Identifying Sensitive Model Parameter Combinations for Uncertainties in Land Surface Process Simulations over the Tibetan Plateau
Abstract
:1. Introduction
2. Observations, Model, Methods and Experimental Design
2.1. Sites and Data
2.2. Common Land Surface Model (CoLM)
2.3. Methods
2.3.1. The Conditional Nonlinear Optimal Perturbation Related to Parameters (CNOP-P) Approach
2.3.2. The Sensitivity Analysis Framework for the Model Parameter Combination Based on the CNOP-P
2.3.3. The OAT (One-at-a-Time) Approach
2.4. Experimental Design
3. Results and Analyses
3.1. Uncertainties in SH, LH and ST due to Parameter Uncertainties
3.2. Physical Processes Contributing to the Uncertainties in SH, LH and ST
3.3. Identification of the Most Sensitive and Important Parameter Combination
3.3.1. SH
3.3.2. LH
3.3.3. ST
4. Summary and Future Work
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Duan, A.M.; Wu, G.X. Role of the Tibetan Plateau thermal forcing in the summer climate patterns over subtropical Asia. Clim. Dyn. 2005, 24, 793–807. [Google Scholar] [CrossRef]
- Ueda, H.; Kamahori, H.; Yamazaki, N. Seasonal Contrasting Features of Heat and Moisture Budgets between the Eastern and Western Tibetan Plateau during the GAME IOP. J. Clim. 2003, 16, 2309–2324. [Google Scholar] [CrossRef]
- Wu, G.; He, B.; Duan, A.; Liu, Y.; Yu, W. Formation and variation of the atmospheric heat source over the Tibetan Plateau and its climate effects. Adv. Atmos. Sci. 2017, 34, 1169–1184. [Google Scholar] [CrossRef]
- Wu, G.; Duan, A.; Liu, Y.; Mao, J.; Ren, R.; Bao, Q.; He, B.; Liu, B.; Hu, W. Tibetan Plateau climate dynamics: Recent research progress and outlook. Natl. Sci. Rev. 2015, 2, 100–116. [Google Scholar] [CrossRef]
- Yanai, M.; Li, C.; Song, Z. Seasonal Heating of the Tibetan Plateau and Its Effects on the Evolution of the Asian Summer Monsoon. J. Meteorol. Soc. Jpn. 1992, 70, 319–351. [Google Scholar] [CrossRef] [Green Version]
- Ye, D.-Z.; Wu, G.-X. The role of the heat source of the Tibetan Plateau in the general circulation. Theor. Appl. Clim. 1998, 67, 181–198. [Google Scholar] [CrossRef]
- Zhao, P.; Chen, L. Climatic features of atmospheric heat source/sink over the Qinghai-Xizang Plateau in 35 years and its relation to rainfall in China. Sci. China Ser. D Earth Sci. 2001, 44, 858–864. [Google Scholar] [CrossRef]
- Zhou, X.; Zhao, P.; Chen, J.; Chen, L.; Li, W. Impacts of thermodynamic processes over the Tibetan Plateau on the Northern Hemispheric climate. Sci. China Ser. D Earth Sci. 2009, 52, 1679–1693. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, G.; Hong, J.; Dong, B.; Duan, A.; Bao, Q.; Zhou, L. Revisiting Asian monsoon formation and change associated with Tibetan Plateau forcing: II. Change. Clim. Dyn. 2012, 39, 1183–1195. [Google Scholar] [CrossRef]
- Duan, A.; Wang, M.; Lei, Y.; Cui, Y. Trends in Summer Rainfall over China Associated with the Tibetan Plateau Sensible Heat Source during 1980–2008. J. Clim. 2013, 26, 261–275. [Google Scholar] [CrossRef]
- Wan, B.; Gao, Z.; Chen, F.; Lu, C. Impact of Tibetan-Plateau Surface Heating over on Persistent Extreme Precipitation Events in Southeastern China. Mon. Weather Rev. 2017, 145, 3485–3505. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, P.; Yu, R.; Rasul, G. Inter-decadal variability of Tibetan spring vegetation and its associations with eastern China spring rainfall. Int. J. Clim. 2010, 30, 856–865. [Google Scholar] [CrossRef]
- Xiao, Z.; Duan, A. Impacts of Tibetan Plateau Snow Cover on the Interannual Variability of the East Asian Summer Monsoon. J. Clim. 2016, 29, 8495–8514. [Google Scholar] [CrossRef]
- Zhang, J.; Wu, L.; Huang, G.; Zhu, W.; Zhang, Y. The role of May vegetation greenness on the southeastern Tibetan Plateau for East Asian summer monsoon prediction. J. Geophys. Res. Space Phys. 2011, 116, 05106. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, T.; Wang, B. Decadal Change of the Spring Snow Depth over the Tibetan Plateau: The Associated Circulation and Influence on the East Asian Summer Monsoon. J. Clim. 2004, 17, 2780–2793. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, K.; He, J.; Qin, J.; Shi, J.; Du, J.; He, Q. Improving land surface temperature modeling for dry land of China. J. Geophys. Res. Space Phys. 2011, 116, 20104. [Google Scholar] [CrossRef]
- Fang, X.; Luo, S.; Lyu, S.; Chen, B.; Zhang, Y.; Ma, D.; Chang, Y. A Simulation and Validation of CLM during Freeze-Thaw on the Tibetan Plateau. Adv. Meteorol. 2016, 2016, 1–15. [Google Scholar] [CrossRef]
- Van Der Velde, R.; Su, Z.; Ek, M.; Rodell, M.; Ma, Y. Influence of thermodynamic soil and vegetation parameterizations on the simulation of soil temperature states and surface fluxes by the Noah LSM over a Tibetan plateau site. Hydrol. Earth Syst. Sci. 2009, 13, 759–777. [Google Scholar] [CrossRef] [Green Version]
- Yang, K.; Chen, Y.-Y.; Qin, J. Some practical notes on the land surface modeling in the Tibetan Plateau. Hydrol. Earth Syst. Sci. Discuss. 2009, 6, 1291–1320. [Google Scholar] [CrossRef]
- Zhang, G.; Gan, Y.; Chen, F. Assessing uncertainties in the Noah-MP ensemble simulations of a cropland site during the Tibet Joint International Cooperation program field campaign. J. Geophys. Res. Atmos. 2016, 121, 9576–9596. [Google Scholar] [CrossRef]
- Zheng, D.; Van Der Velde, R.; Su, Z.; Booij, M.J.; Hoekstra, A.; Wen, J. Assessment of Roughness Length Schemes Implemented within the Noah Land Surface Model for High-Altitude Regions. J. Hydrometeorol. 2014, 15, 921–937. [Google Scholar] [CrossRef] [Green Version]
- Gao, Z.; Chae, N.; Choi, T.; Lee, H.; Gao, Z.; Kim, J.; Hong, J. Modeling of surface energy partitioning, surface temperature, and soil wetness in the Tibetan prairie using the Simple Biosphere Model 2 (SiB2). J. Geophys. Res. Space Phys. 2004, 109. [Google Scholar] [CrossRef]
- Li, Y.; Liu, X.; Li, W. Numerical Simulation of Land Surface Process at Different Underlying Surfaces in Tibetan Plateau. Plateau Meteorol. 2012, 31, 581–591. (In Chinese) [Google Scholar]
- Duan, A.; Sun, R.; He, J. Impact of surface sensible heating over the Tibetan Plateau on the western Pacific subtropical high: A land–air–sea interaction perspective. Adv. Atmos. Sci. 2017, 34, 157–168. [Google Scholar] [CrossRef]
- Gao, Y.; Xiao, L.; Chen, D.; Chen, F.; Xu, J.; Xu, Y. Quantification of the relative role of land-surface processes and large-scale forcing in dynamic downscaling over the Tibetan Plateau. Clim. Dyn. 2016, 48, 1705–1721. [Google Scholar] [CrossRef]
- Duan, Q.; Schaake, J.; Andréassian, V.; Franks, S.; Goteti, G.; Gupta, H.; Gusev, Y.; Habets, F.; Hall, A.; Hay, L.; et al. Model Parameter Estimation Experiment (MOPEX): An overview of science strategy and major results from the second and third workshops. J. Hydrol. 2006, 320, 3–17. [Google Scholar] [CrossRef] [Green Version]
- Rosolem, R.; Gupta, H.V.; Shuttleworth, W.J.; Gonçalves, L.G.G.; Zeng, X. Towards a comprehensive approach to parameter estimation in land surface parameterization schemes. Hydrol. Process. 2013, 27, 2075–2097. [Google Scholar] [CrossRef]
- Raoult, N.M.; Jupp, T.E.; Cox, P.M.; Luke, C.M. Land-surface parameter optimisation using data assimilation techniques: The adJULES system V1.0. Geosci. Model Dev. 2016, 9, 2833–2852. [Google Scholar] [CrossRef]
- Suzuki, K.; Zupanski, M.; Zupanski, D. A case study involving single observation experiments performed over snowy Siberia using a coupled land-atmosphere modeling system. Atmos. Sci. Lett. 2017, 18, 106–111. [Google Scholar] [CrossRef]
- Foglia, L.; Hill, M.C.; Mehl, S.W.; Burlando, P. Sensitivity analysis, calibration, and testing of a distributed hydrological model using error-based weighting and one objective function. Water Resour. Res. 2009, 45, 06427. [Google Scholar] [CrossRef]
- Gan, Y.; Liang, X.-Z.; Duan, Q.; Ye, A.; Di, Z.; Hong, Y.; Li, J. A systematic assessment and reduction of parametric uncertainties for a distributed hydrological model. J. Hydrol. 2018, 564, 697–711. [Google Scholar] [CrossRef]
- Huang, M.; Ray, J.; Hou, Z.; Ren, H.; Liu, Y.; Swiler, L. On the applicability of surrogate-based Markov chain Monte Carlo-Bayesian inversion to the Community Land Model: Case studies at flux tower sites. J. Geophys. Res. Atmos. 2016, 121, 7548–7563. [Google Scholar] [CrossRef]
- Ren, H.; Hou, Z.; Huang, M.; Bao, J.; Sun, Y.; Tesfa, T.; Leung, L.R. Classification of hydrological parameter sensitivity and evaluation of parameter transferability across 431 US MOPEX basins. J. Hydrol. 2016, 536, 92–108. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.; Zhou, G.; Chen, F. Analysis of parameter sensitivity on surface heat exchange in the Noah land surface model at a temperate desert steppe site in China. J. Meteorol. Res. 2017, 31, 1167–1182. [Google Scholar] [CrossRef]
- Hou, Z.; Huang, M.; Leung, L.R.; Lin, G.; Ricciuto, D.M. Sensitivity of surface flux simulations to hydrologic parameters based on an uncertainty quantification framework applied to the Community Land Model. J. Geophys. Res. Space Phys. 2012, 117. [Google Scholar] [CrossRef]
- Huang, M.; Hou, Z.; Leung, L.R.; Ke, Y.; Liu, Y.; Fang, Z.; Sun, Y. Uncertainty Analysis of Runoff Simulations and Parameter Identifiability in the Community Land Model: Evidence from MOPEX Basins. J. Hydrometeorol. 2013, 14, 1754–1772. [Google Scholar] [CrossRef]
- Dai, Y.; Zeng, X.; Dickinson, R.E.; Baker, I.; Bonan, G.B.; Bosilovich, M.G.; Denning, A.S.; Dirmeyer, P.A.; Houser, P.R.; Niu, G.; et al. The Common Land Model. Bull. Am. Meteorol. Soc. 2003, 84, 1013–1023. [Google Scholar] [CrossRef]
- Mu, M.; Duan, W.; Wang, Q.; Zhang, R. An extension of conditional nonlinear optimal perturbation approach and its applications. Nonlinear Process. Geophys. 2010, 17, 211–220. [Google Scholar] [CrossRef]
- Sun, G.; Mu, M. A new approach to identify the sensitivity and importance of physical parameters combination within numerical models using the Lund–Potsdam–Jena (LPJ) model as an example. Theor. Appl. Clim. 2017, 128, 587–601. [Google Scholar] [CrossRef]
- Sun, G.; Mu, M. A flexible method to determine the sensitive physical parameter combination for soil carbon under five plant types. Ecosphere 2017, 8, e01920. [Google Scholar] [CrossRef]
- Sun, G.; Peng, F.; Mu, M. Uncertainty assessment and sensitivity analysis of soil moisture based on model parameter errors—Results from four regions in China. J. Hydrol. 2017, 555, 347–360. [Google Scholar] [CrossRef]
- Koike, T.; Yasunari, T.; Wang, J.; Yao, T. GAME-Tibet IOP Summary Report. In Proceedings of the 1st International Workshop on GAME-Tibet, Xi’an, China, 11–13 January 1999; pp. 1–2. [Google Scholar]
- Luo, Q.; Lv, S.; Zhang, Y.; Hu, Z.; Ma, Y.; Li, S.; Shang, L. Simulation analysis on land surface process of BJ site of central Tibetan Plateau using CoLM. Plateau Meteorol. 2008, 27, 259–271. [Google Scholar]
- Meng, X.; Fu, Z. Comparative Evaluation of Land Surface Models BATS, LSM, and CoLM at Tongyu Station in Semi-arid Area. Clim. Environ. Res. 2009, 14, 352–362. (In Chinese) [Google Scholar]
- Xin, Y.; Bian, L.; Zhang, X. The application of CoLM to arid region of northwest China and Qinghai-Xizang Plateau. Plateau Meteorol. 2006, 25, 567–574. [Google Scholar]
- Liang, X.; Guo, J. Intercomparison of land-surface parameterization schemes: Sensitivity of surface energy and water fluxes to model parameters. J. Hydrol. 2003, 279, 182–209. [Google Scholar] [CrossRef]
- Cuntz, M.; Mai, J.; Samaniego, L.; Clark, M.; Wulfmeyer, V.; Branch, O.; Attinger, S.; Thober, S. The impact of standard and hard-coded parameters on the hydrologic fluxes in the Noah-MP land surface model. J. Geophys. Res. Atmos. 2016, 121, 10–676. [Google Scholar] [CrossRef]
- Yu, Y.; Mu, M.; Duan, W. Does Model Parameter Error Cause a Significant “Spring Predictability Barrier” for El Niño Events in the Zebiak–Cane Model? J. Clim. 2011, 25, 1263–1277. [Google Scholar] [CrossRef]
- Wang, Q.; Mu, M.; Dijkstra, H. Application of the conditional nonlinear optimal perturbation method to the predictability study of the Kuroshio large meander. Adv. Atmos. Sci. 2012, 29, 118–134. [Google Scholar] [CrossRef]
- Sun, G.; Mu, M. Nonlinearly combined impacts of initial perturbation from human activities and parameter perturbation from climate change on the grassland ecosystem. Nonlinear Process. Geophys. 2011, 18, 883–893. [Google Scholar] [CrossRef] [Green Version]
- Sun, G.; Xie, D. A study of parameter uncertainties causing uncertainties in modeling a grassland ecosystem using the conditional nonlinear optimal perturbation method. Sci. China Earth Sci. 2017, 60, 1674–1684. [Google Scholar] [CrossRef]
- Sun, G.; Mu, M. Responses of soil carbon variation to climate variability in China using the LPJ model. Theor. Appl. Clim. 2012, 110, 143–153. [Google Scholar] [CrossRef]
- Sun, G.; Mu, M. Understanding variations and seasonal characteristics of net primary production under two types of climate change scenarios in China using the LPJ model. Clim. Chang. 2013, 120, 755–769. [Google Scholar] [CrossRef]
- Sun, G.; Mu, M. The analyses of the net primary production due to regional and seasonal temperature differences in eastern China using the LPJ model. Ecol. Model. 2014, 289, 66–76. [Google Scholar] [CrossRef]
- Sun, G.; Mu, M. Projections of soil carbon using the combination of the CNOP-P method and GCMs from CMIP5 under RCP4.5 in north-south transect of eastern China. Plant Soil 2017, 413, 243–260. [Google Scholar] [CrossRef]
- Peng, F.; Mu, M.; Sun, G. Responses of soil moisture to climate change based on projections by the end of the 21st century under the high emission scenario in the ‘Huang–Huai–Hai Plain’ region of China. J. Hydro-Environ. Res. 2017, 14, 105–118. [Google Scholar] [CrossRef]
- Sun, G.; Peng, F.; Mu, M. Variations in soil moisture over the ‘Huang-Huai-Hai Plain’ in China due to temperature change using the CNOP-P method and outputs from CMIP5. Sci. China Earth Sci. 2017, 60, 1838–1853. [Google Scholar] [CrossRef]
- Li, H.; Guo, W.; Sun, G.; Zhang, Y.; Fu, C. A new approach for parameter optimization in land surface model. Adv. Atmos. Sci. 2011, 28, 1056–1066. [Google Scholar] [CrossRef]
- Wang, B.; Huo, Z. Extended application of the conditional nonlinear optimal parameter perturbation method in the common land model. Adv. Atmos. Sci. 2013, 30, 1213–1223. [Google Scholar] [CrossRef]
- Storn, R.; Price, K. Differential Evolution—A Simple and Efficient Heuristic for global Optimization over Continuous Spaces. J. Glob. Optim. 1997, 11, 341–359. [Google Scholar] [CrossRef]
- Pitman, A.J. Assessing the Sensitivity of a Land-Surface Scheme to the Parameter Values Using a Single Column Model. J. Clim. 1994, 7, 1856–1869. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Duan, Q.Y.; Gong, W.; Ye, A.; Dai, Y.; Miao, C.; Di, Z.; Tong, C.; Sun, Y.; Duan, Q. Assessing parameter importance of the Common Land Model based on qualitative and quantitative sensitivity analysis. Hydrol. Earth Syst. Sci. 2013, 17, 3279–3293. [Google Scholar] [CrossRef] [Green Version]
- Clapp, R.B.; Hornberger, G.M. Empirical equations for some soil hydraulic properties. Water Resour. Res. 1978, 14, 601–604. [Google Scholar] [CrossRef] [Green Version]
- Cosby, B.J.; Hornberger, G.M.; Clapp, R.B.; Ginn, T.R. A Statistical Exploration of the Relationships of Soil Moisture Characteristics to the Physical Properties of Soils. Water Resour. Res. 1984, 20, 682–690. [Google Scholar] [CrossRef] [Green Version]
- Henderson-Sellers, A. Soil moisture: A critical focus for global change studies. Glob. Planet. Chang. 1996, 13, 3–9. [Google Scholar] [CrossRef]
- Peng, F.; Mu, M.; Sun, G.D. Uncertainty and sensitivity evaluations for soil moisture modeling in the Tibetan Plateau. 2019; submitted to Tellus A: Dynamic Meteorology & Oceanography (under review). [Google Scholar]
- Li, J.; Chen, F.; Zhang, G.; Barlage, M.; Gan, Y.; Xin, Y.; Wang, C. Impacts of Land Cover and Soil Texture Uncertainty on Land Model Simulations Over the Central Tibetan Plateau. J. Adv. Model. Earth Syst. 2018, 10, 2121–2146. [Google Scholar] [CrossRef] [Green Version]
Name | Elevation (Unit: m) | Land Surface Type | Study Period |
---|---|---|---|
AnDuo | 4700 | Alpine meadow | 16 June 1998–22 June 1998 |
Ms3478 | 5063 | Alpine meadow | 1 September 1998–16 September 1998 |
Ms3637 | 4533 | Alpine meadow | 1 August 1998–31 August 1998 |
GaiZe | 4420 | Alpine desert | 1 May 1998–31 May 1998 |
ShiQuanHe | 4278 | Alpine desert | 1 July 1998–31 July 1998 |
Index | Parameter | Unit | Category | Feasible Range | Physical Meaning |
---|---|---|---|---|---|
P01 | porsl(up) | - | Soil | [0.25, 0.75] | Porosity of upper soil, fraction of soil mass that is voids [37] |
P02 | porsl(low) | - | Soil | [0.25, 0.75] | Porosity of lower soil, fraction of soil mass that is voids [37] |
P03 | phi0(up) | mm | Soil | [50.0, 500.0] | Minimum soil suction of upper soil [37] |
P04 | phi0(low) | mm | Soil | [50.0, 500.0] | Minimum soil suction of lower soil [37] |
P05 | bsw(up) | - | Soil | [2.5, 7.5] | Clapp and Hornberger “b” parameter of upper soil [63] |
P06 | bsw(low) | - | Soil | [2.5, 7.5] | Clapp and Hornberger “b” parameter of lower soil [63] |
P07 | hksati(up) | mm/s | Soil | [0.001, 1.0] | Saturated hydraulic conductivity of upper soil [64] |
P08 | hksati(low) | mm/s | Soil | [0.001, 1.0] | Saturated hydraulic conductivity of lower soil [64] |
P09 | sqrtdi | m−1/2 | Vegetation | [2.5, 7.5] | The inverse of the square root of the leaf dimension [37] |
P10 | slti | - | Vegetation | [0.1, 0.3] | Slope of the low temperature inhibition function [37] |
P11 | shti | - | Vegetation | [0.15, 0.45] | Slope of the high temperature inhibition function [37] |
P12 | trda | - | Vegetation | [0.65, 1.95] | Temperature coefficient of conductance–photosynthesis model [37] |
P13 | trdm | - | Vegetation | [300.0, 350.0] | Temperature coefficient of conductance–photosynthesis model [37] |
P14 | trop | - | Vegetation | [250.0, 300.0] | Temperature coefficient of conductance–photosynthesis model [37] |
P15 | extkn | - | Vegetation | [0.5, 0.75] | Coefficient of leaf nitrogen allocation [37] |
P16 | zlnd | m | Soil | [0.005, 0.015] | Roughness length for soil surface [37] |
P17 | zsno | m | Snow | [0.0012, 0.0036] | Roughness length for snow [37] |
P18 | csoilc | - | Soil | [0.002, 0.006] | Drag coefficient for the soil under the canopy [37] |
P19 | dewmx | mm | Vegetation | [0.05, 0.15] | Maximum ponding of the leaf area [37] |
P20 | wtfact | - | Soil | [0.15, 0.45] | Fraction of the shallow groundwater area [37] |
P21 | capr | - | Soil | [0.17, 0.51] | Tuning factor of the soil surface temperature [37] |
P22 | cnfac | - | Soil | [0.25, 0.5] | Crank Nicholson factor [37] |
P23 | ssi | - | Snow | [0.03, 0.04] | Irreducible water saturation of snow [37] |
P24 | wimp | - | Soil | [0.01, 0.1] | Water is impermeable if porosity is less than wimp [37] |
P25 | pondmx | mm | Soil | [5.0, 15.0] | Maximum ponding depth for the soil surface [37] |
P26 | smpmax | mm | Vegetation | [−2.0 × 105, −1.0 × 105] | Wilting point potential [37] |
P27 | smpmin | mm | Soil | [−1.0 × 108, −9.0 × 107] | Restriction for the minimum of the soil potential [37] |
P28 | trsmx0 | mm/s | Vegetation | [0.0001, 0.01] | Maximum transpiration for vegetation [37] |
Sites | The Values of the Cost Function | The Most Sensitive Parameter Combination |
---|---|---|
AnDuo | 119.45 | P05, P06, P07, P14 |
Ms3478 | 34.89 | P01, P02, P03, P05 |
Ms3637 | 27.27 | P08, P14, P18, P19 |
GaiZe | 87.84 | P06, P07, P08, P09 |
ShiQuanHe | 138.80 | P03, P06, P07, P08 |
Sites | The Values of the Cost Function | The Most Sensitive Parameter Combination |
---|---|---|
AnDuo | 154.41 | P02, P03, P08, P14 |
Ms3478 | 47.28 | P01, P02, P05, P07 |
Ms3637 | 35.17 | P01, P08, P14, P19 |
GaiZe | 119.24 | P01, P02, P04, P07 |
ShiQuanHe | 225.21 | P03, P06, P07, P08 |
Sites | The Values of the Cost Function | The Most Sensitive Parameter Combination |
---|---|---|
AnDuo | 7.04 | P02, P05, P07, P18 |
Ms3478 | 2.26 | P01, P05, P07, P08 |
Ms3637 | 0.72 | P01, P02, P08, P18 |
GaiZe | 10.31 | P05, P06, P07, P08 |
ShiQuanHe | 9.98 | P01, P05, P06, P07 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, F.; Sun, G. Identifying Sensitive Model Parameter Combinations for Uncertainties in Land Surface Process Simulations over the Tibetan Plateau. Water 2019, 11, 1724. https://doi.org/10.3390/w11081724
Peng F, Sun G. Identifying Sensitive Model Parameter Combinations for Uncertainties in Land Surface Process Simulations over the Tibetan Plateau. Water. 2019; 11(8):1724. https://doi.org/10.3390/w11081724
Chicago/Turabian StylePeng, Fei, and Guodong Sun. 2019. "Identifying Sensitive Model Parameter Combinations for Uncertainties in Land Surface Process Simulations over the Tibetan Plateau" Water 11, no. 8: 1724. https://doi.org/10.3390/w11081724
APA StylePeng, F., & Sun, G. (2019). Identifying Sensitive Model Parameter Combinations for Uncertainties in Land Surface Process Simulations over the Tibetan Plateau. Water, 11(8), 1724. https://doi.org/10.3390/w11081724