Potential of Water Hyacinth Infestation on Lake Tana, Ethiopia: A Prediction Using a GIS-Based Multi-Criteria Technique
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Dataset
2.3. Methods
2.3.1. Interpolation
2.3.2. The Threshold Value of the Major Factors
2.3.3. Multicriteria Analysis
2.3.4. Fuzzy Overlay
3. Results and Discussion
3.1. Threshold Water Quality Parameters
3.2. Hotspot Area Prediction of Water Hyacinth Area Using MCDA
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Brendonck, L.; Maes, J.; Rommens, W.; Dekeza, N.; Nhiwatiwa, T.; Barson, M.; Callebaut, V.; Phiri, C.; Moreau, K.; Gratwicke, B.; et al. The impact of water hyacinth (Eichhornia crassipes) in a eutrophic subtropical impoundment (Lake Chivero, Zimbabwe). II. Species diversity. Arch. Hydrobiol. 2003, 158, 389–405. [Google Scholar] [CrossRef]
- Giardini, M. Salvinia molesta DS Mitchell (Salviniaceae): Seconda segnalazione per l’Italia (Lazio) e considerazioni sul controllo di questa specie infestante. Webbia 2004, 59, 457–467. [Google Scholar] [CrossRef]
- Ceschin, S.; Abati, S.; Traversetti, L.; Spani, F.; Del Grosso, F.; Scalici, M. Effects of the alien duckweed Lemna minuta Kunth on aquatic animals: An indoor experiment. Plant Biosyst. 2019. [Google Scholar] [CrossRef]
- Abdel-Tawwab, M. Effect of free-floating macrophyte, Azolla pinnata on water physico-chemistry, primary productivity, and the production of Nile Tilapia, Oreochromis niloticus (L.), and Common Carp, Cyprinus carpio L., in fertilized earthen ponds. J. Appl. Aquac. 2006, 18, 21–41. [Google Scholar] [CrossRef]
- Gratwicke, B.; Marshall, B.E. The impact of Azolla filiculoides Lam. on animal biodiversity in streams in Zimbabwe. Afr. J. Ecol. 2001, 39, 216–218. [Google Scholar] [CrossRef]
- Hill, M.P.; Coetzee, J.A. Integrated control of water hyacinth in Africa. EPPO Bull. 2008, 38, 452–457. [Google Scholar] [CrossRef]
- Hasan, M.R.; Chakrabarti, R. Floating Aquatic Macrophytes: Water Hyacinths. In Use of Algae and Aquatic Macrophytes as Feed in Small Scale Aquaculture—A Review; FAO Fisheries and Aquaculture Technical Paper; FAO: Quebec City, QC, Canada, 2009; p. 123. [Google Scholar]
- Téllez, T.R.; López, E.M.D.R.; Granado, G.L.; Pérez, E.A.; López, R.M.; Guzmán, J.M.S. The water hyacinth, Eichhornia crassipes: An invasive plant in the Guadiana River Basin (Spain). Aquat. Invasions 2008, 3, 42–53. [Google Scholar] [CrossRef]
- Van Driesche, R.; Blossey, B.; Hoddle, M.; Lyon, S.; Reardon, R. Biological Control of Invasive Plants in the Eastern United States; Forest Health Technology Enterprise Team, USDA Forest Service: Morgantown, VA, USA, 2002.
- Julien, M.H. Biological control of water hyacinth with arthropods: A review to 2000. In Aciar Proceedings; ACIAR: Canberra, Australia, 1998. [Google Scholar]
- Navarro, L.A.; Phiri, G. (Eds.) Water Hyacinth in Africa and the Middle East: A Survey of Problems and Solutions; Idrc.: Ottawa, ON, Canada, 2000. [Google Scholar]
- Gaikwad, R.P.; Gavande, S. Major factors contributing growth of water hyacinth in natural water bodies. Int. J. Eng. Res. 2017, 6, 304–306. [Google Scholar] [CrossRef]
- Stroud, A. Water hyacinth (Eichhornia crassipes [Mart.] Solms) in Ethiopia. In Proceedings of the 9th Annual Conference of the Ethiopian Weed Science Committee, Addis Abeba, Ethiopia, 9–10 April 1991. [Google Scholar]
- Yirefu, F.; Struik, P.C.; Lantinga, E.A.; Tessema, T. Occurrence and diversity of fungal pathogens associated with water hyacinth and their potential as biocontrol agents in the Rift Valley of Ethiopia. Int. J. Pest Manag. 2017, 63, 355–363. [Google Scholar] [CrossRef] [Green Version]
- Zewdie, K.; Lemma, Y.; Nikus, O. Prosopis juliflora: Potentials and problems. Arem 2005, 6, 1–9. [Google Scholar]
- Wondie, A.; Seid, A.; Molla, E.; Goshu, G. Preliminary assessment of water hyacinth (Eichornia crassipes) in Lake Tana. In Proceedings of the National Workshop (Biological Society of Ethiopia), Addis Ababa, Ethiopia, March 2012. [Google Scholar]
- Setegn, S.G.; Srinivasan, R.; Melesse, A.M.; Dargahi, B. SWAT model application and prediction uncertainty analysis in the Lake Tana Basin, Ethiopia. Hydrol. Process. 2010, 24, 357–367. [Google Scholar] [CrossRef]
- Zimale, F.A.; Moges, M.A.; Alemu, M.L.; Ayana, E.K.; Demissie, S.S.; Tilahun, S.A.; Steenhuis, T.S. Calculating the sediment budget of a tropical lake in the Blue Nile basin: Lake Tana. Soil Discuss 2016, 10, 1–12. [Google Scholar] [CrossRef]
- Lemma, H.; Admasu, T.; Dessie, M.; Fentie, D.; Deckers, J.; Frankl, A.; Poesen, J.; Adgo, E.; Nyssen, J. Revisiting lake sediment budgets: How the calculation of lake lifetime is strongly data and method dependent. Earth Surf. Process. Landf. 2018, 43, 593–607. [Google Scholar] [CrossRef]
- Zur Heide, F. Feasibility Study for a Lake Tana Biosphere Reserve, Ethiopia; Bundesamt für Naturschutz (BfN): Bonn, Germany, 2012. [Google Scholar]
- Ayana, E.K. Validation of Radar Altimetry Lake Level Data and It’s Application in Water Resource Management; ITC: Kolkata, India, 2007. [Google Scholar]
- Goshu, G.; Byamukama, D.; Manafi, M.; Kirschner, A.K.; Farnleitner, A.H. A pilot study on anthropogenic faecal pollution impact in Bahir Dar Gulf of Lake Tana, Northern Ethiopia. Ecohydrol. Hydrobiol. 2010, 10, 271–279. [Google Scholar] [CrossRef]
- Ligdi, E.E.; El Kahloun, M.; Meire, P. Ecohydrological status of Lake Tana—A shallow highland lake in the Blue Nile (Abbay) basin in Ethiopia. Ecohydrol. Hydrobiol. 2010, 10, 109–122. [Google Scholar] [CrossRef]
- Rai, D.N.; Munshi, J.D. The influence of thick floating vegetation (Water hyacinth: Eichhornia crassipes) on the physico—Chemical environment of a fresh water wetland. Hydrobiologia 1979, 62, 65–69. [Google Scholar] [CrossRef]
- Howard, G.W.; Harley, K.L.S. How do floating aquatic weeds affect wetland conservation and development? How can these effects be minimized? Wetl. Ecol. Manag. 1997, 5, 215–225. [Google Scholar] [CrossRef]
- Gutierrez, A.P. Applied Population Ecology: A Supply-Demand Approach; John Wiley & Sons: Hoboken, NJ, USA, 1996. [Google Scholar]
- Güereña, D.; Neufeldt, H.; Berazneva, J.; Duby, S. Water hyacinth control in Lake Victoria: Transforming an ecological catastrophe into economic, social, and environmental benefits. Sustain. Prod. Consum. 2015, 3, 59–69. [Google Scholar] [CrossRef]
- Firehun, Y.; Struik, P.C.; Lantinga, E.A.; Taye, T. Water hyacinth in the Rift Valley water bodies of Ethiopia: Its distribution, socioeconomic importance and management. Int. J. Curr. Agric. Res. 2014, 2, 67–75. [Google Scholar]
- Anteneh, W.; Dereje, T.; Addisalem, A.; Abebaw, Z.; Befta, T. Water Hyacinth Coverage Survey Report on Lake Tana; Bahir Dar University: Bahir Dar, Ethiopia, 2015. [Google Scholar]
- Ketema, D.M. Analysis of Institutional Arrangements and Common Pool Resources Governance: The Case of Lake Tana Sub-Basin, Ethiopia. Ph.D. Thesis, University College Cork, Cork, Ireland, 2013. [Google Scholar]
- Tewabe, D. Preliminary survey of water hyacinth in Lake Tana, Ethiopia. Glob. J. Allergy 2015, 1, 13–18. [Google Scholar] [CrossRef]
- Baidya, P.; Chutia, D.; Sudhakar, S.; Goswami, C.; Goswami, J.; Saikhom, V.; Singh, P.S.; Sarma, K.K. Effectiveness of fuzzy overlay function for multi-criteria spatial modeling—A case study on preparation of land resources map for Mawsynram Block of East Khasi Hills district of Meghalaya, India. J. Geogr. Inf. Syst. 2014, 6, 605. [Google Scholar] [CrossRef]
- Wilson, J.R.; Holst, N.; Rees, M. Determinants and patterns of population growth in water hyacinth. Aquat. Bot. 2015, 81, 51–67. [Google Scholar] [CrossRef]
- Makhanu, K.S. Impact of water hyacinth on Lake Victoria. Water and Sanitation for All—Partnerships and Innovations. In Proceedings of the 23rd WEDC International Conference, Durban, South Africa, 1–5 September 1997; pp. 165–166. [Google Scholar]
- Reddy, K.R.; Agami, M.; Tucker, J.C. Influence of phosphorus on growth and nutrient storage by water hyacinth (Eichhornia crassipes (Mart.) Solms) plants. Aquat. Bot. 1990, 37, 355–365. [Google Scholar] [CrossRef]
- Chebud, Y.A.; Melesse, A.M. Modelling lake stage and water balance of Lake Tana, Ethiopia. Hydrol. Process. 2009, 23, 3534–3544. [Google Scholar] [CrossRef]
- Setegn, S.G.; Srinivasan, R.; Dargahi, B.; Melesse, A.M. Spatial delineation of soil erosion vulnerability in the Lake Tana Basin, Ethiopia. Hydrol. Process. 2009, 23, 3738–3750. [Google Scholar] [CrossRef]
- Woldesenbet, T.A.; Elagib, N.A.; Ribbe, L.; Heinrich, J. Hydrological responses to land use/cover changes in the source region of the Upper Blue Nile Basin, Ethiopia. Sci. Total Environ. 2017, 575, 724–741. [Google Scholar] [CrossRef] [PubMed]
- Dessie, M.; Verhoest, N.E.; Adgo, E.; Poesen, J.; Nyssen, J. Scenario-based decision support for an integrated management of water resources. Int. J. River Basin Manag. 2017, 15, 485–502. [Google Scholar] [CrossRef]
- Fenta, B.A. Waste management in the case of Bahir Dar City near Lake Tana shore in Northwestern Ethiopia: A review. Afr. J. Environ. Sci. Technol. 2017, 11, 393–412. [Google Scholar] [Green Version]
- Wale, A.; Rientjes, T.H.M.; Gieske, A.S.M.; Getachew, H.A. Ungauged catchment contributions to Lake Tana’s water balance. Hydrol. Process. 2009, 23, 3682–3693. [Google Scholar] [CrossRef]
- Setegn, S.G.; Srinivasan, R.; Dargahi, B. Hydrological modelling in the Lake Tana Basin, Ethiopia using SWAT model. Open Hydrol. J. 2008, 2, 49–62. [Google Scholar] [CrossRef]
- Poppe, L.; Frankl, A.; Poesen, J.; Admasu, T.; Dessie, M.; Adgo, E.; Deckers, J.; Nyssen, J. Geomorphology of the Lake Tana basin, Ethiopia. J. Maps 2013, 9, 431–437. [Google Scholar] [CrossRef] [Green Version]
- Setianto, A.; Triandini, T. Comparison of kriging and inverse distance weighted (IDW) interpolation methods in lineament extraction and analysis. J. Appl. Geol. 2013, 5. [Google Scholar] [CrossRef]
- Center, T.D.; Spencer, N.R. The phenology and growth of water hyacinth (Eichhornia crassipes (Mart.) Solms) in a eutrophic north-central Florida lake. Aquat. Bot. 1981, 10, 1–32. [Google Scholar] [CrossRef]
- De Casabianca, M.L.; Laugier, T.; Posada, F. Petroliferous wastewaters treatment with water hyacinths (Raffinerie de Provence, France): Experimental statement. Waste Manag. 1995, 15, 651–655. [Google Scholar] [CrossRef]
- Gopal, B. Water Hyacinth; Elsevier: Amsterdam, The Netherlands, 1987. [Google Scholar]
- Jafari, N. Ecological and socio-economic utilization of water hyacinth (Eichhornia crassipes Mart Solms). J. Appl. Sci. Environ. Manag. 2010, 14. [Google Scholar] [CrossRef]
- Olivares, E.; Colonnello, G. Salinity gradient in the Mánamo River, a dammed distributary of the Orinoco Delta, and its influence on the presence of Eichhornia crassipes and Paspalum repens. Interciencia 2000, 25, 242–248. [Google Scholar]
- Wilson, J.R.; Rees, M.; Holst, N.; Thomas, M.B.; Hill, G. Water hyacinth population dynamics. In ACIAR Proceedings; ACIAR: Canberra, Australia, 2000; pp. 96–104. [Google Scholar]
- Heywood, I.; Oliver, J.; Tomlinson, S. Building an exploratory multi-criterion modelling environment for spatial decision support. In Innovations in GIS; Fisher, P., Ed.; Taylor & Francis: London, UK, 1995; Volume 2, pp. 127–136. [Google Scholar]
- Jankowski, P. Integrating geographical information systems and multiple criteria decision-making methods. Int. J. Geogr. Inf. Syst. 1995, 9, 251–273. [Google Scholar] [CrossRef]
- Malczewski, J. GIS-based land-use suitability analysis: A critical overview. Prog. Plan. 2004, 62, 3–65. [Google Scholar] [CrossRef]
- Prakash, T.N. Land Suitability Analysis for Agricultural Crops: A Fuzzy Multicriteria Decision Making Approach; ITC: Kolkata, India, 2003. [Google Scholar]
- Burrough, P.A. Fuzzy mathematical methods for soil survey and land evaluation. J. Soil Sci. 1989, 40, 477–492. [Google Scholar] [CrossRef]
- Burrough, P.A.; MacMillan, R.A.; Van Deursen, W. Fuzzy classification methods for determining land suitability from soil profile observations and topography. J. Soil Sci. 1992, 43, 193–210. [Google Scholar] [CrossRef]
- McBratney, A.B.; Odeh, I.O. Application of fuzzy sets in soil science: Fuzzy logic, fuzzy measurements and fuzzy decisions. Geoderma 1997, 77, 85–113. [Google Scholar] [CrossRef]
- Malczewski, J. Ordered weighted averaging with fuzzy quantifiers: GIS-based multicriteria evaluation for land-use suitability analysis. Int. J. Appl. Earth Obs. Geoinf. 2006, 8, 270–277. [Google Scholar] [CrossRef]
- Hupfer, M.; Gächter, R.; Giovanoli, R. Transformation of phosphorus species in settling seston and during early sediment diagenesis. Aquat. Sci. 1995, 57, 305–324. [Google Scholar] [CrossRef]
- Sondergaard, M.; Jensen, P.J.; Jeppesen, E. Retention and internal loading of phosphorus in shallow, eutrophic lakes. Sci. World J. 2001, 1, 427–442. [Google Scholar] [CrossRef] [PubMed]
- Ekholm, P.; Malve, O.; Kirkkala, T. Internal and external loading as regulators of nutrient concentrations in the agriculturally loaded Lake Pyhäjärvi (southwest Finland). Hydrobiologia 1997, 345, 3–14. [Google Scholar] [CrossRef]
- Hamilton, D.; Mitchell, S. Wave-induced shear stresses, plant nutrients and chlorophyll in seven shallow lakes. Freshw. Biol. 1997, 38, 159–168. [Google Scholar] [CrossRef]
- Kristensen, P.; Søndergaard, M.; Jeppesen, E. Resuspension in a shallow eutrophic lake. Hydrobiologia 1992, 228, 101–109. [Google Scholar] [CrossRef]
- Weber-Scannell, P.K.; Duffy, L.K. Effects of total dissolved solids on aquatic organism: A review of literature and recommendation for salmonid species. Am. J. Environ. Sci. 2007, 3, 1–6. [Google Scholar]
- Duan, Z.; Bastiaanssen, W.G.M. First results from Version 7 TRMM 3B43 precipitation product in combination with a new downscaling–calibration procedure. Remote Sens. Environ. 2013, 131, 1–13. [Google Scholar] [CrossRef]
- Alemu, M.L.; Geset, M.; Mosa, H.M.; Zemale, F.A.; Moges, M.A.; Giri, S.K.; Tillahun, S.A.; Melesse, A.M.; Ayana, E.K.; Steenhuis, T.S. Spatial and temporal trends of recent dissolved phosphorus concentrations in Lake Tana and its four main tributaries. Land Degrad. Dev. 2017, 28, 1742–1751. [Google Scholar] [CrossRef]
- Kebede, S.; Travi, Y.; Alemayehu, T.; Marc, V. Water balance of Lake Tana and its sensitivity to fluctuations in rainfall, Blue Nile basin, Ethiopia. J. Hydrol. 2006, 316, 233–247. [Google Scholar] [CrossRef]
- Abate, M.; Nyssen, J.; Steenhuis, T.S.; Moges, M.M.; Tilahun, S.A.; Enku, T.; Adgo, E. Morphological changes of Gumara River channel over 50 years, upper Blue Nile basin, Ethiopia. J. Hydrol. 2015, 525, 152–164. [Google Scholar] [CrossRef]
- Wilson, J.R.; Ajuonu, O.; Center, T.D.; Hill, M.P.; Julien, M.H.; Katagira, F.F.; Neuenschwander, P.; Njoka, S.W.; Ogwang, J.; Reeder, R.H.; et al. The decline of water hyacinth on Lake Victoria was due to biological control by Neochetina spp. Aquat. Bot. 2007, 87, 90–93. [Google Scholar] [CrossRef]
S/No | Parameters | Statistical Parameters | Monthly Values | ||
---|---|---|---|---|---|
August | December | March | |||
1 | TP (mg L−1) | Max | 0.30 | 0.40 | 0.60 |
Min | 0.05 | 0.07 | 0.02 | ||
Mean | 0.14 | 0.18 | 0.21 | ||
St. deviation | 0.04 | 0.05 | 0.05 | ||
2 | TN (mg L−1) | Max | 5.7 | 5.6 | 4 |
Min | 1.1 | 0.90 | 0.50 | ||
Mean | 2.7 | 2.6 | 1.9 | ||
St. deviation | 0.98 | 0.98 | 0.75 | ||
3 | pH | Max | 8.5 | 8.4 | 8.6 |
Min | 7.8 | 8 | 8 | ||
Mean | 8.2 | 8.2 | 8.3 | ||
St. deviation | 0.12 | 0.08 | 0.079 | ||
4 | Temperature (°C) | Max | 26 | 26 | 25 |
Min | 22 | 19 | 20 | ||
Mean | 24.4 | 22 | 23.3 | ||
St. deviation | 0.75 | 0.98 | 0.86 | ||
5 | Salinity (%) | Max | 0.011 | 0.008 | 0.011 |
Min | 0.005 | 0.007 | 0.003 | ||
Mean | 0.009 | 0.007 | 0.010 | ||
St. deviation | 0.0005 | 0.0002 | 0.0004 |
S/N | Parameters | Range | References | In This Study |
---|---|---|---|---|
1 | TP | 0.02–0.10 mg L−1 | [50] | >0.08 mg L−1 |
1.66–3 mg L−1 | [12] | |||
2 | TN | 0.50–1 mg L−1 | [45] | >1.1 mg L−1 |
0.05–1 mg L−1 | [50] | |||
5.50–20 mg L−1 | [12] | |||
3 | T | 8–40 °C | [48] | <28 |
12–38 °C | [45] | |||
10–40 °C | [50] | |||
28–30 °C | [12] | |||
4 | pH | 4.0–10.0 | [48] | <8.6 |
6.0–8.0 | [47] | |||
6.5–8.5 | [12] | |||
5 | Salinity | <0.0005% | [46] | <0.011% |
0.13–0.19% | [49] | |||
<0.2% | [12] | |||
6 | Depth | <6 m | [34] | <6 m |
Month | Area | Suitable | Not-Suitable | Total |
---|---|---|---|---|
August | Area (ha) | 24,969 * | 284,163 | 309,132 |
% | 8.1 | 91.9 | - | |
December | Area (ha) | 21,568.7 | 281,961.8 | 303,530.5 |
% | 7.1 | 92.9 | - | |
March | Area (ha) | 24,036 | 279,494.5 | 303,530.5 |
% | 7.9 | 92.1 | - |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dersseh, M.G.; Kibret, A.A.; Tilahun, S.A.; Worqlul, A.W.; Moges, M.A.; Dagnew, D.C.; Abebe, W.B.; Melesse, A.M. Potential of Water Hyacinth Infestation on Lake Tana, Ethiopia: A Prediction Using a GIS-Based Multi-Criteria Technique. Water 2019, 11, 1921. https://doi.org/10.3390/w11091921
Dersseh MG, Kibret AA, Tilahun SA, Worqlul AW, Moges MA, Dagnew DC, Abebe WB, Melesse AM. Potential of Water Hyacinth Infestation on Lake Tana, Ethiopia: A Prediction Using a GIS-Based Multi-Criteria Technique. Water. 2019; 11(9):1921. https://doi.org/10.3390/w11091921
Chicago/Turabian StyleDersseh, Minychl G., Aron A. Kibret, Seifu A. Tilahun, Abeyou W. Worqlul, Mamaru A. Moges, Dessalegn C. Dagnew, Wubneh B. Abebe, and Assefa M. Melesse. 2019. "Potential of Water Hyacinth Infestation on Lake Tana, Ethiopia: A Prediction Using a GIS-Based Multi-Criteria Technique" Water 11, no. 9: 1921. https://doi.org/10.3390/w11091921
APA StyleDersseh, M. G., Kibret, A. A., Tilahun, S. A., Worqlul, A. W., Moges, M. A., Dagnew, D. C., Abebe, W. B., & Melesse, A. M. (2019). Potential of Water Hyacinth Infestation on Lake Tana, Ethiopia: A Prediction Using a GIS-Based Multi-Criteria Technique. Water, 11(9), 1921. https://doi.org/10.3390/w11091921