 3585 | 5169 |
13 | 2 | 0.07 | 0.08 | 0.02 | 0.24 | 1.20 × 10−11 | 48 | 5.00 × 10−11 | 2463 | 1774 | 2463 |
14 | 2 | 0.07 | 0.1 | 0.024 | 0.16 | 1.50 × 10−11 | 32 | 6.00 × 10−11 | 1553 | 1083 | 1620 |
15 | 2 | 0.07 | 0.12 | 0.016 | 0.2 | 1.80 × 10−11 | 40 | 4.00 × 10−11 | 1624 | 1350 | 1761 |
16 | 2 | 0.084 | 0.08 | 0.024 | 0.2 | 1.80 × 10−11 | 32 | 5.00 × 10−11 | 449 | 321 | 449 |
17 | 2 | 0.084 | 0.1 | 0.016 | 0.24 | 1.20 × 10−11 | 40 | 6.00 × 10−11 | 1646 | 1510 | 1782 |
18 | 2 | 0.084 | 0.12 | 0.02 | 0.16 | 1.50 × 10−11 | 48 | 4.00 × 10−11 | 1680 | 1271 | 1816 |
Factors | u | H | h | L | κ | θ | Dm |
---|---|---|---|---|---|---|---|
K1 | 1361.3 | −428.5 | −56.5 | 100.0 | 553.5 | −361.8 | −463.7 |
K2 | −236.7 | −87.2 | 76.7 | 133.2 | −251.0 | −82.2 | 170.5 |
K3 | −1124.7 | 515.7 | −20.2 | −233.2 | −302.5 | 444.0 | 293.2 |
Rj | 2486.0 | 944.2 | 133.2 | 366.3 | 856.0 | 805.8 | 756.8 |
Susceptibility | u > H > κ > θ > Dm> L > h |
Factors | u | H | h | L | κ | θ | Dm |
---|---|---|---|---|---|---|---|
K1 | 962.7 | −397.5 | 24.5 | 14.0 | 392.5 | −280.2 | −403.7 |
K2 | −171.3 | −59.5 | 47.7 | 104.2 | −201.7 | −43.5 | 123.5 |
K3 | −791.3 | 457.0 | −72.2 | −118.2 | −190.8 | 323.7 | 280.2 |
Rj | 1754.0 | 854.5 | 119.8 | 222.3 | 594.2 | 603.8 | 683.8 |
Susceptibility | u > H > Dm> θ > κ > L> h |
Factors | u | H | h | L | κ | θ | Dm |
---|---|---|---|---|---|---|---|
K1 | 1476.4 | −492.9 | −36.1 | 96.4 | 582.9 | −364.2 | −504.2 |
K2 | −272.9 | −111.6 | 74.3 | 163.6 | −270.4 | −102.2 | 144.3 |
K3 | −1203.6 | 604.4 | −38.2 | −260.1 | −312.6 | 466.4 | 359.9 |
Rj | 2680.0 | 1097.3 | 112.5 | 423.7 | 895.5 | 830.7 | 864.2 |
Susceptibility | u > H > Dm> θ > κ > L> h |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, J.; Wang, X.; Zhou, Y.; Chen, B.; Men, L. An Analysis of the Factors Affecting Hyporheic Exchange based on Numerical Modeling. Water 2019, 11, 665. https://doi.org/10.3390/w11040665
Ren J, Wang X, Zhou Y, Chen B, Men L. An Analysis of the Factors Affecting Hyporheic Exchange based on Numerical Modeling. Water. 2019; 11(4):665. https://doi.org/10.3390/w11040665
Chicago/Turabian StyleRen, Jie, Xiuping Wang, Yinjun Zhou, Bo Chen, and Lili Men. 2019. "An Analysis of the Factors Affecting Hyporheic Exchange based on Numerical Modeling" Water 11, no. 4: 665. https://doi.org/10.3390/w11040665
APA StyleRen, J., Wang, X., Zhou, Y., Chen, B., & Men, L. (2019). An Analysis of the Factors Affecting Hyporheic Exchange based on Numerical Modeling. Water, 11(4), 665. https://doi.org/10.3390/w11040665