Application of the Iterative Ensemble Smoother Method and Cloud Computing: A Groundwater Modeling Case Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Groundwater Conceptual Model
- Groundwater flow is controlled by discrete fracture zones within relatively low hydraulic conductivity geologic units.
- Shallow weathered rock has reduced hydraulic conductivity due to weathering filling fractures, or greater hydraulic conductivity due to lower loading and larger fracture apertures [19].
- Fracture aperture and resulting hydraulic conductivity is likely to be inversely proportional to depth. Deeper rocks carry greater loads that can compress fractures [19].
- The orientation of large-scale faulting in the area is approximately north–south [18]. It was interpreted that the local-scale fractures and subsequent strip aquifers, also trend in a north–south direction.
- An old tailings storage facility used during historical mining, is located north of the open pit. It is interpreted that this region has higher hydraulic conductivity than the surrounding weathered rock. This feature may have an impact on some of the upper storage pond designs in the predictive simulations.
2.2. Observation Data
2.3. Numerical Model
2.3.1. Mesh and Layers
2.3.2. Boundary Conditions
2.3.3. Representation of Mining
2.4. Initial PEST Calibration
2.4.1. Calibration Data Processing
2.4.2. Initial PEST Calibration Parameterization
- Weathered rock from surface to 30 m depth.
- Fresh rock below 30 m depth.
- Compressed rock below 30 m elevation (~170 m depth near the open pit).
- Disturbed rock at the old tailing’s storage facility.
2.4.3. Initial PEST Calibration Results
- (1)
- Iterative refinement of model layering and mesh until a more stable simulation of mine development could be achieved.
- (2)
- Discarding the transient data from the model calibration and uncertainty analysis.
- (3)
- Proceeding with an IES model calibration and uncertainty analysis technique, not based on the finite difference approximation, with the existing model, and determining whether the observed numerical oscillations would hinder the IES process through trial.
2.5. IES Methodology
2.6. Parameterization for IES
- (1)
- Multiplier fields to decrease the hydraulic conductivity field in the weathered rock zone.
- (2)
- Multiplier fields to decrease the hydraulic conductivity field in the deep rock zone.
- (3)
- Specific storage parameter field.
- (4)
- Drainable porosity parameter field.
- (5)
- Recharge parameter field.
2.7. Initial Parameter Generation and IES Runs
2.8. Cloud Computing Implementation
3. Results
3.1. Parameter Values
3.2. Model Predictions
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Doherty, J. Calibration and Uncertainty Analysis for Complex Environmental Models; Watermark Numerical Computing: Brisbane, Australia, 2015; ISBN 978-0-9943786-0-6. [Google Scholar]
- Hunt, R.J.; Zheng, C. The Current State of Modeling. Ground Water 2012, 50, 330–333. [Google Scholar] [CrossRef] [PubMed]
- Delottier, H.; Pryet, A.; Dupuy, A. Why Should Practitioners be Concerned about Predictive Uncertainty of Groundwater Management Models? Water Resour. Manag. 2017, 31, 61–73. [Google Scholar] [CrossRef]
- Sanchez-Vila, X.; Fernàndez-Garcia, D. Debates—Stochastic subsurface hydrology from theory to practice: Why stochastic modeling has not yet permeated into practitioners? Water Resour. Res. 2016, 52, 9246–9258. [Google Scholar] [CrossRef]
- Tarantola, A. Inverse Problem Theory and Methods for Model Parameter Estimation; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 2005. [Google Scholar]
- Tarantola, A. Popper, Bayes and the inverse problem. Nat. Phys. 2006, 2, 492–494. [Google Scholar] [CrossRef]
- Mosegaard, K.; Tarantola, A. Monte Carlo sampling of solutions to inverse problems. J. Geophys. Res. Solid Earth 1995, 100, 12431–12447. [Google Scholar] [CrossRef]
- Tonkin, M.; Doherty, J. Calibration-constrained Monte Carlo analysis of highly parameterized models using subspace techniques. Water Resour. Res. 2009, 45. [Google Scholar] [CrossRef] [Green Version]
- Knowling, M.J.; White, J.T.; Moore, C.R. Role of model parameterization in risk-based decision support: An empirical exploration. Adv. Water Resour. 2019, 128, 59–73. [Google Scholar] [CrossRef]
- Doherty, J.; Christensen, S. Use of paired simple and complex models to reduce predictive bias and quantify uncertainty. Water Resour. Res. 2011, 47. [Google Scholar] [CrossRef] [Green Version]
- Razavi, S.; Tolson, B.A.; Burn, D.H. Review of surrogate modeling in water resources. Water Resour. Res. 2012, 48. [Google Scholar] [CrossRef]
- Chen, Y.; Oliver, D.S. Levenberg–Marquardt forms of the iterative ensemble smoother for efficient history matching and uncertainty quantification. Comput. Geosci. 2013, 17, 689–703. [Google Scholar] [CrossRef]
- Chen, Y.; Oliver, D.S. Localization and regularization for iterative ensemble smoothers. Comput. Geosci. 2017, 21, 13–30. [Google Scholar] [CrossRef]
- White, J.T. A model-independent iterative ensemble smoother for efficient history-matching and uncertainty quantification in very high dimensions. Environ. Model. Softw. 2018, 109, 191–201. [Google Scholar] [CrossRef]
- Hunt, R.J.; Luchette, J.; Schreuder, W.A.; Rumbaugh, J.O.; Doherty, J.; Tonkin, M.J.; Rumbaugh, D.B. Using a Cloud to Replenish Parched Groundwater Modeling Efforts. Ground Water 2010, 48, 360–365. [Google Scholar] [CrossRef] [PubMed]
- Hayley, K.; Schumacher, J.; MacMillan, G.J.; Boutin, L.C. Highly parameterized model calibration with cloud computing: An example of regional flow model calibration in northeast Alberta, Canada. Hydrogeol. J. 2014, 22, 729–737. [Google Scholar] [CrossRef]
- Hayley, K. The Present State and Future Application of Cloud Computing for Numerical Groundwater Modeling. Groundwater 2017, 55, 678–682. [Google Scholar] [CrossRef] [PubMed]
- Belperio, A.P.; Preiss, W.V.; Fairclough, M.C.; Gatehouse, C.G.; Gum, J.; Hough, J.; Burtt, A. Tectonic and metallogenic framework of the Cambrian Stansbury Basin—Kanmantoo Trough, South Australia. AGSO J. Aust. Geol. Geophys. 1998, 17, 183–200. [Google Scholar]
- Lavrov, A. Fracture permeability under normal stress: A fully computational approach. J. Pet. Explor. Prod. Technol. 2017, 7, 181–194. [Google Scholar] [CrossRef]
- Australian Groundwater Explorer: Water Information: Bureau of Meteorology. Available online: http://www.bom.gov.au/water/groundwater/explorer/map.shtml (accessed on 24 July 2019).
- Diersch, H.-J.G. FEFLOW Finite Element Modeling of Flow, Mass and Heat Transport in Porous and Fractured Media; Springer: Berlin, Germany, 2014; ISBN 978-3-642-38738-8. [Google Scholar]
- Shewchuk, J.R. Triangle: Engineering a 2D quality mesh generator and Delaunay triangulator. In Applied Computational Geometry Towards Geometric Engineering; Lin, M.C., Manocha, D., Eds.; Springer: Berlin, Germany, 1996; pp. 203–222. [Google Scholar]
- Doherty, J. PEST Model-Independent Parameter Estimation User Manual Part I: PEST, SENSAN and Global Optimisers 2016. Pesthomepage. Available online: http://www.pesthomepage.org/Downloads.php (accessed on 8 August 2019).
- Doherty, J. PEST Model-Independent Parameter Estimation User Manual Part II: PEST Utility Support Software 2016. Pesthomepage. Available online: http://www.pesthomepage.org/Downloads.php (accessed on 8 August 2019).
- Deutsch, C.; Journel, A. GSLIB: Geostatistical Software Library and User’s Guide, 2nd ed.; Oxford University Press: England, UK, 1997; ISBN 978-0-19-510015-0. [Google Scholar]
- Doherty, J. Groundwater Data Utilities Part B: Program Descriptions 2015. Pesthomepage. Available online: http://www.pesthomepage.org/Downloads.php (accessed on 8 August 2019).
- Schumacher, J.; Hayley, K.; Boutin, L.-C.; White, E. PPAPI: A Program for Groundwater Modeling Tasks in Distributed Parallel Computing Environments. Groundwater 2018, 56, 248–250. [Google Scholar] [CrossRef] [PubMed]
Observation Group | Number of Observations |
---|---|
Public Data Groundwater Levels | 70 |
Public Data Depth to Water | 70 |
Public Data Level Gradients | 2211 |
Monitoring Data Groundwater Levels | 32 |
Monitoring Data Level Gradients | 351 |
Monitoring Data Drawdown | 482 |
Monitoring Data Temporal Changes | 466 |
Total Calibration Targets | 3682 |
Parameter Group | Number of Parameters |
---|---|
Horizontal K Pilot points | 811 |
Weathered K Multiplier Pilot points | 135 |
Deep K Multiplier Pilot points | 135 |
Specific Storage Pilot points | 135 |
Drainable Porosity Pilot points | 135 |
Recharge Pilot points | 135 |
Boundary Condition Conductance’s | 4 |
Vertical K anisotropy multiplier | 3 |
Total Calibration Parameters | 1493 |
Variogram | Type | Range(m) | Anisotropy | Bearing | Weight |
---|---|---|---|---|---|
1 | Exponential | 1000 | 10 | −17° to 17° | 0.4 |
2 | Spherical | 2500 | 5 | −17° to 17° | 0.2 |
Parameter | Unit | Initial Value | Upper Bound | Lower Bound |
---|---|---|---|---|
Fresh Rock Kh | m/s | 1.2 × 10−8 | 1 × 10−4 | 1 × 10−9 |
Weathered Rock Kh multiplier | None | 8.3 | 15 | 1 |
Deep Rock Kh multiplier | None | 0.5 | 1 | 1 × 10−3 |
Recharge | Mm/year | 12 | 35 | 1 |
Specific storage | 1/m | 2 × 10−7 | 2 × 10−6 | 2 × 10−8 |
Drainable Porosity | None | 0.3 | 0.35 | 0.1 |
Weathered Rock Vertical Anisotropy | None | 1 | 1 | 0.01 |
Fresh Rock Vertical Anisotropy | None | 1 | 1 | 0.01 |
Deep Rock Vertical Anisotropy | None | 1 | 1 | 0.01 |
North Boundary Conductance | 1/s | 1 × 10−5 | 1 × 10−3 | 1 × 10−9 |
South Boundary Conductance | 1/s | 1 × 10−5 | 1 × 10−3 | 1 × 10−9 |
West Boundary Conductance | 1/s | 1 × 10−5 | 1 × 10−3 | 1 × 10−9 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hayley, K.; Valenza, A.; White, E.; Hutchison, B.; Schumacher, J. Application of the Iterative Ensemble Smoother Method and Cloud Computing: A Groundwater Modeling Case Study. Water 2019, 11, 1649. https://doi.org/10.3390/w11081649
Hayley K, Valenza A, White E, Hutchison B, Schumacher J. Application of the Iterative Ensemble Smoother Method and Cloud Computing: A Groundwater Modeling Case Study. Water. 2019; 11(8):1649. https://doi.org/10.3390/w11081649
Chicago/Turabian StyleHayley, Kevin, Alexis Valenza, Emma White, Bruce Hutchison, and Jens Schumacher. 2019. "Application of the Iterative Ensemble Smoother Method and Cloud Computing: A Groundwater Modeling Case Study" Water 11, no. 8: 1649. https://doi.org/10.3390/w11081649
APA StyleHayley, K., Valenza, A., White, E., Hutchison, B., & Schumacher, J. (2019). Application of the Iterative Ensemble Smoother Method and Cloud Computing: A Groundwater Modeling Case Study. Water, 11(8), 1649. https://doi.org/10.3390/w11081649