Effects of Alternating Irrigation with Fresh and Saline Water on the Soil Salt, Soil Nutrients, and Yield of Tomatoes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Conditions
2.2. Experimental Design
2.3. Irrigation and Fertilization
2.4. Measurements
2.4.1. Soil Salinity
2.4.2. Soil Nutrient Content
2.4.3. Fruit Yield and Quality
2.5. Statistical Analysis
3. Results
3.1. Irrigation
3.2. Total Nutrients
3.3. Salt Ions
3.4. SAR
3.5. Total Salt
3.6. Tomato Production
3.7. Fruit Quality
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Stewart, R.; Hirst, C.T. The Alkali Content of Irrigation Water. In Utah Agricultural College Experiment Station Bulletin No. 147; John L. Coburn; Utah Agricultural College Experiment Station: Luogang, UT, USA, 1916; p. 113. [Google Scholar]
- Zhang, H.; Liu, H.; Sun, C.T.; Gao, Y.; Gong, X.W.; Sun, J.S.; Wang, W.N. Root development of transplanted cotton and simulation of soil water movement under different irrigation methods. Water 2017, 9, 503. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, Y.D.; Zhao, Y.; Xu, X.W.; Zhang, J.G.; Li, G.J. Spatiotemporal distribution of soil moisture and salinity in Taklimakan desert highway shelterbelt. Water 2015, 7, 4343–4361. [Google Scholar] [CrossRef]
- Gao, C.R.; Liu, W.B.; Feng, C.E.; Liu, B. Distribution characteristics of saline groundwater and high-arsenic groundwater in the Hetao Plain, Inner Mongolia. Acta Geosci. Sin. 2014, 35, 139–148. [Google Scholar] [CrossRef]
- Li, J.G.; Qu, Z.Y.; Huang, Y.P.; Ren, Z.S.; Wang, F. Effects of control lower limit of saline water mulched drip irrigation on water salt movement and corn yield in saline soil. J. Soil Water Conserv. 2017, 31, 217–223. [Google Scholar] [CrossRef]
- Li, C.J.; Lei, J.Q.; Zhao, Y.; Xu, X.W.; Li, S.Y. Effect of saline water irrigation on soil development and plant growth in the Taklimakan Desert Highway shelterbelt. Soil Tillage Res. 2015, 146, 99–107. [Google Scholar] [CrossRef]
- Hussain, R.A.; Ahmad, R.; Waraich, E.A.; Nawaz, F. Nutrient uptake, water relations, and yield performance if different wheat cultivars (Triticum aestivum L.) under salinity stress. J. Plant Nutr. 2015, 38, 2139–2149. [Google Scholar] [CrossRef]
- Murad, K.F.I.; Hossain, A.; Fakir, O.A.; Biswas, S.K.; Sarker, K.K.; Rannu, R.P.; Timsina, J. Conjunctive use of saline and fresh water increases the productivity of maize in saline coastal region of Bangladesh. Agric. Water Manag. 2018, 204, 262–270. [Google Scholar] [CrossRef]
- Wang, X.P.; Yang, J.S.; Liu, G.M.; Yao, R.J.; Yu, S.P. Impact of irrigation volume and water salinity on winter wheat productivity and soil salinity distribution. Agric. Water Manag. 2015, 149, 44–54. [Google Scholar] [CrossRef]
- Kiremit, M.S.; Arslan, H. Effects of irrigation water salinity on drainage water salinity, evapotranspiration and other leek (Allium porrum L.) plant parameters. Sci. Hortic. 2016, 201, 211–217. [Google Scholar] [CrossRef]
- Baath, G.S.; Shukla, M.K.; Bosland, P.W.; Steiner, R.L.; Walker, S.J. Irrigation water salinity influences at various growth stages of capsicum annuum. Agric. Water Manag. 2017, 179, 246–253. [Google Scholar] [CrossRef]
- Alharby, H.F.; Colmer, T.D.; Barrett-Lennard, E.G. Salinization of the soil solution decreases the further accumulation of salt in the root zone of the halophyte Atriplex nummularia Lindl. growing above shallow saline groundwater. Plant Cell Environ. 2018, 41, 99–110. [Google Scholar] [CrossRef] [PubMed]
- Hou, Z.N.; Chen, W.P.; Li, X.; Xiu, L.; Wu, L.S. Effects of salinity and fertigation practice on cotton yield and N-15 recovery. Agric. Water Manag. 2009, 96, 1483–1489. [Google Scholar] [CrossRef]
- Wang, Q.M.; Huo, Z.L.; Zhang, L.D.; Wang, J.H.; Zhao, Y. Impact of saline water irrigation on water use efficiency and soil salt accumulation for spring maize in arid regions of China. Agric. Water Manag. 2016, 163, 125–138. [Google Scholar] [CrossRef]
- Li, J.G.; Qu, Z.Y.; Chen, J.; Wang, F.; Jin, Q. Effect of different thresholds of drip irrigation using saline water on soil salt transportation and maize yield. Water 2018, 10, 1855. [Google Scholar] [CrossRef]
- Malash, N.M.; Ali, F.A.; Fatahalla, M.A.; Hatem, M.K.; Tawfic, S. Response of tomato to irrigation with saline water applied by different irrigation methods and water management strategies. Int. J. Plant Prod. 2012, 2, 101–116. [Google Scholar]
- Ramos, T.B.; Šimůnek, J.; Goncalves, M.C.; Martins, J.C.; Prazeres, A.; Pereira, L.S. Two-dimensional modeling of water and nitrogen fate from sweet sorghum irrigated with fresh and blended saline waters. Agric. Water Manag. 2012, 111, 87–104. [Google Scholar] [CrossRef]
- Machekposhti, M.F.; Shahnazari, A.; Ahmadi, M.Z.; Aghajani, G.; Ritzema, H. Effect of irrigation with sea water on soil salinity and yield of oleic sunflower. Agric. Water Manag. 2017, 188, 69–78. [Google Scholar] [CrossRef]
- Murtaza, G.; Ghafoor, A.; Qadir, M. Irrigation and soil management strategies for using saline-sodic water in a cotton-wheat rotation. Agric. Water Manag. 2006, 81, 98–114. [Google Scholar] [CrossRef]
- Farid, A.A.; Mohamad, A.C.; Fawaz, K. Effects of alternate irrigation with saline and non-saline water on sorghum crop manured with Elaeagnus angustifolia leaves using 15N. Open Agric. J. 2017, 11, 24–34. [Google Scholar] [CrossRef]
- Sharma, D.P.; Rao, K.V.; Kumbhare, P.S.; Oosterbaan, R.J. Conjunctive use of saline and non-saline irrigation waters in semi-arid regions. Irrig. Sci. 1994, 15, 25–33. [Google Scholar] [CrossRef]
- Sharma, D.P.; Singh, K.N.; Kumbhare, P.S. Response of sunflower to conjunctive use of saline drainage water and non-saline canal water irrigation. Arch. Agron. Sci. 2005, 51, 91–100. [Google Scholar] [CrossRef]
- Malash, N.M.; Flowers, T.J.; Ragab, R.; Ragab, R. Effect of irrigation systems and water management practices using saline and non-saline water on tomato production. Agric. Water Manag. 2005, 78, 25–38. [Google Scholar] [CrossRef]
- Brandt, S.; Pék, Z.; Barna, É.; Lugasi, A.; Helyes, L. Lycopene content and colour of ripening tomatoes as affected by environmental conditions. J. Sci. Food Agric. 2006, 86, 568–572. [Google Scholar] [CrossRef]
- Cuartero, J.; Fernandez-Munoz, R. Tomato and Salinity. Sci. Hortic. 1998, 78, 83–125. [Google Scholar] [CrossRef]
- Li, N.; Xu, X.Y.; Jiang, J.B.; Li, J.F. Bioinformatics resources for tomato research. Chin. Bull. Bot. 2010, 45, 95–101. [Google Scholar] [CrossRef]
- Li, J.S.; Gao, Y.M.; Zhang, X.Y.; Tian, P.; Li, J.; Tian, Y.Q. Comprehensive comparison of different saline water irrigation strategies for tomato production: Soil properties, plant growth, fruit yield and fruit quality. Agric. Water Manag. 2019, 213, 521–533. [Google Scholar] [CrossRef]
- Alves, R.D.; de Medeiros, A.S.; Nicolau, M.C.M.; Neto, A.P.; Oliveira, F.D.; Lima, L.W.; Tezotto, T.; Gratão, P.L. The partial root-zone saline irrigation system and antioxidant responses in tomato plants. Plant Physiol. Biochem. 2018, 127, 366–379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, D.; Kang, Y.H.; Wan, S.Q. Distribution characteristics of different salt ions in soil under drip irrigation with saline water. Trans. Chin. Soc. Agric. Eng. 2007, 23, 83–87. [Google Scholar]
- Karlberg, L.; Rockstrom, J.; Annandale, J.G.; Steyn, J.M. Low-cost drip irrigation-a suitable technology for southern Africa: An example with tomatoes using saline irrigation water. Agric. Water Manag. 2007, 89, 59–70. [Google Scholar] [CrossRef]
- Wang, D.; Liu, S.P. Effect of saline water on tomato growth and yield by drip irrigation in semi-humid regions of north China. Trans. Chin. Soc. Agric. Eng. 2008, 24, 30–35. [Google Scholar]
- Zhangzhong, L.L.; Yang, P.L.; Zheng, W.G.; Wang, C.Y.; Zhang, C.; Niu, M.L. Effects of drip irrigation models on chemical clogging under saline water use in Hetao District, China. Water 2018, 10, 345. [Google Scholar] [CrossRef]
- Ding, Y.H.; Gao, X.Y.; Qu, Z.Y.; Jia, Y.L.; Hu, M.; Li, C.J. Effects of biochar application and irrigation methods on soil temperature in farmland. Water 2019, 11, 449. [Google Scholar] [CrossRef]
- Wilson, C.R.; Pemberton, B.M.; Ransom, L.M. The effect of irrigation strategies during tuber initiation on marketable yield and development of common scab disease of potato in Russet Burbank in Tasmania. Potato Res. 2001, 44, 243–251. [Google Scholar] [CrossRef]
- Kang, Y.H.; Wan, S.Q. Effect of soil water potential on radish (Raphanus sativus L.) growth and water use under drip irrigation. Sci. Hortic. 2005, 106, 275–292. [Google Scholar] [CrossRef]
- Wang, R.S.; Kang, Y.H.; Wan, S.Q.; Hu, W.; Liu, S.P.; Liu, S.H. Salt distribution and the growth of cotton under different drip irrigation regimes in a saline area. Agric. Water Manag. 2011, 100, 58–69. [Google Scholar] [CrossRef]
- Kang, Y.H.; Wang, R.S.; Wan, S.Q.; Hu, W.; Jiang, S.F.; Liu, S.P. Effects of different water levels on cotton growth and water use through drip irrigation in an arid region with saline ground water of northwest China. Agric. Water Manag. 2012, 109, 117–126. [Google Scholar] [CrossRef]
- Wei, L.G.; Li, J.G.; Shu, Q.P.; Liu, G.R.; Fan, F.; Chen, X.; Zhou, R.J. The method of leaching and vibrating-atom absorbing spectrum to determine the exchangeable calcium and magnesium in soil. Anal. Test. Technol. Instrum. 2006, 12, 249–252. [Google Scholar]
- Sun, G.F.; Qu, Z.Y.; Du, B.; Ren, Z.S.; Liu, A.Q. Water-heat-salt effects of mulched drip irrigation maize different irrigation scheduling in Hetao Irrigation District. Trans. Chin. Soc. Agric. Eng. 2017, 33, 144–152. [Google Scholar] [CrossRef]
- Jackson, M.L. Soil Chemical Analysis; Prentice Hall of India Pvt. Ltd.: New Delhi, India, 1973. [Google Scholar]
- Sparks, D.L.; Page, A.L.; Helmke, P.A.; Loeppert, R.H. Methods of Soil Analysis Part 3-Chemical Properties Methods; Soil Science Society of America: Madison, WI, USA, 1996; pp. 869–919. [Google Scholar]
- Tian, P.; Li, J.; Li, J.S.; Gao, Y.M.; Ren, H.; Cao, S.N. Effect of saline water soil nutrients and ions content of greenhouse tomato under different irrigation methods. Agric. Res. Arid Areas 2018, 36, 101–106. [Google Scholar] [CrossRef]
- Jin, F.X.; Ma, D.M.; Liu, H.Y.; Yang, P.P.; Xu, X. Effects of planting years of alfalfa on soil quality. Agric. Res. Arid Areas 2014, 32, 73–77. [Google Scholar]
- Karlberg, L.; de Vries, F.W.P. Exploring potentials and constraints of low-cost drip irrigation with saline water in sub-Saharan Africa. Phys. Chem. Earth 2004, 15–18, 1035–1042. [Google Scholar] [CrossRef]
- Li, Y.; Wang, W.Y.; Wang, Q.J.; Shao, M.A.; Lai, J.B. Experimental study on water and salt transport characteristics under infiltration of non-sufficient trickle irrigation. J. Soil Water Conserv. 2003, 17, 16–19. [Google Scholar] [CrossRef]
- Lv, D.Q.; Wang, Q.J.; Wang, W.Y.; Shao, M.A. Soil water and salt transport features under one-dimension infiltration. J. Soil Water Conserv. 2000, 14, 91–94. [Google Scholar] [CrossRef]
- Feigin, A.; Ravina, I.; Shalhevet, J. Effect of irrigation with treated sewage effluent on soil, plant and environment. Irrig. Treat. Sew. Effl. 1991, 17, 34–116. [Google Scholar]
- Lakhdar, A.; Rabhi, M.; Ghnaya, T.; Montemurro, F.; Jedidi, N.; Abdelly, C. Effectiveness of compost use in salt-affected soil. J. Hazard. Mater 2009, 171, 29–37. [Google Scholar] [CrossRef]
- Frenkel, H.; Goertzen, J.O.; Rhoades, J.D. Effects of clay type and content exchangeable sodium percentage, and electrolyte concentration on clay dispersion and soil hydraulic conductivity. Soil Sci. Soc. Am. J. 1978, 42, 32–39. [Google Scholar] [CrossRef]
- Mashali, S.; Balba, A.; Alwakil, E.; Atia, R. Effect of irrigation water salinity on some soil properties and wheat yield in Egypt. Böden-Eine Endliche Resource 2009, 26, 12–52. [Google Scholar]
- Rodrigues, C.R.F.; Silva, E.N.; da Mata Moura, R.; dos Anjos, D.C.; Hernandez, F.F.F.; Viégas, R.A. Physiological adjustment to salt stress in R. communis seedlings is associated with a probable mechanism of osmotic adjustment and a reduction in water lost by transpiration. Ind. Crop. Prod. 2014, 54, 233–239. [Google Scholar] [CrossRef]
- Tavakkoli, E.; Fatehi, F.; Coventry, S.; Rengasamy, P.; McDonald, G.K. Additive effects of Na+ and Cl− ions on barley growth under salinity stress. J. Exp. Bot. 2011, 62, 2189–2203. [Google Scholar] [CrossRef]
- Slabu, C.; Zörb, C.; Steffens, D.; Schubert, S. Is salt stress of faba bean (Viciafaba) caused by Na+ or Cl− toxicity? J. Plant Nutr. Soil Sci. 2009, 172, 644–651. [Google Scholar] [CrossRef]
- Yarami, N.; Sepaskhah, A.R. Physiological growth and gas exchange response of saffron (Crocus sativus L.) to irrigation water salinity, manure application and planting method. Agric. Water Manag. 2015, 154, 43–51. [Google Scholar] [CrossRef]
- Shalhevet, J. Using water of marginal quality for crop production: Major issues. Agric. Water Manag. 1994, 25, 233–269. [Google Scholar] [CrossRef]
- Abdel Gawad, G.; Arslan, A.; Gaihbe, A.; Kadouri, F. The effects of saline irrigation water management and salt tolerant tomato varieties on sustainable production of tomato in Syria (1999–2002). Agric. Water Manag. 2005, 78, 39–53. [Google Scholar] [CrossRef]
Soil Depth (cm) | Bulk Density (g·cm−3) | Field Capacity (%) | Porosity (%) | Silt (%) | Sand (%) | Clay (%) | Soil Salinity (g∙kg−1) | Texture Class |
---|---|---|---|---|---|---|---|---|
0–20 | 1.39 | 23.7 | 48.03 | 24.31 | 62.09 | 13.60 | 1.317 | Sandy loam |
20–40 | 1.42 | 23.3 | 44.32 | 25.64 | 60.25 | 14.11 | 0.868 | Sandy loam |
40–60 | 1.37 | 25.4 | 46.54 | 18.65 | 61.18 | 20.17 | 0.744 | Sandy loam |
60–80 | 1.54 | 14.9 | 36.45 | 87.78 | 11.16 | 1.06 | 1.263 | Sand |
80–100 | 1.43 | 19.2 | 42.84 | 32.57 | 51.28 | 16.15 | 1.845 | Middle loam |
Soil Depth (cm) | Total Nutrient Contents (g∙kg−1) | Available Nutrient Contents (mg∙kg−1) | |||||
---|---|---|---|---|---|---|---|
Total N | Total P | Total K | Ammonium N | Nitrate N | Available P | Available K | |
0–20 | 1.169 | 0.913 | 17.115 | 74.615 | 113.250 | 12.625 | 291.25 |
20–40 | 0.963 | 0.818 | 18.490 | 51.925 | 16.885 | 9.800 | 318.50 |
40–60 | 0.861 | 0.668 | 19.590 | 76.930 | 12.960 | 4.025 | 186.00 |
60–80 | 0.477 | 0.595 | 16.150 | 40.120 | 7.850 | 3.350 | 123.50 |
80–100 | 0.368 | 0.577 | 13.740 | 30.860 | 3.120 | 5.800 | 100.50 |
Soil Depth (cm) | Salt Ions Content (mmol·L−1) | |||||
---|---|---|---|---|---|---|
HCO3− | Cl− | SO42− | Ca2+ | Mg2+ | K+ + Na+ | |
0–20 | 0.643 | 4.628 | 3.145 | 1.367 | 1.139 | 5.910 |
20–40 | 0.610 | 2.739 | 2.784 | 1.256 | 1.072 | 3.805 |
40–60 | 0.587 | 2.433 | 3.433 | 1.467 | 1.611 | 3.487 |
60–80 | 0.729 | 1.517 | 2.106 | 1.233 | 0.567 | 2.551 |
80–100 | 0.686 | 1.450 | 2.056 | 1.317 | 0.511 | 2.363 |
Characteristics | Shallow Groundwater | Yellow River Water | Characteristics | Shallow Groundwater | Yellow River Water |
---|---|---|---|---|---|
Ca2+ (mg·L−1) | 186.00 | 50.00 | Cl− (mg·L−1) | 798.50 | 138.45 |
Mg2+ (mg·L−1) | 253.70 | 26.00 | SO42− (mg·L−1) | 285.50 | 79.20 |
K+ or Na+ (mg·L−1) | 986.00 | 108.10 | TDS (g·L−1) | 3.01 | 0.50 |
HCO3− (mg·L−1) | 496.00 | 330.40 | pH | 7.46 | 7.38 |
CO32 (mg·L−1) | 0.00 | 0.00 |
Treatment | Seedling Stage | Flowering Stage | Fruit-Set Stage | Breaker Stage | Maturity Stage |
---|---|---|---|---|---|
T1 | FW | FW | FW | FW | |
T2 | SW | SW | FW | FW | |
T3 | FW | SW | SW | FW | |
T4 | FW | FW | SW | SW | |
T5 | FW | SW | FW | SW | |
T6 | SW | FW | SW | FW |
Year | Treatment | Seedling Stage | Flowering Stage | Fruit-Set Stage | Breaker Stage | Maturity Stage |
---|---|---|---|---|---|---|
2017 | T1 | 1.411 ± 0.34bc | 2.071 ± 0.14a | 2.612 ± 0.11a | 2.604 ± 0.12a | 1.938 ± 0.43a |
T2 | 2.802 ± 0.82d | 3.314 ± 0.12c | 3.241 ± 0.32b | 3.321 ± 0.55cd | 2.471 ± 0.26bc | |
T3 | 1.076 ± 0.09ab | 2.809 ± 0.26b | 3.358 ± 0.34b | 2.890 ± 0.43ab | 2.059 ± 0.48a | |
T4 | 1.462 ± 0.12c | 1.841 ± 0.22a | 2.774 ± 0.26a | 3.916 ± 0.36e | 2.207 ± 0.15ab | |
T5 | 0.870 ± 0.14a | 2.088 ± 0.12a | 2.520 ± 0.22a | 3.088 ± 0.24bc | 2.742 ± 0.47cd | |
T6 | 3.110 ± 0.15d | 3.347 ± 1.02c | 3.134 ± 0.14b | 3.470 ± 0.24d | 2.958 ± 0.32d | |
2018 | T1 | 1.099 ± 0.02ab | 1.859 ± 0.23a | 2.547 ± 0.06a | 2.903 ± 0.18a | 2.341 ± 0.54a |
T2 | 1.448 ± 0.26bc | 2.429 ± 0.56b | 2.835 ± 0.23a | 3.026 ± 0.46a | 2.270 ± 0.36a | |
T3 | 0.903 ± 0.15a | 2.116 ± 0.47ab | 3.361 ± 0.18b | 3.725 ± 0.52c | 2.834 ± 0.25b | |
T4 | 1.484 ± 0.26bc | 1.810 ± 0.28a | 2.678 ± 0.24a | 3.861 ± 0.67c | 2.701 ± 0.38b | |
T5 | 1.332 ± 0.23bc | 2.411 ± 0.12b | 3.517 ± 0.32b | 3.950 ± 0.85c | 3.741 ± 0.44d | |
T6 | 1.614 ± 0.15c | 1.836 ± 0.26a | 2.836 ± 0.28a | 3.374 ± 0.67b | 3.209 ± 0.08c |
Treatment | 2017 | 2018 | ||
---|---|---|---|---|
Fruit Yield on Each Plant (g/plant) | Tomato Production (104 kg·ha−1) | Fruit Yield on Each Plant (g/plant) | Tomato Production (104 kg·ha−1) | |
T1 | 45 ± 5c | 9.565 ± 0.326c | 43 ± 4c | 9.443 ± 0.423d |
T2 | 29 ± 3a | 7.821 ± 0.345a | 32 ± 3a | 8.012 ± 0.541a |
T3 | 36 ± 4b | 8.646 ± 0.432b | 35 ± 2ab | 8.632 ± 0.318c |
T4 | 40 ± 4b | 9.302 ± 0.517c | 38 ± 2b | 9.264 ± 0.426d |
T5 | 37 ± 3b | 8.543 ± 0.429b | 36 ± 3ab | 8.412 ± 0.445bc |
T6 | 37 ± 2b | 8.305 ± 1.338b | 38 ± 5b | 8.226 ± 0.439ab |
Treatments | 2017 | 2018 | ||||||
---|---|---|---|---|---|---|---|---|
TSS (%) | Lycopene (mg/100 g) | TS (%) | Ta (%) | TSS (%) | Lycopene (mg/100 g) | TS (%) | Ta (%) | |
T1 | 7.94 ± 1.23a | 6.50 ± 0.54a | 7.12 ± 0.82a | 1.54 ± 0.06b | 8.04 ± 1.02a | 6.54 ± 0.24a | 7.24 ± 0.32a | 1.47 ± 0.25ab |
T2 | 8.04 ± 2.45a | 6.92 ± 0.43b | 7.80 ± 0.35c | 1.30 ± 0.04ab | 8.02 ± 1.14a | 7.05 ± 0.26b | 7.76 ± 0.43b | 1.28 ± 0.13b |
T3 | 8.11 ± 2.34a | 7.12 ± 1.05b | 7.90 ± 0.76cd | 1.23 ± 0.24ab | 8.18 ± 0.36a | 7.08 ± 0.18b | 7.88 ± 0.56bc | 1.31 ± 0.24ab |
T4 | 8.30 ± 3.04a | 7.70 ± 0.68c | 8.20 ± 1.12d | 0.98 ± 0.17a | 8.34 ± 0.85a | 7.53 ± 0.19c | 8.17 ± 0.78c | 1.04 ± 0.16a |
T5 | 8.02 ± 2.51a | 7.22 ± 1.24b | 7.94 ± 0.72cd | 1.32 ± 0.34ab | 8.12 ± 0.73a | 7.11 ± 0.12b | 8.02 ± 0.49bc | 1.35 ± 0.34ab |
T6 | 8.18 ± 2.25a | 7.05 ± 0.57b | 7.46 ± 0.46b | 1.22 ± 0.22ab | 8.20 ± 0.48a | 6.98 ± 0.07b | 7.38 ± 0.67a | 1.18 ± 0.27ab |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Chen, J.; Qu, Z.; Wang, S.; He, P.; Zhang, N. Effects of Alternating Irrigation with Fresh and Saline Water on the Soil Salt, Soil Nutrients, and Yield of Tomatoes. Water 2019, 11, 1693. https://doi.org/10.3390/w11081693
Li J, Chen J, Qu Z, Wang S, He P, Zhang N. Effects of Alternating Irrigation with Fresh and Saline Water on the Soil Salt, Soil Nutrients, and Yield of Tomatoes. Water. 2019; 11(8):1693. https://doi.org/10.3390/w11081693
Chicago/Turabian StyleLi, Jingang, Jing Chen, Zhongyi Qu, Shaoli Wang, Pingru He, and Na Zhang. 2019. "Effects of Alternating Irrigation with Fresh and Saline Water on the Soil Salt, Soil Nutrients, and Yield of Tomatoes" Water 11, no. 8: 1693. https://doi.org/10.3390/w11081693
APA StyleLi, J., Chen, J., Qu, Z., Wang, S., He, P., & Zhang, N. (2019). Effects of Alternating Irrigation with Fresh and Saline Water on the Soil Salt, Soil Nutrients, and Yield of Tomatoes. Water, 11(8), 1693. https://doi.org/10.3390/w11081693