Textile Wastewater Purification Using an Elaborated Biosorbent Hybrid Material (Luffa–Cylindrica–Zinc Oxide) Assisted by Alternating Current
Abstract
:1. Introduction
2. Material and Methods
2.1. Materials
2.2. Methods
2.2.1. Biosorbent and Adsorbate Preparation
2.2.2. Preparation of Hybrid Materials L.C+ (1%, 2%, and 4% Zn2+) in Presence and Absence of AC
2.3. Morphological and Crystallographic Characterizations of Hybrid Materials
2.4. Quantitative and Qualitative Characterization of the Pure L.C and the Hybrid Material L.C-Zn2+
2.5. Biosorption of MB onto the Synthesized Hybrid Material
2.6. Kinetics Studies
2.7. Evaluation of the Treated Water Qualities
2.7.1. Determination of Chemical Oxygen Demand (COD) and Total Organic Carbon (TOC)
2.7.2. Germination Tests
3. Results and Discussion
3.1. Surface Characterizations
3.1.1. Energy-Dispersive Spectroscopy (EDS) Analysis
3.1.2. Infrared Spectroscopy (IR)
3.1.3. X-ray Photoelectron Spectroscopy (XPS) Analysis
3.1.4. Scanning Electron Microscopy (SEM) Analysis
3.1.5. Surface Chemical Analysis of Pure L.C and Hybrid Materials
3.2. Kinetics of MB Bbiosorption Assisted by AC
3.3. UV Characterizations
3.4. Modeling of the Biosorption of MB Assisted by AC Using Brouers Sotolongo (B.S) Model
3.5. Evaluation of the Elaborated Hybrid Material for MB Biosorption: A Comparative Study
3.6. Evaluation of the Synthesized Hybrid Material on the Purification of Industrial Textile Wastewater
3.7. Phytotoxicity Test
3.8. Mechanism of Biosorption of MB
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Adegoke, K.A.; Bello, O.S. Dye sequestration using agricultural wastes as adsorbents. Water Resour. Ind. 2009, 12, 8–24. [Google Scholar] [CrossRef]
- Laasri, L.; Elamrani, M.K.; Cherkaoui, O. Removal of two cationic dyes from a textile effluent by filtration-adsorption on woodsawdust. Environ. Sci. Pollut. Res.-Int. 2007, 14, 237–240. [Google Scholar] [CrossRef] [PubMed]
- Abidin, F.C.Z.A.; Rahmat, N.R. Multi-stage ozonation and biological treatment for removal of azo dye industrial effluent. Int. J. Environ. Sci. Dev. 2010, 1, 193–198. [Google Scholar]
- Othmani, A.; Kesraoui, A.; Seffen, M. The alternating and direct current effect on the elimination of cationic and anionic dye from aqueous solutions by electrocoagulation and coagulation flocculation. Euro-Mediterr. J. Environ. Integr. 2017, 2, 2–6. [Google Scholar] [CrossRef]
- Selmi, T.; Sanchez-Sanchez, A.; Gadonneix, P.; Jagiello, J.; Seffen, M.; Sammouda, H.; Celzard, A.; Fierro, V. Tetracycline removal with activated carbons produced by hydrothermal carbonisation of Agave americana fibres and mimosa tannin. Ind. Crop. Prod. 2018, 115, 146–157. [Google Scholar] [CrossRef]
- Căilean, D.; Barjoveanu, G.; Musteret, C.P.; Sulitanu, N.; Manea, L.R.; Teodosiu, C. Reactive dyes removal from wastewater by combined advanced treatment. Environ. Eng. Manag. J. 2009, 8, 503–511. [Google Scholar] [CrossRef]
- Vasudevan, S.; Lakshmi, J.; Sozhan, G. Effects of alternating and direct current in electrocoagulation process on the removal of cadmium from water. J. Hazard. Mater. 2011, 192, 26–34. [Google Scholar] [CrossRef] [PubMed]
- Vijayageetha, V.A.; Rajan, A.P.; Arockiaraj, S.P.; Annamalai, V.; Janakarajan, V.N.; Balaji, M.D.S.; Dheenadhayalan, M.S. Treatment study of dyeing industry effluents using reverse osmosis technology. Res. J. Recent Sci. 2014, 3, 58–61. [Google Scholar]
- Elaissaoui, I.; Akrout, H.; Grassini, S.; Fulginiti, D.; Bousselmi, L. Role of SiOx interlayer in the electrochemical degradation of Amaranth dye using SS/PbO2anodes. Mater. Des. 2016, 10, 633–643. [Google Scholar] [CrossRef]
- Vendruscolo, F.; Ferreira, G.L.R.; Filho, N.R.A. Biosorption of hexavalent chromium by microorganisms. Int. Biodeterior. Biodegrad 2017, 119, 87–95. [Google Scholar] [CrossRef]
- Davis, T.A.; Volesky, B.; Mucci, A. A review of the biochemistry of heavy metal biosorption by brown algae. Water Res. 2003, 37, 4311–4330. [Google Scholar] [CrossRef]
- Atar, N.; Olgun, A.; Colk, F. Thermodynamic, Equilibrium and Kinetic Study of the Biosorption of Basic Blue 41 using Bacillus maceran. Eng. Life Sci. 2008, 8, 499–506. [Google Scholar] [CrossRef]
- Champenois, W.; Borges, A.V. Determination of dimethyl sulfonio propionate and dimethyls ulfoxide in Posidonia oceanic leaf tissue. MethodsX 2019, 6, 56–62. [Google Scholar]
- Mbarki, F.; Kesraoui, A.; Seffen, M.; Ayrault, P. Kinetic, thermodynamic and adsorption behavior of cationic and anionic dyes onto Corn stigmata: Non-linear and stochastic analyses. Water Air Soil 2018, 229, 95. [Google Scholar] [CrossRef]
- Kesraoui, A.; Mabrouk, A.; Seffen, M. Valuation of Biomaterial: Phragmites australis in the Retention of Metal Complexed Dyes. Am. J. Environ. Sci. 2017, 3, 266–276. [Google Scholar] [CrossRef]
- Demir, H.; Top, A.; Balkose, D.; Ulk, S. Dye adsorption behavior of Luffa cylindrica fibers. J. Hazard. Mater. 2008, 153, 389–394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, S.; Boyjoo, Y.; Choueib, Z.H.A. Removal of dyes from aqueous solution using fly ash and red mud. Water Res. 2015, 39, 129–138. [Google Scholar] [CrossRef]
- Hachani, R.; Sabir, N.S.; Zohra, K.F.; Nesrine, M.N. Performance Study of a Low-cost Adsorbent-Raw Date Pits-for Removal of Azo Dye in Aqueous Solution. Water Environ. Res. 2017, 98, 827–839. [Google Scholar] [CrossRef]
- El Shahawy, A.; Ghada Heikal, G. Organic pollutants removal from oily wastewater using clean technology economically, friendly biosorbent (Phragmites australis). Ecol. Eng. 2018, 122, 207–218. [Google Scholar] [CrossRef]
- Osman, C. Synthèse De Nouveaux Matériaux Hybrides Pour Les Catalyses En Atrp Supporté Du Méthacrylate De Méthyle. Ph.D. Thesis, University of Pierre and Marie Curie, Paris, France, 2014. [Google Scholar]
- Shivaramakrishnan, B.; Gurumurthy, B.; Balasubramanian, A. Potential biomedical applications of metallic nanibiomaterials: A review. Int. J. Pharm. Sci. Res. 2017, 8, 98500. [Google Scholar]
- Ye, J.D.; Gu, S.L.; Qin, F.; Zhu, S.M.; Liu, S.M.; Zhou, X.; Liu, W.; Hu, L.Q.; Zhang, R.; Shi, Y.; et al. MOCVD growth and properties of ZnO films using dimethylzinc and oxygen. Appl. Phys. A 2005, 81, 809–812. [Google Scholar] [CrossRef]
- Tului, M.A.; Bellucci, A.; Migliozzi, G. Zinc oxide targets for magnetron sputtering PVD prepared by plasma spray. Surf. Coat. Technol. 2005, 205, 1070–1073. [Google Scholar] [CrossRef]
- Zamiri, R.; Zakaria, H.A.; Ahangar, M.; Zak, A.K.; Drummen, G.P.C. Aqueous starch as a stabilizer in zinc oxide nanoparticle synthesis via laser ablation. J. Alloys Compd. 2012, 516, 41–48. [Google Scholar] [CrossRef]
- Perelshtein, L.; Applerot, G.; Perkas, N.; Wehrschetz-Sigl, E.; Hasmann, A.; Guebitz, G.M.; Gedanken, A. Antibacterial Properties of an In Situ Generated and Simultaneously Deposited Nanocrystalline ZnO on Fabrics. ACS Appl. Mater. Interfaces 2008, 1, 361–366. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Chen, S.; Zhou, B.; Wang, H. Facile synthesis of ZnO nanoparticles based on bacterial cellulose. Mater. Sci. Eng. B 2010, 170, 88–92. [Google Scholar] [CrossRef]
- Ching, C.G.; Lee, S.C.; Ooi, P.K.; Ng, S.S.; Hassan, Z.; Hassan, H.A.; Abdullah, M.J. Optical and structural properties of porous zinc oxide fabricated via electrochemical etching method. Mater. Sci. Eng. B 2013, 178, 956–959. [Google Scholar] [CrossRef]
- Chen, C.Y.; Chang, H.W.; Shih, S.J.; Tsay, C.Y.; Chang, C.J.; Lin, C.K. High super capacitive stability of spray pyrolyzed ZnO-added manganese oxide coatings. Ceram. Int. 2013, 39, 1885–1892. [Google Scholar] [CrossRef]
- Brinker, C.J.; Scherer, G.W. Sol-Gel Science: The Physics and Shemistry of Sol-Gel Processing Academic; ET Press: Frankfurt, Germany, 1990. [Google Scholar]
- Kesraoui, A.; Bouzaabia, S.; Seffen, M. The combination of Luffa cylindrical fibers and metal oxides offers a highly performing hybrid fiber material in water decontamination. Environ. Sci. Pollut. Res. 2018, 26, 11524–11534. [Google Scholar] [CrossRef]
- Kesraoui, A.; Moussa, A.; Ali, G.B.; Seffen, M. Biosorption of alpacide blue from aqueous solution, by lignocellulosicbiomass: Luffa cylindrical fibers. Environ. Sci. Pollut. Res. 2015, 23, 15832–15840. [Google Scholar] [CrossRef]
- Shafei, A.; Nikzar, M.; Arami, M. Photocatalytic degradation of terephlatic acid using titania and zinc oxide ZnO photocalyts comparative study. Desalination 2013, 252, 8–16. [Google Scholar] [CrossRef]
- Kesraoui, A.; Selmi, T.; Seffen, M.; Brouer, F. Influence of alternating current on the adsorption of indigo carmine. Environ. Sci. Pollut. Res. 2016, 24, 9940–9950. [Google Scholar] [CrossRef] [PubMed]
- Boumediene, M.; Benaïssa, H.; George, B.; Molina, S.; Merlin, A. Effects of pH and ionic strength on methylene blue removal from synthetic aqueous solutions by sorption onto orange peel and desorption study. J. Mater. Environ. Sci. 2018, 9, 1700–1711. [Google Scholar]
- Goertzen, L.; ThériaultKim, S.D.; Oickle, M.A.; Tarasuk, C.A.; Andreas, A.H. Standardization of the Boehm titration. Part I. CO2 expulsion and endpoint determination. Carbon 2010, 48, 1252–1261. [Google Scholar] [CrossRef]
- Nava, J.L.; Quiroz, M.A.; Martinez-Huitle, C.A. Electrochemical treatment of synthetic wastewaters containing Alphazurine A dye: Role of electrode material in the color and COD removal. J. Mex. Chem. Soc. 2008, 52, 249–255. [Google Scholar]
- Sharma, A.; Bhattacharya, S.; Sen, R.; Reddy, B.S.B.; Fecht, H.J.; Das, K.; Das, S. Influence of current density on microstructure of pulse electrodeposited tin coatings. Mater. Charact. 2012, 68, 22–32. [Google Scholar] [CrossRef]
- Amrhar, O.; Nassali, H.; Elyoubi, M.S. Adsorption of a cationic dye, Methylene Blue, ontoMoroccan Illitic Clay. J. Mater. Environ. Sci. 2015, 6, 3054–3065. [Google Scholar]
- Brouers, F. Statistical foundation of empirical isotherms. Open J. Stat. 2014, 4, 687–701. [Google Scholar] [CrossRef]
- Brouers, F. The fractal (BSf) kinetics equation and its approximations. J. Mod. Phys. 2014, 5, 1594–1601. [Google Scholar] [CrossRef]
- Brouers, F.; Al-Musawi, T.J. On the optimal use of of isotherm models for the characterization of biosorption of lead onto algae. J. Mol. Liq. 2015, 212, 46–51. [Google Scholar] [CrossRef]
- Khot, L.R.; Sankaran, S.; Maja, J.M.; Ehsani, R.; Schuster, E.W. Applications of nanomaterials in agricultural production and crop protection: A review. Crop Prot. 2012, 35, 64–70. [Google Scholar] [CrossRef]
- Antonio, R.; Tapia-Benavides, A.R.T.; Tlahuextl, M.; Tlahuext, H.; Galán-Vidala, C. Synthesis of Zn compounds derived from 1H-benzimidazol-2-ylmethanamine. Arkivoc 2008, 5, 172–186. [Google Scholar]
- Xu, Q.; Chena, C.; Rosswurma, K.; Yaoa, T.; Janaswamy, S. A facile route to prepare cellulose-based films. Carbohydr. Carbohydr. Polym. 2016, 149, 274–281. [Google Scholar] [CrossRef]
- Vergnat, V. Matériaux Hybrides Organique-Inorganique Par Greffage Covalent De Polymères Sur Des Oxydes Métalliques. Ph.D. Thesis, University of Strasbourg, Strasbourg, France, 2011. [Google Scholar]
- Zeleňák, V.; Vargová, Z.; Györyová, K. Correlation of infrared spectra of zinc (II) carboxylates with their structures. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2007, 66, 262–272. [Google Scholar] [CrossRef]
- Li, L.; Deng, J.; Deng, H.; Liu, Z.; Li, X. Preparation, characterization and antimicrobial activities of chitosan/Ag/ZnO blend films. Chem. Eng. J. 2010, 160, 378–382. [Google Scholar] [CrossRef]
- Liu, X.F.; Sun, J.; Ren, J.; Curling, S.; Sun, R. Physicochemical characterization of cellulose from perennial leaves (Loliumperenne). Carbohydr. Res. 2006, 341, 2677–2687. [Google Scholar] [CrossRef] [PubMed]
- Awala, H.; El-Roz, M.; Toufaily, J.; Mintova, S. Template-Free Nanosized EMT Zeolite Grown on Natural Luffa Fibers for Water Purification. Adv. Porous Mater. 2014, 4, 141–182. [Google Scholar] [CrossRef]
- Arefi, M.R.; Zarchi, S.R. Synthesis of Zinc Oxide Nanoparticles and Their Effect on the Compressive Strength and Setting Time of Self-Compacted Concrete Paste as Cementitious Composites. Int. J. Mol. Sci. 2012, 13, 4340–4350. [Google Scholar] [CrossRef]
- Wan, C.; Jian, L. Embedding ZnO nanorods into porous cellulose aerogels via a facile one-step low-temperature hydrothermal method. Mater. Des. 2015, 83, 620–625. [Google Scholar] [CrossRef]
- Mahmoudi, K.H.; Hamdi, N.; Srasra, E. Kinetics and equilibrium studies on removal of methylene blue and methyl orange by adsorption onto activated carbon prepared from date pits—A comparative study. Water Air Soil Pollut. 2018, 229, 95. [Google Scholar] [CrossRef]
- Cenens, J.; Schoonheydt, R.A. Visible spectroscopy of methylene blue on hectorite, laponite and barasym in aqueous suspension. Clays Clay Min. 1988, 36, 214–224. [Google Scholar] [CrossRef]
- Kalmár, J.; Lente, G.; Fabian, I. Kinetics and mechanism of the adsorption of methylene blue from aqueous solution on the surface of a quartz cuvette by on-line UV-Vis spectrophotometry. J. Dyes Pigments. 2016, 127, 170–178. [Google Scholar] [CrossRef]
- Selmi, T.; Seffen, M.; Sammouda, H.; Mathieu, S.; Jagiello, J.; Celzard, A.; Fierro, V. Physical meaning of the parameters used in fractal kinetic and generalised adsorption models of Brouers–Sotolongo. Adsorption 2017, 24, 11–27. [Google Scholar] [CrossRef]
- Hammud, H.H.; Fayoumi, L.M.A.; Holail, H.; Mostafa, E.S.M.E. Biosorption studies of methylene blue by Mediterranean algae Carolina and its chemically modified forms. Linear and nonlinear models’ prediction based on statistical error calculation. Int. J. Chem. 2011, 3, 147–163. [Google Scholar] [CrossRef]
- Salleh, M.A.M.; Mahmoud, D.K.; Binti Awang Abu, N.A.; Abdul Karim, W.A.W.; Idris, A.B. Methylene blue adsorption from aqueous solution by langsat (lansium domesticum) peel. J. Purity Util. React. Environ. 2012, 1, 442–465. [Google Scholar]
- Hamissa, A.M.B.; Brouers, F.; Ncibi, M.C.; Seffen, M. Kinetic Modeling Study on Methylene Blue Sorption onto Agave americana fibers: Fractal Kinetics and Regeneration Studies. Sep. Sci. Technol. 2013, 48, 2834–2842. [Google Scholar] [CrossRef]
- Ncibi, M.C.; Mahjoub, B.; Seffen, M. Studies on the biosorption of textile dyes from aqueous solutions using Posidonia Oceanic (L.) leaf sheaths fibres. Adsorpt. Sci. Technol. 2006, 24, 461–473. [Google Scholar] [CrossRef]
- García-Ávila, F.; Patiño-Chávez, J.; Zhinín-Chimbo, F.; Donoso-Moscoso, S.; del Pino, L.F.; Avilés-Añazco, L. Performance of Phragmites Australis and Cyperus Papyrus in the treatment of municipal wastewater by vertical flow subsurface constructed wetlands. Int. Soil Water Conserv. Res. 2019. [CrossRef]
- Dallel, D.; Kesraoui, A.; Seffen, M. Biosorption of cationic dye onto “Phragmites australis” fibers: Characterization and mechanism. J. Environ. Chem. Eng. 2018, 6, 6. [Google Scholar] [CrossRef]
- Louhichi, G.; Bousselmı, L.; Ghrabi, A.; Khouni, I. Process optimization via response surface methodologyin the physico-chemical treatment of vegetable oil refinery wastewater. Environ. Sci. Pollut. Res. 2018, 1–19. [Google Scholar] [CrossRef]
- Mendes, P.M.; Becker, R.; Corrêa, L.B.; Bianchi, I.; Dai Prá, M.A.; Lucia, T., Jr.; Corrêa, E.K. Phytotoxicity as an indicator of stability of broiler production residues. J. Environ. Manag. 2016, 167, 156–159. [Google Scholar] [CrossRef]
C | O | Na | Mg | Al | Si | P | S | Cl | Ca | Mo | Zn | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
L.C | 54.46 | 40.60 | 0.45 | 0.38 | 0.80 | 1.10 | 0.29 | 0.00 | 0.35 | 1.40 | 0.17 | 0.00 |
L.C + 4% Zn2+ + AC | 57.01 | 35.64 | 0.00 | 0.38 | 4.78 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 1.19 |
L.C + 4% Zn2+ | 50.43 | 40.18 | 0.00 | 0.79 | 4.58 | 2.40 | 0.00 | 0.08 | 0.59 | 0.00 | 0.00 | 0.95 |
Samples | pH pzc under AC | pH pzc without AC |
---|---|---|
Pure L.C | 7.38 ± 0.021 | 7.38 ± 0.021 |
L.C + 1% Zn2+ | 7.57 ± 0.008 | 7.41 ± 0.016 |
L.C + 2%Zn2+ | 7.77 ± 0.005 | 7.69 ± 0.012 |
L.C + 4% Zn2+ | 7.96 ± 0.005 | 7.86 ± 0.012 |
Adsorbent | Acidic Function (×10−4 mmol/g) | Basic Function (×10−4 mmol/g) | |||
---|---|---|---|---|---|
Carboxylic | Phenolic | Lactonic | Total | ||
Pure L.C | 0.397 ± 0.002 | 0.935 ± 0.003 | 0.178 ± 0.008 | 1.510 ± 0.005 | 1.560 ± 0.0008 |
L.C + 1%Zn2+ | 0.280 ± 0.002 | 0.790 ± 0.004 | 0.200 ± 0.001 | 1.280 ± 0.001 | 1.610 ± 0.0005 |
L.C + 2% Zn2+ | 0.201 ± 0.002 | 0.544 ± 0.003 | 0.310 ± 0.002 | 1.055 ± 0.002 | 1.700 ± 0.0004 |
L.C + 4% Zn2+ | 0.170 ± 0.002 | 0.400 ± 0.002 | 0.430 ± 0.002 | 1.000 ± 0.001 | 1.810 ± 0.0007 |
L.C + 1% Zn2+ + AC | 0.220 ± 0.001 | 0.503 ± 0.001 | 0.270 ± 0.002 | 0.993 ± 0.0009 | 1.560 ± 0.0006 |
L.C + 2%Zn2+ + AC | 0.198 ± 0.0008 | 0.399 ± 0.002 | 0.390 ± 0.0008 | 0.987 ± 0.0006 | 1.790 ± 0.0003 |
L.C + 4%Zn2+ + AC | 0.155 ± 0.001 | 0.236 ± 0.001 | 0.511 ± 0.0005 | 0.902 ± 0.0005 | 1.920 ± 0.0001 |
Biosorbent Used | Qexp (mg/g) | Qthe (mg/g) | R2 | χ2 | α | τc |
---|---|---|---|---|---|---|
Brouers Sotolongo n = 1 | ||||||
Pure L.C | 3.22 | 4.33 | 0.9999 | 0.0001 | 0.99 | 91.52 |
L.C + 1% Zn2+ + AC | 6.06 | 5.97 | 0.9995 | 0.0005 | 1.11 | 56.14 |
L.C + 2% Zn2+ + AC | 7.33 | 7.41 | 0.9999 | 0.0005 | 1.27 | 47.98 |
L.C + 4% Zn2+ + AC | 9.84 | 9.31 | 0.9999 | 0.0001 | 5.41 | 36.83 |
L.C + 1% Zn2+ | 5.47 | 5.40 | 0.9999 | 0.0001 | 0.99 | 59.01 |
L.C + 2% Zn2+ | 7.27 | 7.22 | 0.9999 | 0.0004 | 1.06 | 49.13 |
L.C + 4% Zn2+ | 8.81 | 8.64 | 0.9999 | 0.0001 | 3.64 | 39.55 |
Biosorbents/MB | Qm (mg/g) | References |
---|---|---|
Luffa cylindrica | 3.9 | This study |
L.C + 1% Zn2+ | 5.47 | This study |
L.C + 2% Zn2+ | 6.55 | This study |
L.C + 4% Zn2+ | 8.77 | This study |
L.C + 1% Zn2+ + AC | 6.06 | This study |
L.C + 2% Zn2+ + AC | 7.33 | This study |
L.C + 4% Zn2+ + AC | 9.01 | This study |
Algae Caolina | 6 | [57] |
Langsat peel | 8 | [58] |
Agave Americana | 6 | [59] |
Posidonia Oceanica | 5.51 | [60] |
Phragmites Australis | 6.31 | [61] |
Parameters | Industrial Textile Wastewater | ||
---|---|---|---|
Biosorbent Used | Pure L.C | L.C + 4% Zn2+ | L.C + 4% Zn2+ + AC |
pHi | 11.22 | 11.22 | 11.22 |
pHf | 8.99 | 8.08 | 8 |
CODi (mg/L)O2 | 1265 | 1265 | 1265 |
CODf (mg/L)O2 | 597 | 297 | 159 |
COD removal (%) | 52.80 | 76.5 | 87.43 |
Turbidityi (NTU) | 11.70 | 11.70 | 11.70 |
Turbidityf (NTU) | 4.58 | 2.23 | 1.99 |
Turbidity removal (%) | 60.85 | 80.94 | 82.99 |
TOCi (ppm(C.O)) | 28.9 | 28.9 | 28.9 |
TOCf (ppm(C.O)) | 11.9 | 3.2 | 2.29 |
TOC removal (%) | 58.82 | 88.92 | 92.07 |
Processing time (min) | 300 | 240 | 180 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Othmani, A.; Kesraoui, A.; Boada, R.; Seffen, M.; Valiente, M. Textile Wastewater Purification Using an Elaborated Biosorbent Hybrid Material (Luffa–Cylindrica–Zinc Oxide) Assisted by Alternating Current. Water 2019, 11, 1326. https://doi.org/10.3390/w11071326
Othmani A, Kesraoui A, Boada R, Seffen M, Valiente M. Textile Wastewater Purification Using an Elaborated Biosorbent Hybrid Material (Luffa–Cylindrica–Zinc Oxide) Assisted by Alternating Current. Water. 2019; 11(7):1326. https://doi.org/10.3390/w11071326
Chicago/Turabian StyleOthmani, Amina, Aida Kesraoui, Roberto Boada, Mongi Seffen, and Manuel Valiente. 2019. "Textile Wastewater Purification Using an Elaborated Biosorbent Hybrid Material (Luffa–Cylindrica–Zinc Oxide) Assisted by Alternating Current" Water 11, no. 7: 1326. https://doi.org/10.3390/w11071326
APA StyleOthmani, A., Kesraoui, A., Boada, R., Seffen, M., & Valiente, M. (2019). Textile Wastewater Purification Using an Elaborated Biosorbent Hybrid Material (Luffa–Cylindrica–Zinc Oxide) Assisted by Alternating Current. Water, 11(7), 1326. https://doi.org/10.3390/w11071326