An Integrated Hydrological-CFD Model for Estimating Bacterial Levels in Stormwater Ponds
Abstract
:1. Introduction
2. Materials
2.1. Study Area
2.2. Data Collection
3. Methods
3.1. Hydrological Model, Calibration and Validation
3.2. CFD Simulations
3.2.1. Boundary and Initial Conditions
3.2.2. Other CFD Settings
4. Results and Discussions
4.1. Hydrological Modeling Performance
4.2. CFD Simulations
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- The City of Calgary Water Resources. Stormwater Management and Design Manual; Urban Development Publications: Calgary, AB, Canada, 2011. [Google Scholar]
- He, J.; Valeo, C.; Chu, A.; Neumann, N.F.; Tn, A. Water Quality Assessment in the Application of Stormwater Reuse for Irrigating Public Lands. Water Qual. Res. J. Can. 2008, 43, 93–107. [Google Scholar] [CrossRef]
- Ahilan, S.; Guan, M.; Wright, N.; Sleigh, A.; Allen, D.; Arthur, S.; Haynes, H.; Krivtsov, V. Modelling the long-term suspended sedimentological effects on stormwater pond performance in an urban catchment. J. Hydrol. 2019, 571, 805–818. [Google Scholar] [CrossRef]
- Clevenot, L.; Carré, C.; Pech, P. A Review of the factors that determine whether stormwater ponds are ecological traps and/or high-quality breeding sites for amphibians. Front. Ecol. Evol. 2018, 6, 40. [Google Scholar] [CrossRef]
- Gorgoglione, A.; Bombardelli, F.A.; Pitton, B.J.L.; Oki, L.R.; Haver, D.L.; Young, T.M. Role of sediments in insecticide runoff from urban surfaces: Analysis and modeling. Int. J. Environ. Res. Public Health 2018, 15, 1464. [Google Scholar] [CrossRef]
- Di Modugno, M.; Gioia, A.; Gorgoglione, A.; Iacobellis, V.; la Forgia, G.; Piccinni, A.; Ranieri, E. Build-up/wash-off monitoring and assessment for sustainable management of first flush in an urban area. Sustainability 2015, 7, 5050–5070. [Google Scholar] [CrossRef]
- St-hilaire, A.; Duchesne, S.; Rousseau, A.N. Canadian Water Resources Journal/Revue canadienne Floods and water quality in Canada: A review of the interactions with urbanization, agriculture and forestry. Can. Water Resour. J./Rev. Can. Des Ressour. Hydr. 2016, 41, 277–291. [Google Scholar]
- Borrego, J.J.; Figueras, M.J. Microbiological quality of natural waters. Microbiologia 1997, 13, 413–426. [Google Scholar]
- Leclerc, H.; Mossel, D.A.A.; Edberg, S.C.; Struijk, C.B. Advances in the bacteriology of the coliform group: Their Suitability as Markers of Microbial Water Safety. Annu. Rev. Microbiol. 2001, 55, 201–234. [Google Scholar] [CrossRef]
- Tallon, P.; Magajna, B.; Lofranco, C.; Leung, K.T. Microbial indicators of faecal contamination in water: A current perspective. Water Air. Soil Pollut. 2005, 166, 139–166. [Google Scholar] [CrossRef]
- De Brauwere, A.; Ouattara, N.K.; Servais, P. Modeling Fecal Indicator Bacteria Concentrations in Natural Surface Waters: A Review. Crit. Rev. Environ. Sci. Technol. 2014, 44, 2380–2453. [Google Scholar] [CrossRef]
- Anna, H.; Jeng, C.; Englande, A.J.; Bakeer, R.M.; Bradford, H.B. Impact of urban stormwater runoff on estuarine environmental quality. Estuar. Coast. Shelf Sci. 2005, 63, 513–526. [Google Scholar]
- Characklis, G.W.; Dilts, M.J.; Simmons, O.D.; Likirdopulos, C.A.; Krometis, L.H.; Sobsey, M.D. Microbial partitioning to settleable particles in stormwater. Water Res. 2005, 39, 1773–1782. [Google Scholar] [CrossRef]
- Ouattara, N.K.; de Brauwere, A.; Billen, G.; Servais, P. Modelling faecal contamination in the Scheldt drainage network. J. Mar. Syst. 2013, 128, 77–88. [Google Scholar] [CrossRef]
- Wu, J.; Rees, P.; Storrer, S.; Alderisio, K.; Dorner, S. Fate and transport modeling of potential pathogens: The contribution from sediments. J. Am. Water Resour. Assoc. 2009, 45, 35–44. [Google Scholar] [CrossRef]
- Shilton, A. Potential application of computational fluid dynamics to pond design. Water Sci. Technol. 2000, 42, 327–334. [Google Scholar] [CrossRef]
- Wu, B.; Chen, Z. An integrated physical and biological model for anaerobic lagoons. Bioresour. Technol. 2011, 102, 5032–5038. [Google Scholar] [CrossRef]
- Shilton, A.; Harrison, J. Integration of coliform decay within a CFD (computational fluid dynamic) model of a waste stabilisation pond. Water Sci. Technol. 2003, 45, 205–210. [Google Scholar] [CrossRef]
- Shilton, A.N.; Mara, D.D. CFD (computational fluid dynamics) modelling of baffles for optimizing tropical waste stabilization pond systems. Water Sci. Technol. 2005, 51, 103–106. [Google Scholar] [CrossRef]
- He, J. Reducing the Vulnerability of Water Supply under a Changing Climate: An Assessment of Stormwater Reuse. Ph.D. Thesis, University of Calgary, Calgary, AB, Canada, 2009. [Google Scholar]
- Mallin, M.A.; Williams, K.E.; Esham, E.C.; Lowe, R.P. Effect of human development on bacteriological water quality in coastal watersheds. Ecol. Appl. 2000, 10, 1047–1056. [Google Scholar] [CrossRef]
- Chen, H.J.; Chang, H. Response of discharge, TSS, and E. coli to raifall events in urban, suburban, and rural watersheds. Environ. Sci. Process. Impacts 2014, 16, 2313–2324. [Google Scholar] [CrossRef]
- Schoonover, J.E.; Lockaby, B.G. Land cover impacts on stream nutrients and fecal coliform in the lower Piedmont of West Georgia. J. Hydrol. 2006, 331, 371–382. [Google Scholar] [CrossRef]
- U.S. Army Corps of Engineers. Hydrological Modeling System HEC-HMS User’s Manual: Version 4.2; Hydrologic Engineering Center: Davis, CA, USA, 2016. [Google Scholar]
- Mockus, V. Hydrology. In National Engineering Handbook, 2nd ed.; Natural Resources Conservation Service: Washington, DC, USA, 1972; pp. 21.2–21.49. [Google Scholar]
- Teegavarapu, R.S.V.; Chinatalapudi, S. Incorporating Influences of Shallow Groundwater Conditions in Curve Number-Based Runoff Estimation Methods. Water Resour. Manag. 2018, 32, 4313–4327. [Google Scholar] [CrossRef]
- U.S. Army Corps of Engineers. Hydrologic Modeling System HEC-HMS Technical Reference Manual; Hydrologic Engineering Center: Davis, CA, USA, 2000. [Google Scholar]
- Graebel, W.P. Advanced Fluid Mechanics, 1st ed.; Academic Press: Oxford, UK, 2007; pp. 233–250. [Google Scholar]
- Abbasi, A.; Annor, F.O.; van de Giesen, N. Investigation of Temperature Dynamics in Small and Shallow Reservoirs. Case Study: Lake Binaba, Upper East Region of Ghana. Water 2016, 8, 84. [Google Scholar] [CrossRef]
- Shilton, A.; Kreegher, S.; Grigg, N. Comparison of Computation Fluid Dynamics Simulation against Tracer Data from a Scale Model and Full-Sized Waste Stabilization Pond. J. Environ. Eng. 2008, 134, 845–850. [Google Scholar] [CrossRef]
- Launder, B.E.; Sharma, B.I. Application of the energy-dissipation model of turbulence to the calculation of flow near a spinning disc. Lett. Heat Mass Transf. 1974, 1, 131–138. [Google Scholar] [CrossRef]
- Versteeg, H.K.; Malalasekera, W. An Introduction to Computational Fluid Dynamics: The Finite Volume Method; Longman Scientific and Technical: New York, NY, USA, 1995. [Google Scholar]
- Kunkel, E.A.; Privette, C.V.; Sawyer, C.B.; Hayes, J.C. Attachment of Escherichia coli to fine sediment particles within construction sediment basins. Adv. Biosci. Biotechnol. 2013, 4, 407–414. [Google Scholar] [CrossRef]
- Muirhead, R.W.; Collins, R.P.; Bremer, P.J. Interaction of Escherichia coli and Soil Particles in Runoff. Appl. Environ. Microbiol. 2006, 72, 3406–3411. [Google Scholar] [CrossRef]
- Stokes, G. On the Effect of the Internal Friction of Fluids on the Motion of Pendulums. Trans. Camb. Phillosophical Soc. 1851, 9, 8–106. [Google Scholar]
- Gu, L.; Dai, B.; Zhu, D.Z.; Hua, Z.; Liu, X.; van Duin, B. Sediment modelling and design optimization for stormwater ponds. Can. Water Resour. J./Rev. Can. Des Ressour. Hydr. 2017, 42, 70–87. [Google Scholar] [CrossRef]
- Bai, S.; Lung, W.S. Modeling sediment impact on the transport of fecal bacteria. Water Res. 2005, 39, 5232–5240. [Google Scholar] [CrossRef]
- Chick, H. An Investigation of the Laws of Disinfections. J. Hyg. 1908, 8, 92–158. [Google Scholar] [CrossRef]
- De Brauwere, A.; Gourgue, O.; de Brye, B.; Servais, P.; Ouattara, N.K.; Deleersnijder, E. Integrated modelling of faecal contamination in a densely populated river-sea continuum (Scheldt River and Estuary). Sci. Total Environ. 2014, 468–469, 31–45. [Google Scholar] [CrossRef]
- Banner, M.L.; Peirson, W.L. Tangential stress beneath wind-driven air–water interfaces. J. Fluid Mech. 1998, 364, 115–145. [Google Scholar] [CrossRef]
- CD-adapco. STAR-CCM+ 12.04.011 User’s Manual; Siemens Product Lifecycle Management Software Inc.: Melville, NY, USA, 2017. [Google Scholar]
- McCuen, R.H.; Knight, Z.; Cutter, G. Evaluation of the Nash-Sutcliffe Efficiency Index. J. Hydrol. Eng. 2006, 11, 597–602. [Google Scholar] [CrossRef]
Inlet | I1 | I2 | I3 | I4 | I5 | I6 | I7 | O1 | O2 |
---|---|---|---|---|---|---|---|---|---|
Subbasin area (ha) | 2.74 | 4.68 | 89.52 | 257.97 | 15.3 | 13.04 | 18.48 | outlet | outlet |
Residential (%) | 0 | 27 | 6.48 | 10.04 | 62 | 83 | 69 | - | - |
Commercial (%) | 0 | 53 | 0.36 | 0 | 0 | 7 | 21 | - | - |
Industrial (%) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | - | - |
Parks and Institution (%) | 0 | 20 | 1.8 | 1.54 | 38 | 10 | 8 | - | - |
Major Transport Infrastructure (%) | 0 | 0 | 0.36 | 23.97 | 0 | 0 | 2 | - | - |
Newly graded (%) | 100 | 0 | 40 | 36.22 | 0 | 0 | 0 | - | - |
Farm (%) | 0 | 0 | 52 | 28.22 | 0 | 0 | 0 | - | - |
Sediment Forebay | no | yes | yes | yes | yes | no | no | no | no |
Invert elevation (m) from PWL 1 | - | 2.44 | 2.12 | 2.83 | 2.11 | 2.48 | 1.86 | 2.80 | 2.80 |
Date | Rainfall Depth (mm) | Start of the Event | Duration |
---|---|---|---|
28 May | 4.8 mm | 11:05 p.m. (May 27) | 2 h |
6 June | 31.8 mm | 5:55 a.m. | 7 h 10 min |
26 August | 12.3 mm | 9:25 a.m. | 5 h 55 min |
12 September | 30 mm | 1:05 p.m. | 7 h 45 min |
20 September | 4 mm | 8:00 p.m. | 1 h 40 min |
Inlet | I1 | I2 | I3 | I4 | I5 | I6 | I7 |
---|---|---|---|---|---|---|---|
Estimated CN | 91 | 86.49 | 87.33 | 87.99 | 78.34 | 81.21 | 83.39 |
Calibrated CN | 80.99 | 76.97 | 77.72 | 78.31 | 70 | 72.27 | 74.21 |
Event | Total Volume Error | Nash-Sutcliffe Efficiency (NSE) |
---|---|---|
6 June 2007 | 4.8% | 0.89 |
28 May 2007 | 2.8% | 0.92 |
26 August 2007 | 4.1% | 0.81 |
12 September 2007 | 7.4% | 0.86 |
20 September 2007 | −7.3% | 0.66 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Allafchi, F.; Valeo, C.; He, J.; Neumann, N.F. An Integrated Hydrological-CFD Model for Estimating Bacterial Levels in Stormwater Ponds. Water 2019, 11, 1016. https://doi.org/10.3390/w11051016
Allafchi F, Valeo C, He J, Neumann NF. An Integrated Hydrological-CFD Model for Estimating Bacterial Levels in Stormwater Ponds. Water. 2019; 11(5):1016. https://doi.org/10.3390/w11051016
Chicago/Turabian StyleAllafchi, Farzam, Caterina Valeo, Jianxun He, and Norman F. Neumann. 2019. "An Integrated Hydrological-CFD Model for Estimating Bacterial Levels in Stormwater Ponds" Water 11, no. 5: 1016. https://doi.org/10.3390/w11051016
APA StyleAllafchi, F., Valeo, C., He, J., & Neumann, N. F. (2019). An Integrated Hydrological-CFD Model for Estimating Bacterial Levels in Stormwater Ponds. Water, 11(5), 1016. https://doi.org/10.3390/w11051016