Distribution and Trophic Pattern of Non-Native Fish Species Across the Liao River Basin in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field Sampling and Identification
2.3. Water Quality Parameters
2.4. Physical Habitat Factors and Climate Factors
2.5. Data Analysis
3. Results
3.1. Information and Distribution of Non-Native Fish Species
3.2. Associations Between Environmental Variables and the Distribution of Non-Native Fish Species
3.3. Associations Between Environmental Variables and the MTL of Non-Native Fish Species
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Habitat Factors | Optimal | Suboptimal | Marginal | Poor |
---|---|---|---|---|
Substrate | More than 75% are gravel, pebbles and boulders | 50%~75% are gravel, pebbles and boulders | 25%~50% are gravel, pebbles and boulders | Less than 25% are gravel, pebbles and boulders |
Habitat complexity | Composition of aquatic vegetation, dead branches and leaves, fallen wood, sunken dikes, boulders and other microhabitats | Composition of aquatic vegetation, dead leaves, dikes and other small habitats | Domination by two or three kinds of microhabitat | One kind of microhabitat |
Velocity–depth combination | Four types of velocity–depth habitat (slow–deep, slow–shallow, fast–deep, fast–shallow) (slow <0.3 m/s, deep >0.5 m) | Three types of velocity–depth habitat | Two types of velocity–depth habitat | Only one type of velocity–depth habitat |
Bank stability | Less than 5% of the riverbanks have eroded areas in the visual range (100 m) | 5%~30% of the riverbanks have eroded areas in the visual range (100 m) | 30%~60% of the riverbanks have eroded areas in the visual range (100 m) | More than 60% of the riverbanks have eroded areas in the visual range (100 m) |
Channelization | No channelization | Channelization is rare, usually around the piers | Channelization is normal, embankment or bridge prop appear on two sides | Channelization is wide, embankment or bridge prop appear on two sides and habitat completely changed |
Channel flow status | Large water volume and channel sediment is not exposure | Relatively large water volume and less than 25% channel sediment exposure | 25%~75% of channel sediment exposure | Small water volume and dry river course |
Water quality conditions | Very clear, no smell, no sediment at static condition | Relatively clear, with a small amount of odor, a small amount of sediment at static condition | Turbid, odor, has sediment at static condition | Very turbid and foul smelling at static condition |
Bank vegetative diversity | More than 50% coverage of vegetation | 25%~50% coverage of vegetation | Less than 25% coverage of vegetation | Hardly any vegetation coverage |
Intensity of human disturbance | No human activities | Minimal human disturbance by few walkers or bikes | Less human disturbance by vehicles | Serious human disturbance by vehicles or ships |
Riverside land use | No cultivated soil on both riversides | No cultivated soil on the one riverside and cultivated soil on the other riverside | Cultivated soil on both riversides | Weathered soil after fallow conditions present on both riversides |
Aquatic plant abundance | 75%~100% aquatic plant coverage | 50%~75% aquatic plant coverage | 25%~50% aquatic plant coverage | Less than 25% aquatic plant coverage |
Score | 16–20 | 11–15 | 6–10 | 0–5 |
References
- Simberloff, D.; Martin, J.L.; Genovesi, P.; Maris, V.; Wardle, D.A.; Aronson, J.; Courchamp, F.; Galil, B.; Garcíaberthou, E.; Pascal, M. Impacts of biological invasions: What’s what and the way forward. Trends Ecol. Evol. 2013, 28, 58–66. [Google Scholar] [CrossRef] [PubMed]
- Mack, M.C.; D’Antonio, C.M. Impacts of biological invasions on disturbance regimes. Trends Ecol. Evol. 1998, 13, 195–198. [Google Scholar] [CrossRef]
- Pimentel, D.; Lach, L.; Zuniga, R.; Morrison, D.; Pimentel, D. Environmental and economic costs associated with non-indigenous species in the United States. Bioscience 2000, 50, 53–65. [Google Scholar] [CrossRef]
- Bonanno, G. Alien species: To remove or not to remove? That is the question. Environ. Sci. Policy 2016, 59, 67–73. [Google Scholar] [CrossRef]
- Sarukhan, J.; Whyte, A.; Hassan, R.; Scholes, R.; Ash, N.; Carpenter, S.T.; Pingali, P.L.; Bennett, E.M.; Zurek, M.B.; Chopra, K. Millenium Ecosystem Assessment: Ecosystems and Human Well-Being; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Dudgeon, D.; Arthington, A.H.; Gessner, M.O.; Kawabata, Z.; Knowler, D.J.; Lévêque, C.; Naiman, R.J.; Prieurrichard, A.H.; Soto, D.; Stiassny, M.L. Freshwater biodiversity: Importance, threats, status and conservation challenges. Biol. Rev. 2006, 81, 163–182. [Google Scholar] [CrossRef] [PubMed]
- Jeschke, J.M.; Bacher, S.; Blackburn, T.M.; Dick, J.T.A.; Essl, F.; Evans, T.; Gaertner, M.; Hulme, P.E.; Kühn, I.; Mrugała, A.; et al. Defining the Impact of Non-Native Species. Conserv. Biol. 2014, 28, 1188–1194. [Google Scholar] [CrossRef] [PubMed]
- Larson, B.M.H.; Kueffer, C.; Larson, B.M.H.; Kueffer, C. Managing invasive species amidst high uncertainty and novelty. Trends Ecol. Evol. 2013, 28, 255–256. [Google Scholar] [CrossRef] [PubMed]
- Kulhanek, S.A.; Anthony, R.; Brian, L. Is invasion history a useful tool for predicting the impacts of the world’s worst aquatic invasive species? Ecol. Appl. 2011, 21, 189–202. [Google Scholar] [CrossRef] [PubMed]
- Daniel, S.; Jean-Louis, M.; Piero, G.; Virginie, M.; Wardle, D.A.; James, A.; Franck, C.; Bella, G.; Emili, G.B.; Michel, P. Impacts of biological invasions: What’s what and the way forward. Trends Ecol. Evol. 2013, 28, 58–66. [Google Scholar]
- Lockwood, J.L.; Hoopes, M.F.; Marchetti, M.P. Invasion Ecology; Wiley-Blackwell: Hoboken, NJ, USA, 2013. [Google Scholar]
- Pyšek, P.; Richardson, D.M. Invasive species, environmental change and management, and health. Annu. Rev. Environ. Resour. 2010, 35, 25–55. [Google Scholar] [CrossRef]
- Ricciardi, A.; Hoopes, M.F.; Marchetti, M.P.; Lockwood, J.L. Progress toward understanding the ecological impacts of nonnative species. Ecol. Monogr. 2013, 83, 263–282. [Google Scholar] [CrossRef] [Green Version]
- Jeschke, J.M.; Ostfeld, R.S. Novel Organisms: Comparing Invasive Species, GMOs, and Emerging Pathogens. Ambio 2013, 42, 541–548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ricciardi, A.; Cohen, J. The invasiveness of an introduced species does not predict its impact. Biol. Invasions 2007, 9, 309–315. [Google Scholar] [CrossRef]
- Kolar, C.S.; Lodge, D.M. Progress in invasion biology: Predicting invaders. Trends Ecol. Evol. 2001, 16, 199–204. [Google Scholar] [CrossRef]
- Nunes, A.L.; Tricarico, E.; Panov, V.E.; Cardoso, A.C.; Katsanevakis, S. Pathways and gateways of freshwater invasions in Europe. Aquat. Invasions 2015, 10, 359–370. [Google Scholar] [CrossRef] [Green Version]
- Trebitz, A.S.; Hoffman, J.C.; Darling, J.A.; Pilgrim, E.M.; Kelly, J.R.; Brown, E.A.; Chadderton, W.L.; Egan, S.P.; Grey, E.K.; Hashsham, S.A.; et al. Early detection monitoring for aquatic non-indigenous species: Optimizing surveillance, incorporating advanced technologies, and identifying research needs. J. Environ. Manag. 2017, 202, 299–310. [Google Scholar] [CrossRef] [PubMed]
- Lever, C. Naturalized Fishes of the World; Academic Press: San Diego, CA, USA, 1996. [Google Scholar]
- Gozlan, R.E.; Britton, J.R.; Cowx, I.; Copp, G.H. Current knowledge on non-native freshwater fish introductions. J. Fish Biol. 2010, 76, 751–786. [Google Scholar] [CrossRef]
- Gurevitch, J.; Padilla, D.K. Are invasive species a major cause of extinctions? Trends Ecol. Evol. 2004, 19, 470–474. [Google Scholar] [CrossRef] [PubMed]
- He, C.; Tian, J.; Gao, B.; Zhao, Y. Differentiating climate- and human-induced drivers of grassland degradation in the Liao River Basin, China. Environ. Monit. Assess. 2015, 187, 4199. [Google Scholar] [CrossRef] [PubMed]
- Jian, L.; Hua, C.; Kowarik, I.; Zhang, Y.R.; Wang, R.Q. Plant invasions in China: An emerging hot topic in invasion science. Neobiota 2012, 15, 27–51. [Google Scholar]
- Fu, Q.; Mao, F.; Wang, T.; Yang, B.; Wu, Y.; Li, J. Evaluation and optimization of woodland ecological patterns for Qingdao based on the agent-based model. Acta Ecol. Sin. 2012, 32, 7676–7687. [Google Scholar] [Green Version]
- Dunham, J.B.; Young, M.K.; Gresswell, R.E.; Rieman, B.E. Effects of fire on fish populations: Landscape perspectives on persistence of native fishes and nonnative fish invasions. For. Ecol. Manag. 2003, 178, 183–196. [Google Scholar] [CrossRef]
- Gale, H.F.; Huang, K. Demand for Food Quantity and Quality in China; Economic Research Report; Department of Agriculture: Washington, DC, USA, 2007. [Google Scholar]
- Kearney, J. Food consumption trends and drivers. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2010, 365, 2793–2807. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Zhang, Y.; Ding, S.; Zhao, R.; Meng, W. Response of fish communities to environmental changes in an agriculturally dominated watershed (Liao River Basin) in northeastern China. Ecol. Eng. 2015, 76, 130–141. [Google Scholar] [CrossRef]
- Froese, R.; Pauly, D. FishBase. 2018. Available online: www.fishbase.org (accessed on 15 December 2018).
- Li, S.; Fang, F. On the geographical distribution of the four kinds of pond-cultured carps in China. Acta Zool. Sin. 1990, 36, 244–250. [Google Scholar]
- Department of Ocean And Fisheries of Liaoning Province. Aquatic Economic Animal and Plant Illustrated Handbook of Liaoning Province; Liaoning Science and Technology Press: Shenyang, China, 2011. [Google Scholar]
- Xiong, W.; Sui, X.; Liang, S.H.; Chen, Y. Non-native freshwater fish species in China. Rev. Fish Biol. Fish. 2015, 25, 651–687. [Google Scholar] [CrossRef]
- National Environmental Protection Bureau. Standard Methods for the Examination of Water and Wastewater (Version 4); China Environmental Science Publish Press: Beijing, China, 2002. [Google Scholar]
- Zheng, B.H.; Zhang, Y.; Li, Y.B. Study of indicators and methods for river habitat assessment of Liao River Basin. Acta Sci. Circumstantiae 2007, 27, 928–936. [Google Scholar]
- Wang, X.-N.; Ding, H.-Y.; He, X.-G.; Dai, Y.; Zhang, Y.; Ding, S. Assessing Fish Species Tolerance in the Huntai River Basin, China: Biological Traits versus Weighted Averaging Approaches. Water 2018, 10, 1843. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency Office of Water. Rapid Bioassessment Protocols for Use in Wadeable Streams and Rivers: Periphyton, Benthic Macroinvertebrates, and Fish; United States Environmental Protection Agency: Washington, DC, USA, 1999. [Google Scholar]
- Zhang, H.; Wu, G.; Zhang, P.; Xu, J. Trophic fingerprint of fish communities in subtropical floodplain lakes. Ecol. Freshw. Fish 2013, 22, 246–256. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018. [Google Scholar]
- Yoo, W.; Mayberry, R.; Bae, S.; Singh, K.; He, Q.P.; Lillard, J.W., Jr. A study of effects of multicollinearity in the multivariable analysis. Int. J. Appl. Sci. Technol. 2014, 4, 9. [Google Scholar]
- Brooks, D. Akaike Information Criterion Statistics. Technometrics 1986, 31, 270–271. [Google Scholar] [CrossRef]
- Hurvich, C.M.; Chihling, T. Regression and time series model selection in small samples. Biometrika 1989, 76, 297–307. [Google Scholar] [CrossRef]
- FAO. The State of World Fisheries and Aquaculture 2016; FAO: Rome Italy, 2016; Volume 4, pp. 40–41. [Google Scholar]
- FAO. The State of World Fisheries and Aquaculture 2008; FAO: Rome Italy, 2008; Volume 4, pp. 40–41. [Google Scholar]
- FAO. The State of World Fisheries and Aquaculture 2010; FAO: Rome Italy, 2010; Volume 4, pp. 40–41. [Google Scholar]
- Leprieur, F.; Beauchard, O.; Blanchet, S.; Oberdorff, T.; Brosse, S. Fish invasions in the world’s river systems: When natural processes are blurred by human activities. PLoS Biol. 2008, 6, e28. [Google Scholar]
- Hertling, U.M.; Lubke, R.A. Assessing the potential for biological invasion—The case of Ammophila arenaria in South Africa. S. Afr. J. Sci. 2000, 96, 520–527. [Google Scholar]
- Gaston, K.J.; Spicer, J.I. The Relationship between Range Size and Niche Breadth: A Test Using Five Species of Gammarus (Amphipoda). Glob. Ecol. Biogeogr. 2001, 10, 179–188. [Google Scholar] [CrossRef]
- Harlioğlu, M.M.; Harlioğlu, A.G. Threat of non-native crayfish introductions into Turkey: Global lessons. Rev. Fish Biol. Fish. 2006, 16, 171–181. [Google Scholar] [CrossRef]
- Gutiérrez-Yurrita, P.J.; Montes, C. Bioenergetics and phenology of reproduction of the introduced red swamp crayfish, Procambarus clarkii, in Do·ana National Park, Spain, and implications for species management. Freshw. Biol. 2010, 42, 561–574. [Google Scholar] [CrossRef]
- Huner, J.V.; Barr, J.E.; Coleman, E.B. Red Swamp Crawfish: Biology and Exploitation; Louisiana Sea Grant College Program, Louisiana State University: Baton Rouge, LA, USA, 1984. [Google Scholar]
- Rodríguez, C.F.; Bécares, E.; Fernández-aláez, M.; Fernández-aláez, C. Loss of diversity and degradation of wetlands as a result of introducing exotic crayfish. Biol. Invasions 2005, 7, 75–85. [Google Scholar] [CrossRef]
- Clark, W.H.; Wroten, J.W. First Record of the Crayfish, Procambarus clarkii, from Idaho, U.S.A. (Decapoda, Cambaridae). Crustaceana 1978, 35, 317–319. [Google Scholar]
- Hobbs, R.J.; Mooney, H.A. Effects of Rainfall Variability and Gopher Disturbance on Serpentine Annual Grassland Dynamics. Ecology 1991, 72, 59–68. [Google Scholar] [CrossRef]
- Vitousek, P.M.; Mooney, H.A.; Lubchenco, J.; Melillo, J.M. Human domination of Earth’s ecosystems. Science 1997, 277, 494–499. [Google Scholar] [CrossRef]
- Xu, J.; Su, G.; Xiong, Y.; Akasaka, M.; García Molinos, J.; Matsuzaki, S.-I.; Zhang, M. Complimentary analysis of metacommunity nestedness and diversity partitioning highlights the need for a holistic conservation strategy for highland lake fish assemblages. Glob. Ecol. Conserv. 2015, 3, 288–296. [Google Scholar] [CrossRef]
- Palmer, M.A.; Liermann, C.A.R.; Nilsson, C.; Flörke, M.; Alcamo, J.; Lake, P.S.; Bond, N. Climate change and the world’s river basins: Anticipating management options. Front. Ecol. Environ. 2008, 6, 81–89. [Google Scholar] [CrossRef]
- Cook, E.J.; Ashton, G.; Campbell, M.; Coutts, A.; Gollasch, S.; Hewitt, C.; Liu, H.; Dan, M.; Ruiz, G.; Shucksmith, R. Non-Native Aquaculture Species Releases: Implications for Aquatic Ecosystems.
Variables | Factors | Unit |
---|---|---|
Habitat factors | Substrate | / |
Habitat complexity | / | |
Velocity-depth combination | / | |
Bank stability | / | |
Channelization | / | |
Channel flow status | / | |
Water quality conditions | / | |
Bank vegetative diversity | / | |
Intensity of human disturbance | / | |
Riverside landuse | / | |
Aquatic plant abundance | / | |
Water quality | Water temperature (TEM) | °C |
pH | / | |
Dissolved oxygen (DO) | mg/L | |
Electrical conductivity (EC) | μs/cm | |
Permanganate index (CODMn) | mg/L | |
Total phosphorus (TP) | mg/L | |
Ammonia nitrogen (NH4–N) | mg/L | |
Soluble reactive phosphorus (SRP) | mg/L | |
Total nitrogen (TN) | mg/L | |
Nitrate nitrogen (NO3–N) | mg/L | |
Land use | Farmland area | km2 |
Water area | km2 | |
Construction area | km2 | |
Grassland area | km2 | |
Forest area | km2 | |
Wetland | km2 | |
Other | km2 | |
Climate | Mean annual precipitation (MAP) | mm |
Mean annual temperature (MAT) | °C |
Latin Name | Trophic Level | Origin |
---|---|---|
Mylopharyngodon piceus | 3.00 | Lower reaches of Heilong River, Wusuli River, Songhua River Basin, Haihe Plain, middle and lower reaches of Yellow River, Huaihe Plain, Yangtze River Basin, Qiantang River Plain, Pearl River Plain (China) |
Ctenopharyngodon idellus | 2.00 | Heilong River Basin, Haihe Plain, middle and lower reaches of Yellow River, Huaihe Plain, Yangtze River Basin, Qiantang River Plain, Pearl River Plain, Pearl River (China) |
Hypophthalmichthys molitrix | 2.30 | Heilong River Basin, Wusuli River, Songhua River, lower reaches of Liao River, Haihe River Plain, middle and lower reaches of Yellow River, Huaihe River Plain, Yangtze River, Qiantang River Plain, Pearl River Plain (China) |
Aristichthys nobilis | 2.40 | Haihe River Plain, Yellow River Plain, Yangtze River Plain, Qiantang River Plain, Pearl River Plain, Pearl River (China) |
Carassius auratus var. Pengze | 2.50 1 | Pengze County, Jiangxi Province (China) |
Megalobrama amblycephala | 2.00 | Middle and lower reaches of Yangtze River (China) |
Micropterus salmoides | 3.84 | North America |
Tinca tinca | 3.69 | Europe |
Cyprinus carpio var. specularis | 3.06 2 | Europe |
Variables | Coefficient | SE | p Value |
---|---|---|---|
Habitat factors | |||
Channelization | −2.9993 | 1.1520 | <0.01 |
Water quality | |||
- | - | - | - |
Land use | |||
Water area | 1.7646 | 0.6502 | <0.01 |
Climate | |||
- | - | - | - |
Variables | Coefficient | SE | p Value |
---|---|---|---|
Habitat factors | |||
Channelization | −1.1272 | 0.2821 | <0.01 |
Channel flow status | 0.8538 | 0.4055 | 0.035 |
Water quality | |||
DO | 2.0883 | 0.6739 | <0.01 |
Land use | |||
Water area | 0.7327 | 0.2295 | <0.01 |
Construction area | 0.5239 | 0.2376 | 0.027 |
Climate | |||
MAP | 2.7251 | 1.0483 | <0.01 |
Variables | Coefficient | SE | p Value |
---|---|---|---|
Habitat factors | |||
Substrate | 0.0848 | 0.0260 | <0.01 |
Habitat complexity | −0.0531 | 0.0219 | 0.018 |
Bank stability | −0.0735 | 0.0291 | 0.014 |
Riverside land use | 0.0633 | 0.0297 | 0.037 |
Water quality | |||
- | - | - | - |
Land use | |||
- | - | - | - |
Climate | |||
- | - | - | - |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, K.; Li, C.; Wang, T.; Hu, B.; Zhang, M.; Xu, J. Distribution and Trophic Pattern of Non-Native Fish Species Across the Liao River Basin in China. Water 2019, 11, 1217. https://doi.org/10.3390/w11061217
Zhao K, Li C, Wang T, Hu B, Zhang M, Xu J. Distribution and Trophic Pattern of Non-Native Fish Species Across the Liao River Basin in China. Water. 2019; 11(6):1217. https://doi.org/10.3390/w11061217
Chicago/Turabian StyleZhao, Kangshun, Chao Li, Tao Wang, Bowen Hu, Min Zhang, and Jun Xu. 2019. "Distribution and Trophic Pattern of Non-Native Fish Species Across the Liao River Basin in China" Water 11, no. 6: 1217. https://doi.org/10.3390/w11061217
APA StyleZhao, K., Li, C., Wang, T., Hu, B., Zhang, M., & Xu, J. (2019). Distribution and Trophic Pattern of Non-Native Fish Species Across the Liao River Basin in China. Water, 11(6), 1217. https://doi.org/10.3390/w11061217