Recharge Impulse Spreading in Western Carpathian’s Mountainous Fissure–Karst Aquifer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Geographical, Geological and Hydrogeological Background
2.2. Groundwater Level and Discharge Observations
2.3. Climate Characteristic of the Area and Observations During the Investigated Period
3. Results
4. Discussion
- Qrel—relative discharge [%]
- Qt—measured discharge [L∙s−1]
- Qmax—maximal discharge in the evaluated dataset [L∙s−1]
- Qmin—minimal discharge in the evaluated dataset [L∙s−1]
- ΔHx—piezometric level change in the x point as a response to level change at the boundary [m]
- ΔH0—piezometric level change at the boundary [m]
- erfc(λ)—inverse complementary Gauss error function [–]
- x—distance to the boundary condition [m]
- D—hydraulic diffusivity [m2∙s−1]
- t—time elapsed from the sudden change on the boundary condition [s]
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Drew, D.; Hötzl, H. Karts Hydrogeology and Human Activities: Impacts, Consequences and Implications. International Contributions to Hydrogeology 20; A.A. Balkema: Rotterdam, The Netherlands, 1999; 322p. [Google Scholar]
- Bakalowicz, M. Karst groundwater: A challenge for new resources. Hydrogeol. J. 2005, 13, 148–160. [Google Scholar] [CrossRef]
- Goldscheider, N.; Drew, D. Methods in Karst Hydrogeology; International Contribution to Hydrogeology 26; Taylor and Francis: London, UK, 2007; 264p. [Google Scholar]
- Kresic, N.; Stevanović, Z. Groundwater Hydrology of Springs: Engineering, Theory, Management and Sustainability; Elsevier: Burlington, NJ, USA, 2010; 573p. [Google Scholar]
- Fiorillo, F. Spring hydrographs as indicators of droughts in a karst environment. J. Hydrol. 2009, 373, 290–301. [Google Scholar] [CrossRef]
- Fiorillo, F.; Revellino, P.; Ventafridda, G. Karst aquifer draining during dry periods. J. Cave Karst Stud. 2012, 74, 148–156. [Google Scholar] [CrossRef]
- Zwahlen, F. (Ed.) Vulnerability and Risk Mapping for the Protection of Carbonate (Karst) Aquifers; COST Action 620 Final Report; Office for Official Publications of the European Communities: Luxembourg, 2004; 297p. [Google Scholar]
- Stevanović, Z. (Ed.) Karst Aquifers: Characterization and Engineering; Professional Practice in Earth Sciences; Springer: Heidelberg, Germany, 2015; 687p. [Google Scholar]
- Milanovic, P.T. Karst Hydrogeology; Water Resources Publications: Littleton, CO, USA, 1981; 434p. [Google Scholar]
- Ford, D.C.; Williams, P. Karst Geomorphology and Hydrology; Wiley: Chichester, UK, 2007; 562p. [Google Scholar]
- Kuvik, M.; Grenčíková, A.; Bohyník, J.; Gažúr, J.; Sinak, M.; Stolárik, L.; Coplák, M.; Copláková, J.; Holeša, Š.; Kubiš, M.; et al. Diaľnica D1 Turany—Hubová, modifikovaný údolný variant V1 a subvariant V1a a variant V2 s tunelom Korbeľka, orientačný IGP; Manuscript—Geofond archive of ŠGÚDŠ Bratislava, No. 93904; CAD-ECO Bratislava: Bratislava, Slovakia, 2014; 136p. [Google Scholar]
- Polák, M.; Bujnovský, A.; Kohút, M.; Filo, I.; Pristaš, J.; Havrila, M.; Vozár, J.; Mello, J.; Rakús, M.; Buček, S.; et al. Geologická mapa Veľkej Fatry 1:50 000; map sheet; MŽP SR—GS SR Bratislava: Bratislava, Slovakia, 1997.
- Polák, M.; Bujnovský, A.; Kohút, M.; Pristaš, J.; Filo, I.; Havrila, M.; Vozárová, A.; Vozár, J.; Kováč, P.; Lexa, J.; et al. Vysvetlivky ku geologickej mape Veľkej Fatry v mierke 1:50 000; Vydavateľstvo Dionýza Štúra: Bratislava, Slovakia, 1997; 204p. [Google Scholar]
- Bella, P.; Hlaváčová, I.; Holúbek, P. (Eds.) Zoznam jaskýň Slovenskej republiky [Slovak Caves Register; in Slovak]. Slovenské múzeum ochrany prírody a jaskyniarstva, Správa slovenských jaskýň; Slovenská speleologická spoločnosť: Liptovský Mikuláš, Slovakia, 2007; 364p. [Google Scholar]
- Švasta, J.; Malík, P. Priestorové rozloženie priemerných efektívnych zrážok na území Slovenska. Podzemná voda XII/2006 č. 1; Slovenská asociácia hydrogeológov: Bratislava, Slovakia, 2006; pp. 65–77. [Google Scholar]
- Malík, P.; Kordík, J.; Bottlik, F.; Kováčová, E.; Polák, M. Vysvetlivky k základnej hydrogeologickej a hydrogeochemickej mape západnej časti Veľkej Fatry v mierke 1:50 000; Štátny geologický ústav Dionýza Štúra: Bratislava, Slovakia, 2014; 341p, ISBN 978-80-89343-94-2. [Google Scholar]
- Švasta, J.; Malík, P. Vzťah podzemných a povrchových vôd v oblasti hydrogeologickej štruktúry karbonátov hronika Kopy vo Veľkej Fatre. Podzemná voda XIV, 2/2008; Slovenská asociácia hydrogeológov: Bratislava, Slovakia, 2008; pp. 151–160. [Google Scholar]
- Mucha, I.; Šestakov, V. Hydraulika podzemných vôd; Alfa, SNTL: Bratislava, Slovakia, 1986; 342p. [Google Scholar]
- Bear, J. Hydraulics of Groundwater. Dover Books on Engineering; Dover Publications: New York, NY, USA, 2007; 592p. [Google Scholar]
Spring Name | Longitude [°E] | Latitude [°N] | Altitude [m a.s.l.] | Starting Date | End Date |
---|---|---|---|---|---|
Fatra | 19.131191 | 49.110930 | 568.75 | 25.02.2014 | 19.06.2014 |
Teplica 1 | 19.103361 | 49.124837 | 449.96 | 26.02.2014 | 19.06.2014 |
Teplica 2 | 19.102679 | 49.125027 | 445.87 | 25.02.2014 | 19.06.2014 |
Rojkov | 19.156138 | 49.145005 | 515.14 | 26.02.2014 | 19.06.2014 |
Pod Kopou | 19.145301 | 49.143916 | 593.23 | 26.02.2014 | 19.06.2014 |
Borehole/Characteristic | TK-04 | TK-06 |
---|---|---|
Longitude [°E] | 19.118790 | 19.132923 |
Latitude [°N] | 49.117576 | 49.125552 |
Altitude [m a.s.l.] | 568.75 | 773.10 |
Borehole depth [m] | 230.0 | 370.0 |
Average depth to groundwater table [m] | 180.88 | 299.69 |
Schematized borehole log | 0.0–3.5 m Quaternary debris 3.5–33.0 m carbonatic breccias, sandstone, and conglomerates of Paleogene 33.0–230.0 m brecciated dolomites, Middle Triassic | 0.0–8.2 m eluvial Quaternary debris 8.2–46.5 m dolomites of Upper Triassic “hauptdolomites” 46.5–73.5 m Wetterstein limestones, Middle Triassic 73.5–100.5 Reifling limestones and dolomites, Middle Triassic 100.5–169.9 m Ramsau dolomites, Middle Triassic 169.9–173.7 m Gutenstein limestones, Middle Triassic (173–175.0 open cavity) 173.7–370.0 m dolomites, mostly brecciated, Middle Triassic |
Starting date of observations | 05.03.2014 | 06.05.2014 |
Observations end date | 10.11.2017 | 08.11.2017 |
Period | Kraľovany Station —Precipitation [mm] | Ľubochňa Station —Precipitation [mm] | Ružomberok Station—Air Temperatures [°C] |
---|---|---|---|
January | 85.6 | 68.6 | –2.5 |
February | 65.1 | 48.5 | –1.0 |
March | 73.4 | 60.0 | 2.6 |
April | 56.8 | 52.8 | 7.8 |
May | 90.2 | 95.3 | 13.1 |
June | 92.2 | 97.5 | 16.1 |
July | 106.2 | 107.7 | 17.5 |
August | 83.4 | 82.7 | 16.3 |
September | 82.8 | 78.3 | 12.0 |
October | 75.4 | 67.4 | 7.7 |
November | 83.9 | 64.6 | 3.1 |
December | 87.2 | 63.8 | –1.0 |
YEAR | 982.3 | 887.1 | 8.2 |
Period | Preci-Pitation Kraľovany Station [mm] | Comparison to Long-Term Data | Preci-Pitation Ľubochňa Station [mm] | Comparison to Long-Term Data | Air Temperatures Ružomberok Station [°C] | Comparison to Long-Term Data [°C] |
---|---|---|---|---|---|---|
July 2013 | 5.3 | 5% | 2.4 | 2% | 18.2 | 0.8 |
August 2013 | 89.9 | 108% | 58.0 | 70% | 18.1 | 1.8 |
September 2013 | 133.6 | 161% | 118.5 | 151% | 11.2 | –0.8 |
October 2013 | 34.8 | 46% | 40.8 | 61% | 9.6 | 1.9 |
November 2013 | 91.6 | 109% | 82.7 | 128% | 4.0 | 0.9 |
December 2013 | 40.8 | 47% | 31.4 | 49% | 0.1 | 1.2 |
January 2014 | 40.3 | 47% | 30.7 | 45% | 1.0 | 3.4 |
February 2014 | 50.0 | 77% | 37.8 | 78% | 2.8 | 3.8 |
March 2014 | 114.2 | 156% | 80.8 | 135% | 5.7 | 3.2 |
April 2014 | 67.5 | 119% | 69.6 | 132% | 9.1 | 1.3 |
May 2014 | 131.8 | 146% | 193.7 | 203% | 12.3 | –0.8 |
June 2014 | 76.7 | 83% | 81.6 | 84% | 15.0 | –1.1 |
July 2013–June 2014 | 876.5 | 89% | 828.0 | 93% | 8.9 | 0.7 |
Characteristic | Borehole | Minimum | Maximum | Median | Average | Range | Standard Deviation |
---|---|---|---|---|---|---|---|
groundwater level [m a.s.l.] | TK-04 | 473.15 | 473.87 | 473.41 | 473.45 | 0.72 | 0.21 |
TK-06 | 473.18 | 473.65 | 473.42 | 473.41 | 0.47 | 0.09 | |
depth to groundwater [m] | TK-04 | 180.46 | 181.18 | 180.92 | 180.88 | 0.72 | 0.21 |
TK-06 | 299.45 | 299.92 | 299.68 | 299.69 | 0.47 | 0.09 | |
groundwater temperature [°C] | TK-04 | 7.43 | 7.46 | 7.44 | 7.44 | 0.03 | 0.01 |
TK-06 | 6.36 | 6.38 | 6.36 | 6.37 | 0.02 | 0.01 |
Spring Name | Minimum | Maximum | Median | Average | Range | Standard Deviation |
---|---|---|---|---|---|---|
Discharge [L∙s−1] | ||||||
Fatra | 4.94 | 19.36 | 11.89 | 11.80 | 14.43 | 1.87 |
Teplica 1 | 14.50 | 28.98 | 20.58 | 21.15 | 14.48 | 2.52 |
Teplica 2 | 5.80 | 10.79 | 8.99 | 8.92 | 4.99 | 0.78 |
Rojkov | 1.66 | 5.43 | 3.29 | 3.34 | 3.77 | 0.70 |
Pod Kopou | 6.33 | 14.79 | 8.87 | 8.82 | 8.46 | 1.07 |
Groundwater temperature [°C] | ||||||
Fatra | 7.18 | 7.34 | 7.23 | 7.23 | 0.16 | 0.02 |
Teplica 1 | 7.93 | 7.98 | 7.96 | 7.96 | 0.05 | 0.01 |
Teplica 2 | 7.88 | 8.03 | 7.96 | 7.96 | 0.15 | 0.04 |
Rojkov | 5.88 | 6.40 | 6.01 | 6.03 | 0.52 | 0.07 |
Pod Kopou | 5.57 | 6.53 | 6.33 | 6.32 | 0.96 | 0.14 |
Monitored Object | Peak Arrival Date | Peak Arrival Time Shift [days] | Distance to TK-04 Borehole [m] | Mean Groundwater Temperature [°C] | Groundwater Level Altitude [m a.s.l.] | Qmax/Qmin |
---|---|---|---|---|---|---|
Fatra Spring | 03.04.2014 06:00 | 17.75 | 1169 | 7.23 | 568.75 | 3.921 |
Teplica 1 Spring | 16.05.2014 15:00 | 61.13 | 1386 | 7.96 | 449.96 | 1.999 |
Teplica 2 Spring | 20.05.2014 18:00 | 65.25 | 1439 | 7.96 | 445.87 | 1.861 |
Rojkov Spring | 28.03.2014 18:00 | 12.25 | 4090 | 6.03 | 515.14 | 3.268 |
Pod Kopou Spring | 17.03.2014 21:00 | 1.38 | 3510 | 6.32 | 593.23 | 2.337 |
TK-04 borehole | 21.03.2014 20:00 | 5.33 | – | 7.44 | 473.45 | – |
TK-06 borehole | – | – | 1360 | 6.37 | 473.41 | – |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malík, P.; Coplák, M.; Kuvik, M.; Švasta, J. Recharge Impulse Spreading in Western Carpathian’s Mountainous Fissure–Karst Aquifer. Water 2019, 11, 763. https://doi.org/10.3390/w11040763
Malík P, Coplák M, Kuvik M, Švasta J. Recharge Impulse Spreading in Western Carpathian’s Mountainous Fissure–Karst Aquifer. Water. 2019; 11(4):763. https://doi.org/10.3390/w11040763
Chicago/Turabian StyleMalík, Peter, Marián Coplák, Marián Kuvik, and Jaromír Švasta. 2019. "Recharge Impulse Spreading in Western Carpathian’s Mountainous Fissure–Karst Aquifer" Water 11, no. 4: 763. https://doi.org/10.3390/w11040763
APA StyleMalík, P., Coplák, M., Kuvik, M., & Švasta, J. (2019). Recharge Impulse Spreading in Western Carpathian’s Mountainous Fissure–Karst Aquifer. Water, 11(4), 763. https://doi.org/10.3390/w11040763