Nonstationary Analysis for Bivariate Distribution of Flood Variables in the Ganjiang River Using Time-Varying Copula
Abstract
:1. Introduction
2. Study Region and Data
3. Methodology
3.1. Calculation of Explanatory Variables
3.2. Marginal Distribution with Time-Varying Parameters
3.3. Time-Varying Bivariate Copula Model
3.4. Joint and Conditional Probability under Nonstationary Framework
4. Results
4.1. Temporal Trend Analysis
4.2. Nonstationary Marginal Distributions
4.3. Nonstationary Dependence of Bivariate Flood Variables
4.4. Temporal Variation in Joint and Conditional Probabilities
5. Conclusions
- It is obvious that both the mean and variance of S have significantly decreased, while only the mean has reduced for Z, particularly in the recent decades. Furthermore, Gamma distribution with location parameter expressed as a function of MCE is best fitted distribution for Z, and Gamma with parameters of location and scale expressed as functions of FCA is for S, while the best fitted distribution of Q is the Gamma with constant parameters.
- It is found that the most fitted bivariate copulas for both Z-Q and Z-S are Frank copula, the parameters of which are expressed as the function of MCE. Therefore, riverbed down-cutting at Waizhou station plays the dominant role in strengthening dependences of both Z-Q and Z-S from 1964 to 2013.
- The results of joint probability and conditional probability show that the corner of contour lines enhanced more greatly due to the strengthening dependences over time, especially for the lower probability. In addition, it can be seen that values of Z and S fall rapidly in the last ten years due to the decreasing mean of these two variables.
Author Contributions
Funding
Conflicts of Interest
References
- Zhong, Y.X.; Guo, S.L.; Liu, Z.J.; Wang, Y.; Yin, J.B. Quantifying differences between reservoir inflows and dam site floods using frequency and risk analysis methods. Stoch. Environ. Res. Risk Assess. 2017, 32, 1–15. [Google Scholar] [CrossRef]
- Tena, A.; Batalla, R.J.; Vericat, D.; Lopez-Tarazon, J.A. Suspended sediment dynamics in a large regulated river over a 10-year period (the lower Ebro, NE Iberian Peninsula). Geomorphology 2011, 125, 73–84. [Google Scholar] [CrossRef]
- Ahn, J.; Cho, W.; Kim, T.; Shin, H.; Heo, J.-H. Flood frequency analysis for the annual peak flows simulated by an event-based rainfall-runoff model in an urban drainage basin. Water 2014, 6, 3841–3863. [Google Scholar] [CrossRef]
- Benkhaled, A.; Higgins, H.; Chebana, F.; Necir, A. Frequency analysis of annual maximum suspended sediment concentrations in Abiodwadi, Biskra (Algeria). Hydrol. Process. 2014, 28, 3841–3854. [Google Scholar] [CrossRef]
- Xu, W.T.; Jiang, C.; Yan, L.; Li, L.Q.; Liu, S.N. An adaptive metropolis-hastings optimization algorithm of Bayesian estimation in non-stationary flood frequency analysis. Water Resour. Manag. 2018, 32, 1343–1366. [Google Scholar] [CrossRef]
- Blazkova, S.; Beven, K. Flood frequency prediction for data limited catchments in the Czech Republic using a stochastic rainfall model and TOPMODEL. J. Hydrol. 1997, 195, 256–278. [Google Scholar] [CrossRef]
- Iacobellis, V.; Fiorentino, M.; Gioia, A.; Manfreda, S. Best fit and selection of theoretical flood frequency distributions based on different runoff generation mechanisms. Water 2010, 2, 239–256. [Google Scholar] [CrossRef]
- Gioia, A.; Manfreda, S.; Iacobellis, V.; Fiorentino, M. Performance of a theoretical model for the description of water balance and runoff dynamics in Southern Italy. J. Hydrol. Eng. 2014, 19, 1123–2014. [Google Scholar] [CrossRef]
- Volpi, E.; Fiori, A. Design event selection in bivariate hydrological frequency analysis. Hydrol. Sci. J. 2012, 57, 1506–1515. [Google Scholar] [CrossRef] [Green Version]
- Shafaei, M.; Fakheri-Fard, A.; Dinpashoh, Y.; Mirabbasi, R.; De Michele, C. Modeling flood event characteristics using D-vine structures. Theor. Appl. Climatol. 2017, 130, 713–724. [Google Scholar] [CrossRef]
- Salvadori, G.; Durante, F.; De Michele, C.; Bernardi, M. Hazard assessment under multivariate distributional change-points: Guidelines and a flood case study. Water 2018, 10, 751. [Google Scholar] [CrossRef]
- De Michele, C.; Salvadori, G.; Vezzoli, R.; Pecora, S. Multivariate assessment of droughts: Frequency analysis and dynamic return period. Water Resour. Res. 2013, 49, 6985–6994. [Google Scholar] [CrossRef] [Green Version]
- Vezzoli, R.; Salvadori, G.; Michele, C.D. A distributional multivariate approach for assessing performance of climate-hydrology models. Sci. Rep. 2017, 7, 12071. [Google Scholar] [CrossRef] [Green Version]
- Salas, J.D.; Obeysekera, J. Revisiting the concepts of return period and risk for nonstationary hydrologic extreme events. J. Hydrol. Eng. 2014, 19, 554–568. [Google Scholar] [CrossRef]
- Jiang, C.; Xiong, L.H.; Xu, C.-Y.; Guo, S.L. Bivariate frequency analysis of nonstationary low-flow series based on the time-varying copula. Hydrol. Process. 2014, 29, 1521–1534. [Google Scholar] [CrossRef]
- Gilroy, K.L.; Mccuen, R.H. Anonstationary flood frequency analysis method to adjust for future climate change and urbanization. J. Hydrol. 2012, 414, 40–48. [Google Scholar] [CrossRef]
- Steinschneider, S.; Brown, C. Influences of North Atlantic climate variability on low-flows in the Connecticut River Basin. J. Hydrol. 2011, 409, 212–224. [Google Scholar] [CrossRef]
- López, J.; Francés, F. Non-stationary flood frequency analysis in continental Spanish rivers using climate and reservoir indices as external covariates. Hydrol. Earth Syst. Sci. 2013, 17, 3189–3203. [Google Scholar] [CrossRef]
- Ahn, K.-H.; Palmer, R.N. Use of a nonstationary copula to predict future bivariate low flow frequency in the Connecticut River basin. Hydrol. Process. 2016, 30, 3518–3532. [Google Scholar] [CrossRef]
- Nelsen, R.B. An Introduction to Copulas; Springer: New York, NY, USA, 2006. [Google Scholar]
- Kwon, H.H.; Lall, U. A copula-based nonstationary frequency analysis for the 2012–2015 drought in California. Water Resour. Res. 2016, 52, 5662–5675. [Google Scholar] [CrossRef]
- Grimaldi, S.; Serinaldi, F. Asymmetric copula in multivariate flood frequency analysis. Adv. Water Resour. 2006, 29, 1155–1167. [Google Scholar] [CrossRef]
- Bezak, N.; Mikoš, M.; Šraj, M. Trivariate frequency analyses of peak discharge, hydrograph volume and suspended sediment concentration data using copulas. Water Resour. Manag. 2014, 28, 2195–2212. [Google Scholar] [CrossRef]
- Xing, Z.Q.; Yan, D.H.; Zhang, C.; Wang, G.; Zhang, D.D. Spatial Characterization and Bivariate Frequency Analysis of Precipitation and Runoff in the Upper Huai River Basin, China. Water Resour. Manag. 2015, 29, 3291–3304. [Google Scholar] [CrossRef]
- Sarhadi, A.; Burn, D.H.; Wiper, M.P. Time varying nonstationary multivariate risk analysis using a dynamic Bayesian copula. Water Resour. Res. 2016, 52, 2327–2349. [Google Scholar] [CrossRef]
- Guo, A.J.; Chang, J.X.; Wang, Y.M.; Huang, Q.; Guo, Z.H.; Zhou, S. Bivariate frequency analysis of flood and extreme precipitation under changing environment: Case study in catchments of the Loess Plateau, China. Stoch. Environ. Res. Risk Assess. 2007, 32, 2057–2074. [Google Scholar] [CrossRef]
- Salvadori, G.; De Michele, C. Multivariate multiparameter extreme value models and return periods: A copula approach. Water Resour. Res. 2010, 46, 219–233. [Google Scholar] [CrossRef]
- PappadàElisa, R.; Perrone, E.; Fabrizio, D.; Salvadori, G. Spin-off extreme value and Archimedean copulas for estimating the bivariate structural risk. Stoch. Environ. Res. Risk Assess. 2016, 30, 327–342. [Google Scholar] [CrossRef]
- Salvadori, G.; De Michele, C. Estimating strategies for multiparameter multivariate extreme value copulas. Hydrol. Earth Syst. Sci. 2011, 15, 141–150. [Google Scholar] [CrossRef]
- Parodi, U.; Ferraris, L. Influence of stage discharge relationship on the annual maximum discharge statistics. Nat. Hazards. 2004, 31, 603–611. [Google Scholar] [CrossRef]
- Lai, X.J.; Shankman, D.; Huber, C.; Yesou, H.; Huang, Q.; Jiang, J.H. Sand mining and increasing Poyang Lake’s discharge ability: A reassessment of causes for lake decline in China. J. Hydrol. 2014, 519, 1698–1706. [Google Scholar] [CrossRef]
- Hua, X.S.; Wu, C.Z.; Hong, W.; Qiu, R.Z.; Li, J.; Hong, T. Forest cover change and its drivers in the upstream area of the Minjiang River, China. Ecol. Indic. 2014, 46, 121–128. [Google Scholar] [CrossRef]
- Du, J.K.; Zheng, D.P.; Xu, Y.P.; Hu, S.F.; Xu, C.-Y. Evaluating functions of reservoirs’ storage capacities and locations on daily peak attenuation for Ganjiang River Basin using Xinanjiang model. Chin. Geogr. Sci. 2016, 26, 789–802. [Google Scholar] [CrossRef]
- Hu, Q.F.; Yang, D.W.; Wang, Y.; Wang, Y.T.; Yang, H.B. Accuracy and spatio-temporal variation of high resolution satellite rainfall estimate over the Ganjiang River Basin. China Technol. Sci. 2013, 56, 853–865. [Google Scholar] [CrossRef]
- Department of Comprehensive Statistics of National Bureau of Statistics. China Compendium of Statistics 1949–2008; China Statistics Press: Beijing, China, 2010.
- Paige, A.D.; Hickin, E.J. Annual bed-elevation regime in the alluvial channel of Squamish River, Southwestern British Columbia, Canada. Earth Surf. Proc. Landf. 2000, 25, 991–1009. [Google Scholar] [CrossRef]
- Magdon, P.; Kleinn, C. Uncertainties of forest area estimates caused by the minimum crown cover criterion--a scale issue relevant to forest cover monitoring. Environ. Monit. Assess. 2013, 185, 5345–5360. [Google Scholar] [CrossRef]
- Kamal, V.; Mukherjee, S.; Singh, P.; Sen, R.; Vishwakarma, C.A.; Sajadi, P. Flood frequency analysis of Ganga River at Haridwar and Garhmukteshwar. Appl. Water Sci. 2016, 7, 1979–1986. [Google Scholar] [CrossRef]
- Yan, L.; Xiong, L.H.; Liu, D.D.; Hu, T.S.; Xu, C.-Y. Frequency analysis of nonstationary annual maximum flood series using the time-varying two-component mixture distributions. Hydrol. Process. 2017, 31, 69–89. [Google Scholar] [CrossRef]
- Rigby, R.A.; Stasinopoulos, D.M. Generalized additive models for location, scale and shape. J. R. Stat. Soc. 2005, 54, 507–554. [Google Scholar] [CrossRef]
- Rahman, A.; Charron, C.; Ouarda, T.B.M.J.; Chebana, F. Development of regional flood frequency analysis techniques using generalized additive models for Australia. Stoch. Environ. Res. Risk Assess. 2017, 32, 123–139. [Google Scholar] [CrossRef]
- Adlouni, S.E.; Ouarda, T.B.M.J.; Zhang, X.; Roy, R.; Bobée, B. Generalized maximum likelihood estimators for the nonstationary generalized extreme value model. Water Resour. Res. 2007, 43, 455–456. [Google Scholar] [CrossRef]
- Hurvich, C.M.; Tsai, C.L. Regression and time series model selection in small samples. Biometrika 1989, 76, 297–307. [Google Scholar] [CrossRef]
- Hipel, K.W. Geophysical model discrimination using the Akaike Information Criterion. IEEE Autom. Control 1981, 26, 358–378. [Google Scholar] [CrossRef]
- Djurovic, Z.; Kovacevic, B.; Barroso, V. QQ-plot based probability density function estimation. In Proceedings of the IEEE Workshop Statistical Signal and Array Processing, Pocono Manor, PA, USA, 16 August 2000. [Google Scholar]
- Joe, H. Multivariate Models and Dependence Concepts; Chapman and Hall: London, UK, 1997. [Google Scholar]
- Genest, C.; Rémillard, B.; Beaudoin, D. Goodness-of-fit tests for copulas: A review and a power study. Insur. Math. Econ. 2009, 44, 199–213. [Google Scholar] [CrossRef]
- Bender, J.; Wahl, T.; Jensen, J. Multivariate design in the presence of non-stationarity. J. Hydrol. 2014, 514, 123–130. [Google Scholar] [CrossRef]
- Vandenberghe, S.; Berg, M.J.V.D.; Gräler, B.; Petroselli, A. Joint return periods in hydrology: A critical and practical review focusing on synthetic design hydrograph estimation. Hydrol. Earth Syst. Sci. 2013, 17, 1281–1296. [Google Scholar] [CrossRef]
- Olang, L.O.; Furst, J. Effects of land cover change on flood peak discharges and runoff volumes: Model estimates for the Nyando River Basin, Kenya. Hydrol. Process. 2011, 25, 80–89. [Google Scholar] [CrossRef]
- Zheng, H.J.; Fang, S.W.; Yang, J.; Xie, S.H.; Chen, X.A. Analysis on evolution characteristics and impacting factors of annual runoff and sediment in the Ganjiang river during 1970–2009. J. Soil Water Conserv. 2012, 26, 28–32. (In Chinese) [Google Scholar]
- Ye, X.C.; Zhang, Q.; Liu, J.; Li, X.H.; Xu, C.-Y. Distinguishing the relative impacts of climate change and human activities on variation of streamflow in the Poyang Lake catchment, China. J. Hydrol. 2013, 494, 83–95. [Google Scholar] [CrossRef]
- Luo, W.; Zhang, X.; Deng, Z.M.; Chen, L. Runoff and sediment load transport and cause analysis in Poyang Lake basin over the period 1956–2008. Adv. Water Sci. 2014, 25, 658–667. (In Chinese) [Google Scholar]
- Chen, X.H.; Shao, Q.X.; Xu, C.-Y.; Zhang, J.M.; Zhang, L.G.; Ye, C.Q. Comparative study on the selection criteria for fitting flood frequency distribution models with emphasis on upper-tail behavior. Water 2017, 9, 320. [Google Scholar] [CrossRef]
- Cooley, D. Return Periods and Return Levels under Climate Change. Extremes in a Changing Climate; Springer: Dordrecht, The Netherlands, 2013. [Google Scholar]
- Read, L.K.; Vogel, R.M. Reliability, return periods, and risk under nonstationarity. Water Resour. Res. 2015, 51, 6381–6398. [Google Scholar] [Green Version]
Copula | Cumulative Distribution Function with Time-Varying Parameters | Parameters |
---|---|---|
Clayton | ||
Gumbel–Hougaard | ||
Frank |
Series | Annual Mean | MK | Spearman | Kendall | |
---|---|---|---|---|---|
1964–2003 | 2004–2013 | ||||
12.01 | 10.47 | −1.33 | −0.16 | −0.12 | |
23.25 | 20.96 | −2.92 ** | −0.41 ** | −0.29 ** | |
418.23 | 123.90 | −5.33 ** | −0.70 ** | −0.52 ** |
Variable | Distribution | Estimated Parameters | AICc | KS-Test | |
---|---|---|---|---|---|
Statistic | p-Value | ||||
Q | LNO | m = 9.309, σ = 0.346 | 970.57 | 0.083 | 0.881 |
WEI | μ = 13090, σ = 3.154 | 973.81 | 0.101 | 0.683 | |
LOG | μ = 11451, σ = 2305 | 976.57 | 0.108 | 0.602 | |
GAM | μ = 11703, σ = 0.339 | 970.48 | 0.097 | 0.737 | |
PⅢ | μ = 11694, σ = 0.350, γ = 0.474 | 971.89 | 0.080 | 0.910 | |
Z | LNO | μ = exp (1.081 + 0.004MCEt) | 177.31 | 0.084 | 0.843 |
σ = 0.059 | |||||
WEI | μ = exp (3.005 + 0.011MCEt) | 181.46 | 0.101 | 0.646 | |
σ = exp (2.123 + 0.061MCEt) | |||||
LOG | μ = 18.461 + 0.326MCEt | 179.09 | 0.081 | 0.873 | |
σ = 0.782 | |||||
GAM | μ = exp (2.946 + 0.014MCEt) | 177.24 | 0.089 | 0.793 | |
σ = 0.059 | |||||
PⅢ | μ = exp(2.936+0.014MCEt) | 178.67 | 0.093 | 0.745 | |
Σ = 0.060, γ = 0.251 | |||||
S | LNO | μ = exp (2.150 − 0.886FCRt) | 646.40 | 0.097 | 0.701 |
σ = exp (-1.332 + 1.378FCRt) | |||||
WEI | μ = exp (8.072 − 4.544FCRt) | 648.35 | 0.136 | 0.285 | |
σ = exp (1.476 − 1.448FCRt) | |||||
LOG | μ=950.510 − 12.693FCRt | 657.23 | 0.131 | 0.332 | |
σ = exp (6.137 − 3.412FCRt) | |||||
GAM | μ = exp (7.943 − 4.530FCRt) | 645.95 | 0.113 | 0.515 | |
σ = exp (−1.336 + 1.291FCRt) | |||||
PⅢ | μ = exp (8.098 − 4.854FCRt) | 646.05 | 0.084 | 0.845 | |
σ = 0.537, γ = 0.702 |
Copula | Parameter (θ) | AICc RMSE | CM-Test | |||
---|---|---|---|---|---|---|
Statistic | p-Value | |||||
Z-Q | Clayton | 5.702 | −103.91 | 0.031 | 0.053 | 0.457 |
exp (1.811 − 0.005MCEt) | −101.93 | 0.031 | 0.053 | 0.458 | ||
GH | 4.008 | −94.76 | 0.039 | 0.056 | 0.426 | |
exp (1.743 − 0.026MCEt) | −93.33 | 0.039 | 0.055 | 0.433 | ||
Frank | 17.683 | −102.79 | 0.035 | 0.055 | 0.434 | |
41.713 − 1.747MCEt | −104.25 | 0.035 | 0.054 | 0.448 | ||
Z-S | Clayton | 1.250 | −22.70 | 0.040 | 0.048 | 0.538 |
exp (−1.760 + 0.063FCRt) | −25.11 | 0.039 | 0.038 | 0.716 | ||
exp (1.739 − 0.114MCEt) | −24.01 | 0.040 | 0.044 | 0.596 | ||
exp (−5.025 + 0.118FCRt − 0.113MCEt) | −23.48 | 0.040 | 0.052 | 0.479 | ||
GH | 1.796 | −28.04 | 0.038 | 0.050 | 0.506 | |
exp (0.350 + 0.007FCRt) | −26.25 | 0.039 | 0.047 | 0.541 | ||
exp (1.195 − 0.045MCEt) | −27.40 | 0.038 | 0.047 | 0.556 | ||
exp (3.563 − 0.039FCRt − 0.128MCEt) | −26.76 | 0.039 | 0.057 | 0.410 | ||
Frank | 5.319 | −28.77 | 0.032 | 0.035 | 0.759 | |
−1.528 + 0.226FCRt | −28.79 | 0.032 | 0.029 | 0.855 | ||
16.169 − 0.782MCEt | −30.29 | 0.031 | 0.028 | 0.870 | ||
24.186 − 0.132FCRt − 1.072MCEt | −28.45 | 0.032 | 0.030 | 0.840 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wen, T.; Jiang, C.; Xu, X. Nonstationary Analysis for Bivariate Distribution of Flood Variables in the Ganjiang River Using Time-Varying Copula. Water 2019, 11, 746. https://doi.org/10.3390/w11040746
Wen T, Jiang C, Xu X. Nonstationary Analysis for Bivariate Distribution of Flood Variables in the Ganjiang River Using Time-Varying Copula. Water. 2019; 11(4):746. https://doi.org/10.3390/w11040746
Chicago/Turabian StyleWen, Tianfu, Cong Jiang, and Xinfa Xu. 2019. "Nonstationary Analysis for Bivariate Distribution of Flood Variables in the Ganjiang River Using Time-Varying Copula" Water 11, no. 4: 746. https://doi.org/10.3390/w11040746
APA StyleWen, T., Jiang, C., & Xu, X. (2019). Nonstationary Analysis for Bivariate Distribution of Flood Variables in the Ganjiang River Using Time-Varying Copula. Water, 11(4), 746. https://doi.org/10.3390/w11040746