Assessing the Performance of CMIP5 Global Climate Models for Simulating Future Precipitation Change in the Tibetan Plateau
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.2.1. GCM Data
2.2.2. Observed Data
2.3. Methods
2.3.1. Assessment of CMIP5 GCMs
2.3.2. Projection of Future Precipitation Change
3. Results
3.1. Annual Cycle of Precipitation
3.2. Comparison of GCMs Based on Statistical Criteria
3.3. Comprehensive Assessment by Rank Score
3.4. Sensitivity Analysis of GCMs Scores
3.5. Future Precipitation Projection
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Data Availability
Conflicts of Interest
References
- Qiu, J. The third pole. Nature 2008, 454, 393–396. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Gao, Y.; Chen, D.; Xiao, L.; Ou, T. Evaluation of global climate models for downscaling applications centred over the Tibetan Plateau. Int. J. Climatol. 2017, 37, 657–671. [Google Scholar] [CrossRef]
- Immerzeel, W.W.; van Beek, L.P.H.; Bierkens, M.F.P. Climate Change Will Affect the Asian Water Towers. Science 2010, 328, 1382–1385. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.D.; Chen, B.D. Climatic warming in the Tibetan Plateau during recent decades. Int. J. Climatol. 2000, 20, 1729–1742. [Google Scholar] [CrossRef]
- Wang, B.; Bao, Q.; Hoskins, B.; Wu, G.; Liu, Y. Tibetan plateau warming and precipitation changes in East Asia. Geophys. Res. Lett. 2008, 35, L1470214. [Google Scholar] [CrossRef]
- Rangwala, I.; Sinsky, E.; Miller, J.R. Amplified warming projections for high altitude regions of the northern hemisphere mid-latitudes from CMIP5 models. Environ. Res. Lett. 2013, 8, 0240402. [Google Scholar] [CrossRef]
- Busuioc, A.; Chen, D.L.; Hellstrom, C. Performance of statistical downscaling models in GCM validation and regional climate change estimates: Application for Swedish precipitation. Int. J. Climatol. 2001, 21, 557–578. [Google Scholar] [CrossRef]
- Choudhary, A.; Dimri, A.P. Assessment of CORDEX-South Asia experiments for monsoonal precipitation over Himalayan region for future climate. Clim. Dynam. 2018, 50, 3009–3030. [Google Scholar] [CrossRef]
- Eekhout, J.P.C.; Hunink, J.E.; Terink, W.; de Vente, J. Why increased extreme precipitation under climate change negatively affects water security. Hydrol. Earth Syst. Sci. 2018, 22, 5935–5946. [Google Scholar] [CrossRef] [Green Version]
- Karl, T.R.; Knight, R.W.; Plummer, N. Trends in High-Frequency Climate Variability in the 20th-Century. Nature 1995, 377, 217–220. [Google Scholar] [CrossRef]
- Held, I.M.; Soden, B.J. Robust responses of the hydrological cycle to global warming. J. Clim. 2006, 19, 5686–5699. [Google Scholar] [CrossRef]
- Min, S.; Zhang, X.; Zwiers, F.W.; Hegerl, G.C. Human contribution to more-intense precipitation extremes. Nature 2011, 470, 378–381. [Google Scholar] [CrossRef] [PubMed]
- Berg, N.; Hall, A. Increased Interannual Precipitation Extremes over California under Climate Change. J. Clim. 2015, 28, 6324–6334. [Google Scholar] [CrossRef]
- Ramesh, K.V.; Goswami, P. Assessing reliability of regional climate projections: The case of Indian monsoon. Sci. Rep. 2014, 4, 4071. [Google Scholar] [CrossRef] [PubMed]
- Taylor, K.E.; Stouffer, R.J.; Meehl, G.A. An Overview of CMIP5 and the Experiment Design. Bull. Am. Meteorol. Soc. 2012, 93, 485–498. [Google Scholar] [CrossRef] [Green Version]
- Sperber, K.R.; Annamalai, H.; Kang, I.S.; Kitoh, A.; Moise, A.; Turner, A.; Wang, B.; Zhou, T. The Asian summer monsoon: An intercomparison of CMIP5 vs. CMIP3 simulations of the late 20th century. Clim. Dynam. 2013, 41, 2711–2744. [Google Scholar] [CrossRef]
- Chen, L.; Frauenfeld, O.W. A comprehensive evaluation of precipitation simulations over China based on CMIP5 multimodel ensemble projections. J. Geophys. Res. Atmos. 2014, 119, 5767–5786. [Google Scholar] [CrossRef]
- Sun, Q.; Miao, C.; Duan, Q. Comparative analysis of CMIP3 and CMIP5 global climate models for simulating the daily mean, maximum, and minimum temperatures and daily precipitation over China. J. Geophys. Res. Atmos. 2015, 120, 4806–4824. [Google Scholar] [CrossRef]
- Meher, J.K.; Das, L.; Akhter, J.; Benestad, R.E.; Mezghani, A. Performance of CMIP3 and CMIP5 GCMs to Simulate Observed Rainfall Characteristics over the Western Himalayan Region. J. Clim. 2017, 30, 7777–7799. [Google Scholar] [CrossRef]
- Wei, K.; Xu, T.; Du, Z.; Gong, H.; Xie, B. How well do the current state-of-the-art CMIP5 models characterise the climatology of the East Asian winter monsoon? Clim. Dynam. 2014, 43, 1241–1255. [Google Scholar] [CrossRef]
- Hasson, S.; Pascale, S.; Lucarini, V.; Boehner, J. Seasonal cycle of precipitation over major river basins in South and Southeast Asia: A review of the CMIP5 climate models data for present climate and future climate projections. Atmos. Res. 2016, 180, 42–63. [Google Scholar] [CrossRef] [Green Version]
- Su, F.; Duan, X.; Chen, D.; Hao, Z.; Cuo, L. Evaluation of the Global Climate Models in the CMIP5 over the Tibetan Plateau. J. Clim. 2013, 26, 3187–3208. [Google Scholar] [CrossRef] [Green Version]
- Su, F.; Zhang, L.; Ou, T.; Chen, D.; Yao, T.; Tong, K.; Qi, Y. Hydrological response to future climate changes for the major upstream river basins in the Tibetan Plateau. Glob. Planet. Chang. 2016, 136, 82–95. [Google Scholar] [CrossRef]
- Kumar, S.; Merwade, V.; Kinter, J.L.I.; Niyogi, D. Evaluation of Temperature and Precipitation Trends and Long-Term Persistence in CMIP5 Twentieth-Century Climate Simulations. J. Clim. 2013, 26, 4168–4185. [Google Scholar] [CrossRef]
- Zhou, B.; Wen, Q.H.; Xu, Y.; Song, L.; Zhang, X. Projected Changes in Temperature and Precipitation Extremes in China by the CMIP5 Multimodel Ensembles. J. Clim. 2014, 27, 6591–6611. [Google Scholar] [CrossRef]
- Yoo, C.; Cho, E. Comparison of GCM Precipitation Predictions with Their RMSEs and Pattern Correlation Coefficients. Water 2018, 10, 28. [Google Scholar] [Green Version]
- Hussain, M.; Yusof, K.W.; Mustafa, M.R.; Mahmood, R.; Jia, S. Evaluation of CMIP5 models for projection of future precipitation change in Bornean tropical rainforests. Theor. Appl. Climatol. 2018, 134, 423–440. [Google Scholar] [CrossRef]
- Kadel, I.; Yamazaki, T.; Iwasaki, T.; Abdillah, M.R. Projection of future monsoon precipitation over the central Himalayas by CMIP5 models under warming scenarios. Clim. Res. 2018, 75, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Ruan, Y.; Yao, Z.; Wang, R.; Liu, Z. Ranking of CMIP5 GCM Skills in Simulating Observed Precipitation over the Lower Mekong Basin, Using an Improved Score-Based Method. Water 2018, 10, 1868. [Google Scholar] [CrossRef]
- Fu, G.; Liu, Z.; Charles, S.P.; Xu, Z.; Yao, Z. A score-based method for assessing the performance of GCMs: A case study of southeastern Australia. J. Geophys. Res. Atmos. 2013, 118, 4154–4167. [Google Scholar] [CrossRef]
- Das, L.; Dutta, M.; Mezghani, A.; Benestad, R.E. Use of observed temperature statistics in ranking CMIP5 model performance over the Western Himalayan Region of India. Int. J. Climatol. 2018, 38, 554–570. [Google Scholar] [CrossRef]
- Li, J.; Liu, Z.; Yao, Z.; Wang, R. Comprehensive assessment of Coupled Model Intercomparison Project Phase 5 global climate models using observed temperature and precipitation over mainland Southeast Asia. Int. J. Climatol. 2019, 39, 1–15. [Google Scholar] [CrossRef]
- Miao, C.; Duan, Q.; Sun, Q.; Huang, Y.; Kong, D.; Yang, T.; Ye, A.; Di, Z.; Gong, W. Assessment of CMIP5 climate models and projected temperature changes over Northern Eurasia. Environ. Res. Lett. 2014, 9, 0550075. [Google Scholar] [CrossRef]
- Clorinda, P.O.; Antonio, R.J. Regional aspects of future precipitation and meteorological drought characteristics over Southern South America projected by a CMIP5 multi-model ensemble. Int. J. Climatol. 2016, 36, 974–986. [Google Scholar]
- Risbey, J.S.; Stone, P.H. A case study of the adequacy of GCM simulations for input to regional climate change assessments. J. Clim. 1996, 9, 1441–1467. [Google Scholar] [CrossRef]
- Xu, Y.; Xu, C.; Gao, X.; Luo, Y. Projected changes in temperature and precipitation extremes over the Yangtze River Basin of China in the 21st century. Quat. Int. 2009, 208, 44–52. [Google Scholar] [CrossRef]
- Su, B.; Huang, J.; Gemmer, M.; Jian, D.; Tao, H.; Jiang, T.; Zhao, C. Statistical downscaling of CMIP5 multi-model ensemble for projected changes of climate in the Indus River Basin. Atmos. Res. 2016, 178, 138–149. [Google Scholar] [CrossRef]
- Luo, M.; Liu, T.; Frankl, A.; Duan, Y.; Meng, F.; Bao, A.; Kurban, A.; De Maeyer, P. Defining spatiotemporal characteristics of climate change trends from downscaled GCMs ensembles: How climate change reacts in Xinjiang, China. Int. J. Climatol. 2018, 38, 2538–2553. [Google Scholar] [CrossRef]
- Chu, J.T.; Xia, J.; Xu, C.Y.; Singh, V.P. Statistical downscaling of daily mean temperature, pan evaporation and precipitation for climate change scenarios in Haihe River, China. Theor. Appl. Climatol. 2010, 99, 149–161. [Google Scholar] [CrossRef]
- Choi, W.; Rasmussen, P.F.; Moore, A.R.; Kim, S.J. Simulating streamflow response to climate scenarios in central Canada using a simple statistical downscaling method. Clim. Res. 2009, 40, 89–102. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Liu, Z.; Ren, X.; Fischer, T.; Xu, Y. Hydrological impacts of climate change in the Yellow River Basin for the 21st century using hydrological model and statistical downscaling model. Quat. Int. 2011, 244, 211–220. [Google Scholar] [CrossRef]
- Rahimi, J.; Ebrahimpour, M.; Khalili, A. Spatial changes of Extended De Martonne climatic zones affected by climate change in Iran. Theor. Appl. Climatol. 2013, 112, 409–418. [Google Scholar] [CrossRef]
- Jiang, D.B.; Wang, H.J.; Lang, X.M. Evaluation of East Asian climatology as simulated by seven coupled models. Adv. Atmos. Sci. 2005, 22, 479–495. [Google Scholar]
- Ding, Y.; Ren, G.; Zhao, Z.; Xu, Y.; Luo, Y.; Li, Q.; Zhang, J. Detection, causes and projection of climate change over China: An overview of recent progress. Adv. Atmos. Sci. 2007, 24, 954–971. [Google Scholar] [CrossRef]
- Wang, L.; Chen, W. A CMIP5 multimodel projection of future temperature, precipitation, and climatological drought in China. Int. J. Climatol. 2014, 34, 2059–2078. [Google Scholar] [CrossRef]
- Bookhagen, B.; Burbank, D.W. Toward a complete Himalayan hydrological budget: Spatiotemporal distribution of snowmelt and rainfall and their impact on river discharge. J. Geophys. Res. Earth 2010, 115, F03019. [Google Scholar] [CrossRef]
- Hutchinson, M.F. Interpolation of rainfall data with Thin Plate Smoothing Splines-Part II: Analysis of topographic dependence. J. Geogr. Inf. Decis. Anal. 1998, 2, 152–167. [Google Scholar]
- Ruan, Y.; Liu, Z.; Wang, R.; Yao, Z. Assessing the Performance of CMIP5 GCMs for Projection of Future Temperature Change over the Lower Mekong Basin. Atmosphere 2019, 10, 93. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric Tests against Trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Sen, P.K. Estimates of Regression Coefficient Based on Kendall’s tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Hamed, K.H. Trend detection in hydrologic data: The Mann-Kendall trend test under the scaling hypothesis. J. Hydrol. 2008, 349, 350–363. [Google Scholar] [CrossRef]
- Brier, G.W. Verification of forecasts expressed in terms of probability. Mon. Weather Rev. 1950, 78, 1–3. [Google Scholar] [CrossRef]
- Perkins, S.E.; Pitman, A.J.; Holbrook, N.J.; Mcaneney, J. Evaluation of the AR4 climate models’ simulated daily maximum temperature, minimum temperature, and precipitation over Australia using probability density functions. J. Clim. 2007, 20, 4356–4376. [Google Scholar] [CrossRef]
- Tebaldi, C.; Sanso, B. Joint projections of temperature and precipitation change from multiple climate models: A hierarchical Bayesian approach. J. R. Stat. Soc. A Stat. 2009, 172, 83–106. [Google Scholar] [CrossRef]
- Overland, J.E.; Wang, M.; Bond, N.A.; Walsh, J.E.; Kattsov, V.M.; Chapman, W.L. Considerations in the Selection of Global Climate Models for Regional Climate Projections: The Arctic as a Case Study. J. Clim. 2011, 24, 1583–1597. [Google Scholar] [CrossRef]
- Mcsweeney, C.F.; Jones, R.G.; Lee, R.W.; Rowell, D.P. Selecting CMIP5 GCMs for downscaling over multiple regions. Clim. Dynam. 2015, 44, 3237–3260. [Google Scholar] [CrossRef]
- Xu, Y.; Xu, C. Preliminary Assessment of Simulations of Climate Changes over China by CMIP5 Multi-Models. Atmos. Ocean. Sci. Lett. 2012, 5, 489–494. [Google Scholar]
- Mehran, A.; Aghakouchak, A.; Phillips, T.J. Evaluation of CMIP5 continental precipitation simulations relative to satellite-based gauge-adjusted observations. J. Geophys. Res. Atmos. 2014, 119, 1695–1707. [Google Scholar] [CrossRef] [Green Version]
- Ye, B.S.; Yang, D.Q.; Ding, Y.J.; Han, T.D.; Koike, T. A bias-corrected precipitation climatology for China. J. Hydrometeorol. 2004, 5, 1147–1160. [Google Scholar] [CrossRef]
- Adam, J.C.; Clark, E.A.; Lettenmaier, D.P.; Wood, E.F. Correction of global precipitation products for orographic effects. J. Clim. 2006, 19, 15–38. [Google Scholar] [CrossRef]
- Yu, R.; Li, J.; Zhang, Y.; Chen, H. Improvement of rainfall simulation on the steep edge of the Tibetan Plateau by using a finite-difference transport scheme in CAM5. Clim. Dynam. 2015, 45, 2937–2948. [Google Scholar] [CrossRef]
- Sabeerali, C.T.; Rao, S.A.; Dhakate, A.R.; Salunke, K.; Goswami, B.N. Why ensemble mean projection of south Asian monsoon rainfall by CMIP5 models is not reliable? Clim. Dynam. 2015, 45, 161–174. [Google Scholar] [CrossRef]
- Ahmadalipour, A.; Moradkhani, H.; Rana, A. Accounting for downscaling and model uncertainty in fine-resolution seasonal climate projections over the Columbia River Basin. Clim. Dynam. 2018, 50, 717–733. [Google Scholar] [CrossRef]
ID | Model Name | Modeling Centre (or Group) | Nation | Resolution (Lon × Lat) |
---|---|---|---|---|
1 | ACCESS1.0 | Commonwealth Scientific and Industrial Research Organization/Bureau of Meteorology | Australia | 1.88° × 1.25° |
2 | ACCESS1.3 | Commonwealth Scientific and Industrial Research Organization/Bureau of Meteorology | Australia | 1.88° × 1.25° |
3 | BCC-CSM1.1 | Beijing Climate Center, China Meteorological Administration | China | 2.81° × 2.79° |
4 | BNU-ESM | Beijing Normal University | China | 2.81° × 2.79° |
5 | CanESM2 | Canadian Centre for Climate Modeling and Analysis | Canada | 2.81° × 2.79° |
6 | CCSM4 | National Center for Atmospheric Research | USA | 1.25° × 0.94° |
7 | CESM1(CAM5) | National Center for Atmospheric Research | USA | 1.25° × 0.94° |
8 | CESM1(WACCM) | National Center for Atmospheric Research | USA | 2.50° × 1.88° |
9 | CMCC-CMS | Centro Euro-Mediterraneo sui Cambiamenti Climatici | Italy | 1.88° × 1.88° |
10 | CNRM-CM5 | Centre National de Recherches Météorologiques Centre Européen de Recherche et Formation Avancée en Calcul Scientifique | France | 1.41° × 1.40° |
11 | CSIRO-Mk3.6.0 | Commonwealth Scientific and Industrial Research Organization/Queensland Climate Change Centre of Excellence | Australia | 1.88° × 1.88° |
12 | EC-EARTH | EC-EARTH consortium published at Irish Centre for High-End Computing | Netherlands /Ireland | 1.13° × 1.13° |
13 | FGOALS-g2 | Institute of Atmospheric Physics, Chinese Academy of Sciences | China | 2.81° × 2.81° |
14 | FIO-ESM | The First Institute of Oceanography, SOA | China | 2.80° × 2.80° |
15 | GFDL-CM3 | NOAA Geophysical Fluid Dynamics Laboratory | USA | 2.50° × 2.00° |
16 | GFDL-ESM2G | NOAA Geophysical Fluid Dynamics Laboratory | USA | 2.00° × 2.02° |
17 | GFDL-ESM2M | NOAA Geophysical Fluid Dynamics Laboratory | USA | 2.50◦ × 2.02° |
18 | GISS-E2-H | NASA/GISS (Goddard Institute for Space Studies) | USA | 2.50° × 2.00° |
19 | GISS-E2-R | NASA/GISS (Goddard Institute for Space Studies) | USA | 2.50° × 2.00° |
20 | HadGEM2-AO | National Institute of Meteorological Research, Korea Meteorological Administration | Korea | 1.88° × 1.25° |
21 | HadGEM2-CC | Met Office Hadley Center | UK | 1.88° × 1.25° |
22 | HadGEM2-ES | Met Office Hadley Center | UK | 1.88° × 1.25° |
23 | INMCM4.0 | Russian Academy of Sciences, Institute for Numerical Mathematics | Russia | 2.00° × 1.50° |
24 | IPSL-CM5A-LR | Institute Pierre-Simon Laplace | France | 3.75° × 1.89° |
25 | IPSL-CM5A-MR | Institute Pierre-Simon Laplace | France | 2.50° × 1.27° |
26 | IPSL-CM5B-LR | Institute Pierre-Simon Laplace | France | 3.75° × 1.89° |
27 | MIROC5 | Atmosphere and Ocean Research Institute (The University of Tokyo), National Institute for Environmental Studies, and Japan Agency for Marine-Earth Science and Technology | Japan | 1.41° × 1.40° |
28 | MIROC-ESM | The same as 27 | Japan | 2.81° × 2.79° |
29 | MIROC-ESM-CHEM | The same as 27 | Japan | 2.81° × 2.79° |
30 | MPI-ESM-LR | Max Planck Institute for Meteorology | Germany | 1.88° × 1.87° |
31 | MPI-ESM-MR | Max Planck Institute for Meteorology | Germany | 1.88° × 1.87° |
32 | MRI-CGCM3 | Meteorological Research Institute | Japan | 1.13° × 1.12° |
33 | NorESM1-M | Bjerknes Centre for Climate Research, Norwegian Climate Center | Norway | 2.50° × 1.89° |
Model | Mean (mm) | SD (mm) | r_t | r_s | Mann–Kendall | ||||
---|---|---|---|---|---|---|---|---|---|
Z | Slope (mm/y) | Sscore | BS | ||||||
Observations | 32.1 | 30.3 | 1.81 | ▲ | 0.41 | ||||
Access1.0 | 78.1 | 52.3 | 0.94 | 0.72 | −1.24 | ▽ | −0.42 | 0.59 | 0.044 |
Access1.3 | 91.8 | 55.6 | 0.92 | 0.76 | 0.32 | △ | 0.10 | 0.54 | 0.048 |
BCC-CSM1.1 | 89.9 | 35.9 | 0.95 | 0.44 | 1.52 | △ | 0.91 | 0.50 | 0.050 |
BNU-ESM | 117.8 | 45.1 | 0.99 | 0.38 | 3.71 | ▲ | 2.84 | 0.49 | 0.050 |
CanESM2 | 59.8 | 44.8 | 0.97 | 0.87 | 3.51 | ▲ | 1.71 | 0.63 | 0.041 |
CCSM4 | 84.5 | 55.9 | 0.95 | 0.68 | 0.44 | △ | 0.16 | 0.59 | 0.045 |
CESM1(CAM5) | 92.9 | 64.0 | 0.95 | 0.69 | 1.13 | △ | 0.53 | 0.63 | 0.042 |
CESM1(WACCM) | 107.6 | 64.1 | 0.90 | 0.83 | 2.22 | ▲ | 1.32 | 0.57 | 0.045 |
CMCC-CMS | 79.6 | 46.1 | 0.97 | 0.75 | 0.64 | △ | 0.43 | 0.55 | 0.048 |
CNRM-CM5 | 68.0 | 43.6 | 0.99 | 0.78 | 3.24 | ▲ | 1.52 | 0.61 | 0.041 |
CSIRO-Mk3.6.0 | 60.6 | 43.5 | 0.97 | 0.86 | 0.95 | △ | 0.51 | 0.63 | 0.040 |
EC-EARTH | 56.0 | 40.3 | 0.97 | 0.80 | 1.07 | △ | 0.48 | 0.63 | 0.040 |
FGOALS-g2 | 76.3 | 38.5 | 0.94 | 0.60 | 1.83 | ▲ | 0.92 | 0.53 | 0.048 |
FIO-ESM | 111.5 | 37.5 | 0.95 | 0.75 | 2.67 | ▲ | 1.73 | 0.48 | 0.051 |
GFDL-CM3 | 86.5 | 50.5 | 0.97 | 0.88 | −2.49 | ▼ | −1.08 | 0.56 | 0.048 |
GFDL-ESM2G | 76.2 | 46.1 | 0.98 | 0.85 | 2.04 | ▲ | 0.99 | 0.56 | 0.046 |
GFDL-ESM2M | 78.5 | 46.9 | 0.96 | 0.86 | 1.32 | △ | 0.66 | 0.56 | 0.046 |
GISS-E2-H | 75.0 | 36.0 | 0.95 | 0.54 | −2.63 | ▼ | −1.23 | 0.52 | 0.048 |
GISS-E2-R | 72.0 | 31.1 | 0.95 | 0.51 | −2.30 | ▼ | −0.93 | 0.51 | 0.049 |
HadGEM2-AO | 78.2 | 56.9 | 0.95 | 0.73 | 0.89 | △ | 0.26 | 0.63 | 0.039 |
HadGEM2-CC | 81.8 | 57.5 | 0.95 | 0.65 | 0.44 | △ | 0.14 | 0.62 | 0.040 |
HadGEM2-ES | 80.1 | 55.9 | 0.95 | 0.65 | −0.79 | ▽ | −0.27 | 0.62 | 0.041 |
INMCM4.0 | 79.9 | 44.5 | 0.96 | 0.88 | 1.99 | ▲ | 0.78 | 0.54 | 0.047 |
IPSL-CM5A-LR | 56.0 | 25.2 | 0.90 | 0.78 | 1.03 | △ | 0.42 | 0.52 | 0.048 |
IPSL-CM5A-MR | 59.4 | 33.2 | 0.97 | 0.70 | 1.38 | △ | 0.47 | 0.54 | 0.048 |
IPSL-CM5B-LR | 63.5 | 25.6 | 0.90 | 0.78 | 0.28 | △ | 0.15 | 0.53 | 0.048 |
MIROC5 | 78.3 | 52.5 | 0.96 | 0.82 | −0.17 | ▽ | −0.07 | 0.59 | 0.044 |
MIROC-ESM | 92.3 | 54.8 | 0.96 | 0.39 | 2.26 | ▲ | 1.16 | 0.56 | 0.045 |
MIROC-ESM-CHEM | 91.9 | 54.8 | 0.96 | 0.44 | 2.16 | ▲ | 1.28 | 0.57 | 0.045 |
MPI-ESM-LR | 84.8 | 57.1 | 0.98 | 0.76 | 0.00 | − | 0.01 | 0.58 | 0.044 |
MPI-ESM-MR | 84.8 | 56.7 | 0.98 | 0.75 | −0.95 | ▽ | −0.36 | 0.59 | 0.044 |
MRI-CGCM3 | 56.2 | 41.2 | 0.98 | 0.76 | 0.34 | △ | 0.27 | 0.62 | 0.040 |
NorESM1-M | 99.3 | 66.7 | 0.98 | 0.81 | 0.85 | △ | 0.47 | 0.57 | 0.046 |
Model | Mean (mm) | SD (mm) | r_t | r_s | Mann–Kendall | ||||
---|---|---|---|---|---|---|---|---|---|
Z | Slope (mm/y) | Sscore | BS | ||||||
observation | 32.1 | 30.3 | 1.81 | ▲ | 0.41 | ||||
MME | 80.3 | 45.2 | 0.97 | 0.86 | 3.73 | ▲ | 0.70 | 0.43 | 0.050 |
SMME | 65.0 | 44.1 | 0.98 | 0.87 | 4.22 | ▲ | 0.46 | 0.51 | 0.048 |
Period | RCP4.5 | RCP8.5 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Annual | MAM | JJA | SON | DJF | Annual | MAM | JJA | SON | DJF | |
2006–2050 | 106.4% | 109.3% | 105.6% | 105.8% | 104.8% | 105.8% | 109.2% | 105.3% | 104.5% | 102.2% |
2051–2095 | 112.3% | 117.3% | 110.3% | 111.1% | 113.9% | 116.7% | 125.0% | 114.3% | 113.4% | 116.9% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, K.; Ruan, Y.; Yang, Y.; Zhang, C. Assessing the Performance of CMIP5 Global Climate Models for Simulating Future Precipitation Change in the Tibetan Plateau. Water 2019, 11, 1771. https://doi.org/10.3390/w11091771
Jia K, Ruan Y, Yang Y, Zhang C. Assessing the Performance of CMIP5 Global Climate Models for Simulating Future Precipitation Change in the Tibetan Plateau. Water. 2019; 11(9):1771. https://doi.org/10.3390/w11091771
Chicago/Turabian StyleJia, Kun, Yunfeng Ruan, Yanzhao Yang, and Chao Zhang. 2019. "Assessing the Performance of CMIP5 Global Climate Models for Simulating Future Precipitation Change in the Tibetan Plateau" Water 11, no. 9: 1771. https://doi.org/10.3390/w11091771
APA StyleJia, K., Ruan, Y., Yang, Y., & Zhang, C. (2019). Assessing the Performance of CMIP5 Global Climate Models for Simulating Future Precipitation Change in the Tibetan Plateau. Water, 11(9), 1771. https://doi.org/10.3390/w11091771