Apparent Friction Coefficient Used for Flow Calculation in Straight Compound Channels
Abstract
:1. Introduction
2. Study on Discharge Capacity of Channel with Compound Cross-Section
- variant 1.0 (W 1.0): Smooth surface of the main channel and floodplains
- (kmb = kms = kfb = kfs = 0.00005 m),
- variant 2.0 (W 2.0): Smooth surface of the main channel and rough surface of floodplains (kmb = kms = 0.00005 m, kfb = kfs = 0.0089 m)
- variant 3.0 (W 3.0): Smooth surface of the bottom of the main channel and rough surface of the sides slopes of the main channel and floodplains (kmb = 0.00005 m, kms = kfb = kfs = 0.0089 m).
3. Resistance Coefficients in the Main Channel
4. Conclusions
- In a smooth channel with a compound cross-section, the values of the resistance coefficients of the bottom and side slopes of the main channel do not change significantly with an increase in depth; an increase in the surface roughness of the floodplain area causes the increase of resistance coefficients in the smooth main channel,
- the values of apparent resistance coefficients are several times greater than the resistance coefficients for side slopes and bottoms of the main channel and floodplains,
- apparent resistance coefficients decrease with increasing depth,
- the ratios of apparent, and the bottom of the main channel resistance coefficients, increase along with the increase in the width of the floodplain in relation to the width of the main channel.
Author Contributions
Funding
Conflicts of Interest
References
- Zheleznakov, G.V. Interaction of channel and floodplain streams. In Proceedings of the 14th IAHR Congress, Paris 5, IAHR, Paris, France, 29 August–3 September 1971; pp. 145–148. [Google Scholar]
- Kubrak, E.; Kubrak, J.; Kuśmierczuk, K.; Kozioł, A.; Kiczko, A.; Rowiński, P. Influence of stream interactions on the carrying capacity of two-stage channels. J. Hydraul. Eng. 2019, 145. [Google Scholar] [CrossRef]
- Shiono, K.; Knight, D.W. Turbulent open-channel flows with variable depth across the channel. J. Fluid Mech. 1991, 222, 617–646. [Google Scholar] [CrossRef]
- Tominaga, A.; Nezu, I. Turbulent structure in compound open-channel flows. J. Hydraul. Eng. 1991, 117, 21–41. [Google Scholar] [CrossRef]
- Bousmar, D.; Zech, Y. Momentum transfer for practical flow computation in compound channels. J. Hydraul. Eng. 1999, 125, 696–706. [Google Scholar] [CrossRef]
- Van Prooijen, B.C.; Booij, R.; Uijttewaal, W.S.J. Measurement and analysis methods of large scale coherent structures in a wide shallow channel. In Proceedings of the 10th International Symposium on Applications of Laser Techniques to Fluid Mechanics, Calouste Gulbenkian Foundation, Lisbon, Portugal, 10–13 July 2000. [Google Scholar]
- Bousmar, D. Flow Modelling in Compound Channels. Momentum Transfer between Main Channel and Prismatic or Non-Prismatic Floodplains. Ph.D. Thesis, Université Catholique de Louvain, Louvain, Belgium, 2002. [Google Scholar]
- Wright, P.R.; Carstens, H.R. Linear momentum flux to overbank section. J. Hydraul. Div. 1970, 96, 1781–1793. [Google Scholar]
- Myers, W.R.C. Momentum Transfer in a Compound Channel. J. Hydraul. Res. 1978, 2, 139–150. [Google Scholar] [CrossRef]
- Wormleaton, P.R.; Allen, J.; Hadjipanos, P. Discharge assessment in compound channel flow. J. Hydraul. Div. 1982, 108, 975–994. [Google Scholar]
- Knight, D.W.; Demetriou, J.D. Flood plain and main channel flow interaction. J. Hydraul. Eng. 1983, 109, 1073–1092. [Google Scholar] [CrossRef]
- Prinos, P.; Townsend, R.D. Comparison of methods for predicting discharge in compound open channels. Adv. Water Res. 1984, 7, 180–187. [Google Scholar] [CrossRef]
- Christodoulou, G.C. Apparent shear stress in smooth compound channels. Water Resour. Manag. 1992, 66, 235–247. [Google Scholar] [CrossRef]
- Moreta, P.J.M.; Martin-Vide, J.P. Apparent friction coefficient in straight compound channels. J. Hydraul. Res. 2010, 48, 169–177. [Google Scholar] [CrossRef]
- Nuding, A. Zur Durchflußermittlung bei gegliederten Gerinnen. Wasserwirtschaft 1998, 88, 130–132. [Google Scholar]
- Bretschneider, H.; Özbek, T. Durchflußermittlung bei geoemtrisch grgliedrten Gerinnen. Wasserwirtschaft 1997, 87, 4. [Google Scholar]
- Nezu, I.; Nakagawa, H. Turbulence in Open-Channel Flows; IAHR Monograph, A. A. Balkema: Rotterdam, The Netherlands, 1993; p. 281. [Google Scholar]
- Einstein, H.A. Der hydraulische Oder Profil-Radius. Schweiz. Bauztg. 1934, 103, 89–91. [Google Scholar]
- Pasche, E. Turbulenzmechanismen in naturnahen Fließgewässern und die Möglichkeit ihrer mathematischen Erfassung. Ph.D. Thesis, RWTH Aachen, Aachen, Germany, 1984. [Google Scholar]
- DVWK-Merkblätter. 220: Hydraulische Berechnung von Fließgewässern; Verlag Paul Parey: Hamburg, Germany, 1991. [Google Scholar]
Case | Water Depth H (m) | Discharge (m3/s) | Reynolds Numbers Re | |||
---|---|---|---|---|---|---|
Q | in the Main Channel Qm | in the Left Floodplain Qfl | in the Main Channel Rem | in the Left Floodplain Refl | ||
Variant W 1.0 | ||||||
1.0.1 1.0.2 1.0.3 1.0.4 1.0.5 1.0.6 1.0.7 1.0.8 1.0.9 1.0.10 1.0.11 1.0.12 1.0.13 1.0.14 | 0.1690 0.1720 0.1725 0.1727 0.1808 0.1825 0.1845 0.1860 0.1965 0.2063 0.2151 0.2330 0.2445 0.2532 | 0.0340 0.0359 0.0359 0.0385 0.0449 0.0454 0.0482 0.0502 0.0613 0.0734 0.0876 0.1038 0.1212 0.1317 | 0.0309 0.0318 0.0319 0.0320 0.0346 0.0352 0.0359 0.0364 0.0405 0.0447 0.0488 0.0581 0.0649 0.0703 | 0.0020 0.0028 0.0029 0.0029 0.0051 0.0056 0.0061 0.0066 0.0098 0.0131 0.0162 0.0233 0.0283 0.0323 | 156,969 160,279 160,574 160,994 170,486 172,695 175,241 177,012 191,890 206,829 221,149 252,707 275,174 292,497 | 12,354 16,873 17,467 17,765 30,686 33,269 36,407 38,965 56,708 74,354 90,642 125,497 149,105 167,410 |
Variant W 2.0 | ||||||
2.0.1 2.0.2 2.0.3 2.0.4 2.0.5 2.0.6 2.0.7 2.0.8 | 0.1885 0.2026 0.2096 0.2227 0.2330 0.2395 0.2508 0.2630 | 0.0369 0.0416 0.0468 0.0549 0.0625 0.0685 0.0808 0.0947 | 0.0313 0.0321 0.0338 0.0371 0.0401 0.0430 0.0481 0.0531 | 0.0016 0.0035 0.0047 0.0075 0.0100 0.0118 0.0150 0.0172 | 152,611 150,882 156,352 166,371 175,729 185,742 202,824 218,135 | 9884 20,444 27,235 42,344 54,980 63,946 79,827 89,331 |
Variant W 3.0 | ||||||
3.0.1 3.0.2 3.0.3 3.0.4 3.0.5 3.0.6 3.0.7 3.0.8 | 0.1858 0.2022 0.2135 0.2258 0.2366 0.2506 0.2622 0.2758 | 0.0291 0.0359 0.0429 0.0505 0.0599 0.0704 0.0805 0.0932 | 0.0246 0.0271 0.0292 0.0325 0.0384 0.0412 0.0447 0.0507 | 0.0014 0.0038 0.0056 0.0084 0.0116 0.0145 0.0178 0.0229 | 125,934 133,052 139,513 150,784 173,558 180,196 190,355 210,226 | 8248 22,438 32,121 47,286 63,629 77,303 92,574 116,197 |
Case | Al (m2) | Rl (m) | fa (-) | Alsb (m2) | Rlsb (m) | fms (-) | Ab (m2) | Rb (m) | fmb (-) |
---|---|---|---|---|---|---|---|---|---|
Variant W 1.0 | |||||||||
1.0.1 1.0.2 1.0.3 1.0.4 1.0.5 1.0.6 1.0.7 1.0.8 1.0.9 1.0.10 1.0.11 1.0.12 1.0.13 1.0.14 | 0.015 0.016 0.016 0.016 0.017 0.018 0.018 0.019 0.020 0.023 0.022 0.026 0.028 0.031 | 0.772 0.734 0.725 0.726 0.558 0.546 0.528 0.527 0.429 0.401 0.331 0.311 0.300 0.296 | 0.1982 0.1854 0.1833 0.1835 0.1346 0.1306 0.1251 0.1237 0.0936 0.0809 0.0619 0.0496 0.0431 0.0394 | 0.014 0.014 0.013 0.012 0.013 0.013 0.012 0.012 0.014 0.016 0.019 0.019 0.020 0.018 | 0.064 0.064 0.059 0.058 0.062 0.063 0.058 0.059 0.066 0.075 0.087 0.088 0.096 0.086 | 0.0164 0.0163 0.0150 0.0145 0.0150 0.0152 0.0138 0.0138 0.0143 0.0151 0.0164 0.0140 0.0138 0.0115 | 0.0237 0.0236 0.0238 0.0244 0.0258 0.0251 0.0265 0.0261 0.0302 0.0275 0.0305 0.0354 0.0326 0.0373 | 0.079 0.079 0.080 0.081 0.086 0.084 0.088 0.087 0.101 0.092 0.102 0.118 0.109 0.124 | 0.0203 0.0199 0.0201 0.0206 0.0207 0.0200 0.0209 0.0204 0.0220 0.0185 0.0190 0.0188 0.0157 0.0165 |
Variant W 2.0 | |||||||||
2.0.1 2.0.2 2.0.3 2.0.4 2.0.5 2.0.6 2.0.7 2.0.8 | 0.017 0.017 0.019 0.019 0.021 0.024 0.025 0.034 | 0.636 0.402 0.384 0.300 0.297 0.302 0.283 0.331 | 0.2083 0.1501 0.1403 0.1054 0.0994 0.0940 0.0784 0.0835 | 0.012 0.015 0.015 0.018 0.019 0.018 0.019 0.019 | 0.053 0.065 0.065 0.079 0.083 0.078 0.085 0.082 | 0.0174 0.0244 0.0239 0.0276 0.0278 0.0243 0.0234 0.0207 | 0.031 0.036 0.037 0.038 0.039 0.037 0.039 0.039 | 0.105 0.120 0.122 0.127 0.130 0.125 0.130 0.128 | 0.0342 0.0447 0.0446 0.0447 0.0436 0.0388 0.0361 0.0324 |
Variant W 3.0 | |||||||||
3.0.1 3.0.2 3.0.3 3.0.4 3.0.5 3.0.6 3.0.7 3.0.8 | 0.015 0.015 0.015 0.017 0.023 0.024 0.024 0.028 | 0.614 0.372 0.291 0.270 0.308 0.266 0.234 0.247 | 0.2945 0.1823 0.1403 0.1208 0.1109 0.0959 0.0800 0.0735 | 0.013 0.017 0.018 0.019 0.019 0.023 0.023 0.023 | 0.056 0.073 0.080 0.082 0.081 0.099 0.101 0.101 | 0.0269 0.0356 0.0388 0.0368 0.0293 0.0358 0.0346 0.0300 | 0.029 0.031 0.033 0.037 0.036 0.034 0.038 0.039 | 0.097 0.102 0.110 0.123 0.119 0.114 0.127 0.131 | 0.0467 0.0501 0.0530 0.0550 0.0430 0.0411 0.0433 0.0389 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kubrak, E.; Kubrak, J.; Kozioł, A.; Kiczko, A.; Krukowski, M. Apparent Friction Coefficient Used for Flow Calculation in Straight Compound Channels. Water 2019, 11, 745. https://doi.org/10.3390/w11040745
Kubrak E, Kubrak J, Kozioł A, Kiczko A, Krukowski M. Apparent Friction Coefficient Used for Flow Calculation in Straight Compound Channels. Water. 2019; 11(4):745. https://doi.org/10.3390/w11040745
Chicago/Turabian StyleKubrak, Elżbieta, Janusz Kubrak, Adam Kozioł, Adam Kiczko, and Marcin Krukowski. 2019. "Apparent Friction Coefficient Used for Flow Calculation in Straight Compound Channels" Water 11, no. 4: 745. https://doi.org/10.3390/w11040745
APA StyleKubrak, E., Kubrak, J., Kozioł, A., Kiczko, A., & Krukowski, M. (2019). Apparent Friction Coefficient Used for Flow Calculation in Straight Compound Channels. Water, 11(4), 745. https://doi.org/10.3390/w11040745