Geographic Object Based Image Analysis of WorldView-3 Imagery for Urban Hydrologic Modelling at the Catchment Scale
Abstract
:1. Introduction
2. Materials and Methods
2.1. Workflow Overview
2.2. Study Area
2.3. Landcover Classification
2.3.1. Data and Software
2.3.2. Segmentation
2.3.3. Automated Land Cover Classification
2.3.4. Classification Refining Rules
2.3.5. Accuracy Assessment
2.4. Hydrologic Model Setup
2.5. Sponge City Scenarios
2.6. Modelling of Design Events
3. Results and Discussion
3.1. Landcover Classification
3.2. Classification Accuracy Assessment
3.3. Hydrologic Modelling
4. Study Limitations and Future Research
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ministry of Housing and Urban-Rural Development. Technical Guide for Sponge Cities-Construction of Low Impact Development; Architecture & Building Press: Beijing, China, 2014. [Google Scholar]
- Fletcher, T.D.; Shuster, W.; Hunt, W.F.; Ashley, R.; Butler, D.; Arthur, S.; Trowsdale, S.; Barraud, S.; Semadeni-Davies, A.; Bertrand-Krajewski, J.-L.; et al. SUDS, LID, BMPs, WSUD and more—The evolution and application of terminology surrounding urban drainage. Urban Water J. 2015, 12, 525–542. [Google Scholar] [CrossRef]
- Cheng, M.; Qin, H.; He, K.; Xu, H. Can floor-area-ratio incentive promote low impact development in a highly urbanized area?—A case study in Changzhou City, China. Front. Environ. Sci. Eng. 2018, 12, 8. [Google Scholar] [CrossRef]
- Gao, J.; Wang, R.; Huang, J.; Liu, M. Application of BMP to urban runoff control using SUSTAIN model: Case study in an industrial area. Ecol. Model. 2015, 318, 177–183. [Google Scholar] [CrossRef]
- Jia, H.; Lu, Y.; Yu, S.L.; Chen, Y. Planning of LID–BMPs for urban runoff control: The case of Beijing Olympic Village. Sep. Purif. Technol. 2012, 84, 112–119. [Google Scholar] [CrossRef]
- Li, H.; Ding, L.; Ren, M.; Li, C.; Wang, H. Sponge City Construction in China: A Survey of the Challenges and Opportunities. Water 2017, 9, 594. [Google Scholar] [CrossRef]
- Chang, X.; Xu, Z.; Zhao, G.; Du, L. Urban rainfall-runoff simulations and assessment of low impact development facilities using SWMM model-A case study of Qinghe catchment in Beijing. J. Hydroelectr. Eng. 2016, 35, 84–93. [Google Scholar]
- Kong, F.; Ban, Y.; Yin, H.; James, P.; Dronova, I. Modeling stormwater management at the city district level in response to changes in land use and low impact development. Environ. Model. Softw. 2017, 95, 132–142. [Google Scholar] [CrossRef]
- Mei, C.; Liu, J.; Wang, H.; Yang, Z.; Ding, X.; Shao, W. Integrated assessments of green infrastructure for flood mitigation to support robust decision-making for sponge city construction in an urbanized watershed. Sci. Total Environ. 2018, 639, 1394–1407. [Google Scholar] [CrossRef] [PubMed]
- Krebs, G.; Kokkonen, T.; Valtanen, M.; Koivusalo, H.; Setälä, H. A high resolution application of a stormwater management model (SWMM) using genetic parameter optimization. Urban Water J. 2013, 10, 394–410. [Google Scholar] [CrossRef]
- Krebs, G.; Kokkonen, T.; Valtanen, M.; Setälä, H.; Koivusalo, H. Spatial resolution considerations for urban hydrological modelling. J. Hydrol. 2014, 512, 482–497. [Google Scholar] [CrossRef]
- Khin, M.M.L.; Shaker, A.; Joksimovic, D.; Yan, W.Y. The use of WorldView-2 satellite imagery to model urban drainage system with low impact development (LID) Techniques. Geocarto Int. 2016, 31, 92–108. [Google Scholar] [CrossRef]
- Berezowski, T.; Chormański, J.; Batelaan, O.; Canters, F.; Van de Voorde, T. Impact of remotely sensed land-cover proportions on urban runoff prediction. Int. J. Appl. Earth Obs. Geoinf. 2012, 16, 54–65. [Google Scholar] [CrossRef]
- Dams, J.; Dujardin, J.; Reggers, R.; Bashir, I.; Canters, F.; Batelaan, O. Mapping impervious surface change from remote sensing for hydrological modeling. J. Hydrol. 2013, 485, 84–95. [Google Scholar] [CrossRef]
- Blaschke, T. Object based image analysis for remote sensing. ISPRS J. Photogramm. Remote Sens. 2010, 65, 2–16. [Google Scholar] [CrossRef] [Green Version]
- Cleve, C.; Kelly, M.; Kearns, F.R.; Moritz, M. Classification of the wildland–urban interface: A comparison of pixel- and object-based classifications using high-resolution aerial photography. Comput. Environ. Urban Syst. 2008, 32, 317–326. [Google Scholar] [CrossRef]
- Myint, S.W.; Gober, P.; Brazel, A.; Grossman-Clarke, S.; Weng, Q. Per-pixel vs. object-based classification of urban land cover extraction using high spatial resolution imagery. Remote Sens. Environ. 2011, 115, 1145–1161. [Google Scholar] [CrossRef]
- Blaschke, T.; Hay, G.J.; Kelly, M.; Lang, S.; Hofmann, P.; Addink, E.; Queiroz Feitosa, R.; van der Meer, F.; van der Werff, H.; van Coillie, F.; et al. Geographic Object-Based Image Analysis—Towards a new paradigm. ISPRS J. Photogramm. Remote Sens. 2014, 87, 180–191. [Google Scholar] [CrossRef]
- Ma, L.; Li, M.; Ma, X.; Cheng, L.; Du, P.; Liu, Y. A review of supervised object-based land-cover image classification. ISPRS J. Photogramm. Remote Sens. 2017, 130, 277–293. [Google Scholar] [CrossRef]
- Li, H.; Jing, L.; Tang, Y. Assessment of Pansharpening Methods Applied to WorldView-2 Imagery Fusion. Sensors 2017, 17, 89. [Google Scholar] [CrossRef]
- Baatz, M.; Schäpe, A. Multiresolution Segmentation: An optimization approach for high quality multi-scale image segmentation. In Angewandte Geographische Informationsverarbeitung XII; Strobl, J., Blaschke, T., Griesebner, G., Eds.; Wichmann: Heidelberg, Germany, 2000; pp. 12–23. [Google Scholar]
- Neubert, M.; Herold, H.; Meinel, G. Assessing image segmentation quality—Concepts, methods and application. In Object-Based Image Analysis–Spatial Concepts for Knowledge-Driven Remote Sensing Applications; Blaschke, T., Hay, G., Lang, S., Eds.; Lecture Notes in Geoinformation & Cartography 18; Springer: Berlin, Germany, 2008; pp. 769–784. [Google Scholar]
- Qian, Y.; Zhou, W.; Yan, J.; Li, W.; Han, L. Comparing Machine Learning Classifiers for Object-Based Land Cover Classification Using Very High Resolution Imagery. Remote Sens. 2014, 7, 153–168. [Google Scholar] [CrossRef]
- Zhou, W.; Troy, A. An object-oriented approach for analysing and characterizing urban landscape at the parcel level. Int. J. Remote Sens. 2008, 29, 3119–3135. [Google Scholar] [CrossRef]
- Maxwell, A.E.; Warner, T.A.; Strager, M.P.; Conley, J.F.; Sharp, A.L. Assessing machine-learning algorithms and image- and lidar-derived variables for GEOBIA classification of mining and mine reclamation. Int. J. Remote Sens. 2015, 36, 954–978. [Google Scholar] [CrossRef]
- Phiri, D.; Morgenroth, J. Developments in Landsat Land Cover Classification Methods: A Review. Remote Sens. 2017, 9, 967. [Google Scholar] [CrossRef]
- Long, Y.; Wu, K.; Mao, Q. Simulating urban expansion in the parcel level for all Chinese cities. arXiv 2014, arXiv:1402.3718. Available online: https://arxiv.org/abs/1402.3718 (accessed on 10 March 2018).
- Randall, M.; Sun, F.; Zhang, Y.; Bergen Jensen, M. Evaluating Sponge City volume capture ratio at the catchment scale using SWMM. J. Environ. Manag. 2019, in press. [Google Scholar]
- BIAD (Beijing Institute of Architectural Design); Beijing General Municipal Engineering Design and Research Institute; Beijing Institute for Water Science and Technology. Code for Design of Stormwater Management and Harvesting Engineering; BIAD (Beijing Institute of Architectural Design); Beijing General Municipal Engineering Design and Research Institute; Beijing Institute for Water Science and Technology: Beijing, China, 2013. Available online: http://www.bjwater.gov.cn/bjwater/resource/cms/2016/12/old_image/P020150805747401290775.pdf (accessed on 22 January 2018).
- Rossman, L.; Huber, W. Storm Water Management Model Reference Manual Volume I—Hydrology (Revised); U.S. Environmental Protection Agency: Cincinnati, OH, USA, 2016.
- Coffman, L. Low-Impact Development Design Strategies: An Integrated Design Approach; Department of Environmental Resources, Programs and Planning Division: Prince George’s County, MD, USA, 1999. [Google Scholar]
- Rosa, D.; Clausen, J.; Dietz, M. Calibration and Verification of SWMM for Low Impact Development. J. Am. Water Resour. Assoc. (JAWRA) 2015, 51, 746–757. [Google Scholar] [CrossRef]
- Beijing Urban Planning and Design Institute. Standard of Rainstorm Runoff Calculation for Urban Storm Drainage System Planning and Design; Beijing Municipal Planning and Land Resources Administration Commission of Beijing Quality and Technical Supervision: Beijing, China, 2016.
- Anderson, J.R.; Hardy, E.E.; Roach, J.T.; Witmer, R.E. A Land Use and Land Cover Classification System for Use with Remote Sensor Data; United States Geological Survey: Arlington, VA, USA, 1976.
- Landis, J.R.; Koch, G.G. The Measurement of Observer Agreement for Categorical Data. Biometrics 1977, 33, 159–174. [Google Scholar] [CrossRef]
- Kim, M.; Madden, M.; Warner, T.A. Forest Type Mapping using Object-specific Texture Measures from Multispectral Ikonos Imagery. Photogramm. Eng. Remote Sens. 2009, 75, 819–829. [Google Scholar] [CrossRef] [Green Version]
Object Feature | Description |
---|---|
Mean value * | Mean value of a specific band of an image object |
Standard deviation * | Standard deviation of an image object |
Brightness | Mean value of the eight multispectral bands |
Max. diff. | Max intensity difference of the eight multispectral bands |
NDVI | Normalized Difference Vegetation Index, calculated as (NIR1 − Red)/(NIR1 + Red) |
NDWI | Normalized Difference Water Index, calculated as (Green − NIR1)/(Green + NIR1) |
Rule | Initial Class | Final Class | Rule Condition |
---|---|---|---|
1 | Grass | Trees | NIR band standard deviation ≥ 17 |
2 | Water | Shadow | total area < 25,000 pixels OR red band mean ≥ 430 OR NDWI mean < 0.19 |
3 | Buildings, PPPA, Shadow | Roads | within public right of way |
4 | Buildings, Roads, Shadow | PPPA | outside public right of way |
5 | Roads, PPPA | Buildings | difference in mean elevation of DTM and DSM is ≥ 5 m |
SWMM Parameter | Description (units) | Value |
---|---|---|
Flow Width | Width of overland sheet flow (m) | 0.5 × √area |
N Imperv | Manning’s Roughness of Impervious Areas | 0.016 |
N Perv | Manning’s Roughness of pervious areas (Trees) | 0.16 |
N Perv | Manning’s Roughness of pervious areas (Grass) | 0.11 |
DStore Imperv | Depth of depression storage on impervious area (mm) | 2.5 |
Dstore Perv | Depth of depression storage on pervious area (mm) | 7 |
MaxRate | Hortons Maximum Infiltration Rate (mm/h) | 125 |
MinRate | Hortons Minimum Infiltration Rate (mm/h) | 4 |
LID Layer | Parameter | Green Roof | Permeable Pavement | Rain Garden |
---|---|---|---|---|
Surface | Berm height (mm) | 75 | 5 | 300 |
Vegetation volume (fraction) | 0.1 | 0 | 0.1 | |
Surface roughness (Manning’s n) | 0.1 | 0.05 | 0.1 | |
Surface slope (percent) | 0.3 | 2 | 2 | |
Pavement | Thickness (mm) | NA | 150 | NA |
Void ratio (voids/solids) | NA | 0.4 | NA | |
Impervious surface (fraction) | NA | 0.3 | NA | |
Permeability (mm/h) | NA | 72 | NA | |
Soil/Media | Thickness (mm) | 150 | NA | 500 |
Porosity (volume fraction) | 0.4 | NA | 0.4 | |
Field Capacity (volume fraction) | 0.105 | NA | 0.105 | |
Wilting point (volume fraction) | 0.047 | NA | 0.047 | |
Conductivity (mm/h) | 72 | NA | 72 | |
Conductivity slope | 5 | NA | 10 | |
Suction head (mm) | 20 | NA | 50 | |
Storage | Thickness (mm) | NA | 150 | NA |
Void ratio (voids/solids) | NA | 0.5 | NA | |
Seepage rate (mm/h) | NA | 78 | NA |
Land Cover | No. of Objects | % of Study Area |
---|---|---|
Building | 13,521 | 27.1 |
PPPA | 23,716 | 15.9 |
Road | 8762 | 9.1 |
Trees | 21,362 | 32.3 |
Grass | 18,323 | 13.3 |
Water | 253 | 2.2 |
Total | 85,937 | 100 |
Reference Class | User’s Accuracy | |||||||
---|---|---|---|---|---|---|---|---|
Building | Road | Trees | Grass | Water | PPPA | |||
Predicted Class | Building | 48 | 0 | 1 | 1 | 0 | 2 | 92% |
Road | 10 | 67 | 1 | 3 | 1 | 67 | 45% | |
Trees | 0 | 0 | 67 | 2 | 1 | 0 | 96% | |
Grass | 1 | 23 | 29 | 91 | 0 | 21 | 55% | |
Water | 0 | 9 | 1 | 2 | 98 | 3 | 87% | |
PPPA | 41 | 1 | 1 | 1 | 0 | 7 | 14% | |
Producer’s Accuracy | 48% | 67% | 67% | 91% | 98% | 7% | ||
Overall Accuracy = | 63% | |||||||
Kappa Coefficient (KIA) = | 0.56 |
Reference Class | User’s Accuracy | |||||||
---|---|---|---|---|---|---|---|---|
Building | Road | Trees | Grass | Water | PPPA | |||
Predicted Class | Building | 92 | 0 | 0 | 3 | 1 | 21 | 79% |
Road | 3 | 58 | 1 | 0 | 0 | 10 | 81% | |
Trees | 0 | 0 | 80 | 8 | 1 | 2 | 88% | |
Grass | 1 | 23 | 16 | 85 | 0 | 19 | 59% | |
Water | 0 | 8 | 0 | 1 | 98 | 3 | 89% | |
PPPA | 4 | 11 | 3 | 3 | 0 | 45 | 68% | |
Producer’s Accuracy | 92% | 58% | 80% | 85% | 98% | 45% | ||
Overall Accuracy = | 76% | |||||||
Kappa Coefficient (KIA) = | 0.72 |
Return Period | Rainfall (mm) | Baseline Runoff Volume (1000 m3) | Runoff Volume Reduction Rate (%) | ||
---|---|---|---|---|---|
Low LID | Mid LID | High LID | |||
3 | 116 | 1315 | 62 | 70 | 82 |
5 | 151 | 1856 | 62 | 69 | 81 |
10 | 209 | 2832 | 62 | 68 | 79 |
20 | 265 | 3811 | 62 | 68 | 78 |
50 | 339 | 5228 | 62 | 68 | 77 |
100 | 409 | 6533 | 61 | 67 | 77 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Randall, M.; Fensholt, R.; Zhang, Y.; Bergen Jensen, M. Geographic Object Based Image Analysis of WorldView-3 Imagery for Urban Hydrologic Modelling at the Catchment Scale. Water 2019, 11, 1133. https://doi.org/10.3390/w11061133
Randall M, Fensholt R, Zhang Y, Bergen Jensen M. Geographic Object Based Image Analysis of WorldView-3 Imagery for Urban Hydrologic Modelling at the Catchment Scale. Water. 2019; 11(6):1133. https://doi.org/10.3390/w11061133
Chicago/Turabian StyleRandall, Mark, Rasmus Fensholt, Yongyong Zhang, and Marina Bergen Jensen. 2019. "Geographic Object Based Image Analysis of WorldView-3 Imagery for Urban Hydrologic Modelling at the Catchment Scale" Water 11, no. 6: 1133. https://doi.org/10.3390/w11061133
APA StyleRandall, M., Fensholt, R., Zhang, Y., & Bergen Jensen, M. (2019). Geographic Object Based Image Analysis of WorldView-3 Imagery for Urban Hydrologic Modelling at the Catchment Scale. Water, 11(6), 1133. https://doi.org/10.3390/w11061133