Analysis of Hyetographs for Drainage System Modeling
Abstract
:1. Introduction
1.1. Drainage System Modeling
1.2. Reference Hyetographs
2. Method of Analysis
- ▪
- location of the interval Δt with the cut off (tpeak) peak of maximum precipitation hmax(Δt),
- ▪
- location of the interval Δt with the cut off (tcg) of the center of gravity of the hyetograph Pc/2,
- ▪
- m1—as the cumulative ratio of precipitation height (mass) for the time from t = 0 to t = tpeak (before the cut off peak of maximum rainfall hmax(Δt)), to the cumulative amount of precipitation for the time from t = tpeak down t = T (by peak):
- ▪
- m2—as the ratio of the maximum interval height (mass) of precipitation to the total height:
- ▪
- m3—as the ratio of the accumulated height (mass) of precipitation for the time from t = 0 to t = 0.33T, to the total height.
- ▪
- m4—as the ratio of the accumulated height (mass) of precipitation for the time from t = 0 to t = 0.3T, to the total height.
- ▪
- m5—as the ratio of the accumulated height (mass) of precipitation for the time from t = 0 to t = 0.5T, to the total height.
3. Study Area and Data Used
4. Results and Discussion
4.1. Grouping Precipitation for Statistical Analysis
4.1.1. Huff’s Method
4.1.2. Cluster Analysis Using the Ward Method
4.1.3. Cluster Analysis Using the Method of k-Means
4.2. Models Verification
4.2.1. Verification of Euler Type II Pattern
- ▪
- Peak position indicator values of maximum height versus time T’, include: r’ ∈ [0.06, 0.38], with an average value r’ = 0.21. The value of this indicator in Euler type II models is on average r = 0.285-changes: r ∈ [0.25, 0.32] for the range T = T’ ∈ [30, 180] min. Both peaks occur in the first, one-third rainfall duration T = T’.
- ▪
- Mass distributions on 25 dimensional histograms were variable within: m3′ ∈ [0.36, 0.97], however average value: m3′ = 0.69 is very close to the constant value m3′ = 0.714 for 28 Euler type II models. In both cases, the main precipitation mass is located in the first, one-third of the duration T = T’.
- ▪
- Rainfall irregularity over 25 histograms was significant within limits ni’∈ [2.22, 9.51], on average ni’ = 5.23 in Euler type II standard precipitation. The unevenness was similar within the limits ni ∈ [3.47, 12.03], on average ni = 6.96. These values should also be considered similar.
4.2.2. DVWK Pattern Verification
5. Discussion and Conclusions
- ▪
- Euler type II and DVWK model rainfall patterns are similar to real precipitation (in the case of the analyzed station), so they can be used for hydrodynamic modeling of stormwater drainage.
- ▪
- Development of model rainfall scenarios for hydrodynamic modeling should be based on local DDF/IDF curves (developed for a given location, based on many years of measurements).
- ▪
- In order to obtain reliable hydrodynamic modeling results, both Euler type II and DVWK model rainfall should be used in parallel with real precipitation models. This approach will increase the number of variants and, thus, the certainty of simulations.
Author Contributions
Funding
Conflicts of Interest
References
- Starzec, M. A critical evaluation of the methods for the determination of required volumes for detention tank. E3S Web Conf. 2018, 45, 00088. [Google Scholar] [CrossRef] [Green Version]
- Polish Standard PN-EN 752. Drain and Sewer Systems Outside Buildings—Sewer System Management; PKN: Warsaw, Poland, 2017. [Google Scholar]
- Hänsel, S.; Petzold, S.; Matschullat, J. Precipitation Trend Analysis for Central Eastern Germany 1851–2006. Bioclimatol. Nat. Hazards 2009, 14, 29–38. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2014: Impacts, Adaptation, and Vulnerability (Part A: Global and Sectoral Aspects). Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Field, C.B., Mach, K.J., Mastrandrea, M.D., Eds.; Cambridge University Press: New York, NY, USA, 2014. [Google Scholar]
- Kaźmierczak, B.; Kotowski, A. The influence of precipitation intensity growth on the urban drainage systems designing. Theor. Appl. Climatol. 2014, 118, 285–296. [Google Scholar] [CrossRef]
- Onof, C.; Arnbjerg-Nielsen, K. Quantification of anticipated future changes in high resolution design rainfall for urban areas. Atmos. Res. 2009, 92, 350–363. [Google Scholar] [CrossRef]
- Staufer, P.; Leckebusch, G.; Pinnekamp, J. Die Ermittlung der relevanten Niederschlagscharakteristik für die Siedlungsentwässerung im Klimawandel. KA Korresp. Abwasser Abfall 2010, 57, 1203–1208. [Google Scholar] [CrossRef]
- Arbeitsblatt DWA-A118. Hydraulische Bemessung und Nachweis von Entwässerungssystemen; DWA: Hennef, Germany, 2006. [Google Scholar]
- Schmitt, T.G. Kommentar zum Arbeitsblatt A 118 “Hydraulische Bemessung und Nachweis von Entwässerungssystemen”; DWA: Hennef, Germany, 2000. [Google Scholar]
- Schmitt, T.G.; Thomas, M. Rechnerischer Nachweis der Überstauhäufigkeit auf der Basis von Modellregen und Starkregenserien. KA Wasserwirtsch. Abwasser Abfall 2000, 47, 63–69. [Google Scholar]
- Bruni, G.; Reinoso, R.; Van de Giesen, N.C.; Clemens, F.H.L.R.; Ten Veldhuis, J.A.E. On the sensitivity of urban hydrodynamic modeling to rainfall spatial and temporal resolution. Hydrol. Earth Syst. Sci. 2015, 19, 691–709. [Google Scholar] [CrossRef] [Green Version]
- Kotowski, A. Podstawy Bezpiecznego Wymiarowania Odwodnień Terenów. Sieci Kanalizacyjne (vol. I); Obiekty specjalne (vol. II), 2nd ed.; Seidel-Przywecki: Warsaw, Poland, 2015. [Google Scholar]
- Zawilski, M.; Brzezińska, A. Spatial rainfall intensity distribution over an urban area and its effect on a combined sewerage system. Urban Water J. 2014, 11, 532–542. [Google Scholar] [CrossRef]
- Wartalska, K.; Nowakowska, M.W.; Kaźmierczak, B. Verification of storm water reservoirs operation in hydrodynamic modeling. In Proceedings of the 9th IWA Eastern European Young Water Professionals Conference, Budapest, Hungary, 24–27 May 2017; Feierabend, M., Novytska, O., Bakos, V., Eds.; IWA Publishing: Budapest, Hungary, 2017; pp. 526–533. [Google Scholar]
- Al-Saadi, R. Hyetograph Estimation for the State of Texas. Master’s Thesis, Texas Tech University, Lubbock, TX, USA, December 2002. [Google Scholar]
- DVWK. Arbeitsanleitung zur Anwendung Niederschlag-Abflub-Modellen in kleinen Einzugsgebieten. Regeln 113 (Teil II: Synthese); Verlag Paul Parey: Hamburg, Germany, 1984. [Google Scholar]
- Kotowski, A.; Nowakowska, M. Standards for the dimensioning and assessment of reliable operations of area drainage systems under conditions of climate change. Tech. Trans. Environ. Eng. 2018, 1, 125–139. [Google Scholar] [CrossRef]
- Cronshey, R. Urban Hydrology for Small Watersheds; US Department of Agriculture, Soil Conservation Service, Engineering Division: Washington, DC, USA, 1986.
- Neale, C.M.; Tay, C.C.; Herrmann, G.R.; Cleveland, T.G. TXHYETO. XLS: A Tool to Facilitate Use of Texas-Specific Hyetographs for Design Storm Modeling. In Proceedings of the World Environmental and Water Resources Congress, Austin, TX, USA, 17–21 May 2015; pp. 241–254. [Google Scholar] [CrossRef]
- Chow, V.T.; Maidment, D.R.; Mays, L.W. Applied Hydrology; McGraw-Hill: New York, NY, USA, 1988. [Google Scholar]
- Lin, G.F.; Chen, L.H.; Kao, S.C. Development of regional design hyetographs. Hydrol. Process. 2005, 19, 937–946. [Google Scholar] [CrossRef] [Green Version]
- Veneziano, D.; Villani, P. Best linear unbiased design hyetograph. Water Resour. Res. 1999, 35, 2725–2738. [Google Scholar] [CrossRef]
- Cazanescu, S.; Cazanescu, R.A. New hydrological approach for environmental protection and floods management. Bull. UASVM Agric. 2009, 66, 63–70. [Google Scholar]
- Rivard, G. Design storm events for urban drainage based on historical rainfall data: A conceptual framework for a logical approach. Adv. Mod. Manag. Stormw. 1996, R191–12, 187–199. [Google Scholar] [CrossRef] [Green Version]
- Yen, B.C.; Chow, V.T. Design hyetographs for small drainage structures. J. Hydraul. Eng. Div. ASCE 1980, 106, 1055–1976. [Google Scholar]
- Griffiths, G.A.; Pearson, C.P. Distribution of high intensity rainfalls in metropolitan Christchurch, New Zealand. J. Hydrol. 1993, 31, 5–22. Available online: https://www.jstor.org/stable/43944695 (accessed on 30 September 2019).
- Ellouze, M.; Abida, H.; Safi, R. A triangular model for the generation of synthetic hyetographs. Hydrol. Sci. J. 2009, 54, 287–299. [Google Scholar] [CrossRef]
- Sifalda, V. Entwicklung eines Berechnungsregens für die Bemessung von Kanalnetzen. GWF Wasser Abwasser 1973, 114, 435–440. [Google Scholar]
- Desbordes, M. Urban runoff and design storm modeling. In Proceedings of the First International Conference on Urban Drainage, London, UK, April 1978; pp. 353–361. [Google Scholar]
- Lee, K.T.; Ho, J.Y. Design hyetograph for typhoon rainstorms in Taiwan. J. Hydrol. Eng. 2008, 13, 647–651. [Google Scholar] [CrossRef]
- Peyron, N.; Nguyen, V.T.V.; Rivard, G. An optimal design storm pattern for urban runoff estimation in southern Québec. In Proceedings of the 30th Annual Conference of the Canadian Society for Civil Engineering, Montréal, QC, Canada, 5–8 June 2002. [Google Scholar]
- Keifer, C.J.; Chu, H.H. Synthetic storm pattern for drainage design. J. Hydr. Eng. Div. 1957, 83, 1–25. [Google Scholar]
- Kaźmierczak, B.; Kotowski, A. Weryfikacja Przepustowości Kanalizacji Deszczowej w Modelowaniu Hydrodynamicznym; Oficyna Wyd. Politechniki Wrocławskiej: Wroclaw, Poland, 2012. [Google Scholar]
- Kotowski, A.; Kaźmierczak, B.; Nowakowska, M. Analiza obciążenia systemu odwodnienia terenu w przypadku prognozowanego zwiększenia częstości i intensywności deszczów z powodu zmian klimatycznych. Ochr. Sr. 2013, 35, 25–32. [Google Scholar]
- Kotowski, A.; Kaźmierczak, B.; Dancewicz, A. Modelowanie Opadów do Wymiarowania Kanalizacji; KILiW PAN (IPPT): Warsaw, Poland, 2010. [Google Scholar]
- Huff, F.A. Time distribution of rainfall in heavy storms. Water Resour. Res. 1967, 3, 1007–1019. [Google Scholar] [CrossRef]
- Bonta, J.V.; Rao, A.R. Factors affecting development of Huff curves. Trans. ASAE 1987, 30, 1689–1693. [Google Scholar] [CrossRef]
- Pani, E.A.; Haragan, D.R. A comparison of Texas and Illinois temporal rainfall distributions. In Proceedings of the Fourth Conference on Hydrometeorology, Reno, NV, USA, 7–9 October 1981; American Meteorological Society: Boston, MA, USA, 1981; pp. 76–80. [Google Scholar]
- Terranova, O.G.; Iaquinta, P. Temporal properties of rainfall events in Calabria (southern Italy). Nat. Hazard. Earth Syst 2011, 11, 751–757. [Google Scholar] [CrossRef] [Green Version]
- Elfeki, A.M.; Ewea, H.A.; Al-Amri, N.S. Development of storm hyetographs for flood forecasting in the Kingdom of Saudi Arabia. Arab. J. Geosci. 2014, 7, 4387–4398. [Google Scholar] [CrossRef]
- Pan, C.; Wang, X.; Liu, L.; Huang, H.; Wang, D. Improvement to the Huff Curve for Design Storms and Urban Flooding Simulations in Guangzhou, China. Water 2017, 9, 411. [Google Scholar] [CrossRef] [Green Version]
- Bonta, J.V. Development and utility of Huff curves for disaggregating precipitation amounts. Appl. Eng. Agric. 2004, 20, 641–652. [Google Scholar] [CrossRef]
- Awadallah, A.G.; Elsayed, A.Y.; Abdelbaky, A.M. Development of design storm hyetographs in hyper-arid and arid regions: Case study of Sultanate of Oman. Arab. J. Geosci. 2017, 10, 456. [Google Scholar] [CrossRef]
- Banasik, K.; Wałęga, A.; Węglarczyk, S.; Więzik, B. Aktualizacja Metodyki Obliczania Przepływów i Opadów Maksymalnych o Określonym Prawdopodobieństwie Przewyższenia dla Zlewni Kontrolowanych i Niekontrolowanych oraz Identyfikacji Modeli Transformacji Opadu w Odpływ; KZGW: Warsaw, Poland, 2017.
- Powell, D.N.; Khan, A.A.; Aziz, N.M.; Raiford, J.P. Dimensionless rainfall patterns for South Carolina. J. Hydrol. Eng. 2007, 12, 130–133. [Google Scholar] [CrossRef]
- Vandenberghe, S.; Verhoest, N.; Buyse, E.; De Baets, B. A stochastic design rainfall generator based on copulas and mass curves. Hydrol. Earth Syst. Sci. 2010, 14, 2429–2442. [Google Scholar] [CrossRef] [Green Version]
- Licznar, P.; Szeląg, B. Analiza zmienności czasowej opadów atmosferycznych w Warszawie. Ochr. Sr. 2014, 36, 23–28. [Google Scholar]
- Huff, F.A. Time Distributions of Heavy Rainstorms in Illinois; Circular. Illinois State Water Survey 173: Champaign, IL, USA, 1990; Available online: http://hdl.handle.net/2142/94492 (accessed on 30 September 2019).
- Huff, F.A.; Angel, J.R. Rainfall Frequency Atlas of the Midwest; Illinois State Water Survey 71: Champaign, IL, USA, 1992; Available online: http://hdl.handle.net/2142/94532 (accessed on 30 September 2019).
- Banasik, K.; Bodziony, M.; Bogdanowicz, E.; Chormański, J.; Górski, D.; Jaworski, W.; Madzia, M.; Marcinkowski, M.; Niedbała, J.; Olearczyk, D.; et al. Metodyka Obliczania Przepływów i Opadów Maksymalnych o Określonym Prawdopodobieństwie Przewyższenia dla Zlewni Kontrolowanych i Niekontrolowanych oraz Identyfikacji Modeli Transformacji Opadu w Odpływ; KZGW: Warsaw, Poland, 2009.
- Wierzchoń, S.; Kłopotek, M. Algorytmy Analizy Skupień; WNT: Warsaw, Poland, 2015. [Google Scholar]
Classification | Number of Rainfall (Percent) | ||||
---|---|---|---|---|---|
Duration | t ≤ 120 min | ≤60 min | 10 (12%) | 23 (29%) | 80 (100%) |
(60, 120] min | 13 (16%) | ||||
t ∈ (120, 720] min | (120, 180] min | 13 (16%) | 39 (49%) | ||
(180, 360] min | 12 (15%) | ||||
(360, 720] min | 14 (18%) | ||||
t > 720 min | (720, 1440] min | 11 (14%) | 18 (22%) | ||
>1440 min | 7 (9%) | ||||
Frequency of Occurrence | C ∈ [1, 2) years | 26 (33%) | 80 (100%) | ||
C ∈ [2, 5) years | 24 (30%) | ||||
C ∈ [5, 10) years | 9 (11%) | ||||
C ≥ 10 years | 21 (26%) |
Exceedance Classes C | Quartile Groups | Total | |||
---|---|---|---|---|---|
I | II | III | IV | ||
C ∈ [1, 2) years | 14 | 5 | 5 | 2 | 26 (33%) |
C ∈ [2, 5) years | 8 | 10 | 5 | 1 | 24 (30%) |
C ∈ [5, 10) years | 4 | 2 | 2 | 1 | 9 (11%) |
C ≥ 10 years | 4 | 10 | 7 | 0 | 21 (26%) |
Total | 30 (37%) | 27 (34%) | 19 (24%) | 4 (5%) | 80 (100%) |
Frequency of Rainfall Occurrence | Rainfall Duration T, Min | Mean | ||||||
---|---|---|---|---|---|---|---|---|
30 | 45 | 60 | 75 | 90 | 120 | 180 | ||
C = 1 year | 3.47 | 4.60 | 5.60 | 6.56 | 7.43 | 9.10 | 12.05 | 6.97 |
C = 2 years | 3.46 | 4.59 | 5.61 | 6.53 | 7.44 | 9.05 | 11.99 | 6.95 |
C = 5 years | 3.47 | 4.59 | 5.61 | 6.55 | 7.43 | 9.06 | 12.04 | 6.96 |
C = 10 years | 3.47 | 4.60 | 5.61 | 6.55 | 7.44 | 9.07 | 12.02 | 6.97 |
Mean | 3.47 | 4.60 | 5.61 | 6.55 | 7.43 | 9.07 | 12.03 | 6.96 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wartalska, K.; Kaźmierczak, B.; Nowakowska, M.; Kotowski, A. Analysis of Hyetographs for Drainage System Modeling. Water 2020, 12, 149. https://doi.org/10.3390/w12010149
Wartalska K, Kaźmierczak B, Nowakowska M, Kotowski A. Analysis of Hyetographs for Drainage System Modeling. Water. 2020; 12(1):149. https://doi.org/10.3390/w12010149
Chicago/Turabian StyleWartalska, Katarzyna, Bartosz Kaźmierczak, Monika Nowakowska, and Andrzej Kotowski. 2020. "Analysis of Hyetographs for Drainage System Modeling" Water 12, no. 1: 149. https://doi.org/10.3390/w12010149
APA StyleWartalska, K., Kaźmierczak, B., Nowakowska, M., & Kotowski, A. (2020). Analysis of Hyetographs for Drainage System Modeling. Water, 12(1), 149. https://doi.org/10.3390/w12010149