Performance of Anammox Processes for Wastewater Treatment: A Critical Review on Effects of Operational Conditions and Environmental Stresses
Abstract
:1. Introduction
2. Effects of Operational Conditions on Anammox Performance
2.1. Temperature
2.2. pH
2.3. Dissolved Oxygen (DO)
2.4. Nitrogen Loading
2.5. Carbon Sources
3. Effect of Environmental Stresses on Anammox Performance
3.1. Inhibition by Nitrite
3.2. Inhibition by Sulfide
3.3. Inhibition by Toxic Metals
3.3.1. Copper
3.3.2. Zinc
3.3.3. Cadmium
3.3.4. Lead
3.3.5. Nickel
3.3.6. Other Toxic Metals
3.4. Inhibition by Toxic Organic Compounds
3.4.1. Alcohols
3.4.2. Phenol
3.4.3. Antibiotics
3.5. Inhibition by Salinity
4. Optimizing Strategies for the Efficient Performance of the Anammox Process
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mulder, A. Anoxic ammonia oxidation. European Patent Office—EP 0327184 A1, 2 February 1989. [Google Scholar]
- Laureni, M.; Falås, P.; Robin, O.; Wick, A.; Weissbrodt, D.G.; Nielsen, J.L.; Ternes, T.A.; Morgenroth, E.; Joss, A. Mainstream partial nitritation and anammox: Long-term process stability and effluent quality at low temperatures. Water Res. 2016, 101, 628–639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tomaszewski, M.; Cema, G.; Ziembińska-Buczyńska, A. Influence of temperature and pH on the anammox process: A review and meta-analysis. Chemosphere 2017, 182, 203–214. [Google Scholar] [CrossRef] [PubMed]
- Reino, C.; Suárez-Ojeda, M.E.; Pérez, J.; Carrera, J. Stable long-term operation of an upflow anammox sludge bed reactor at mainstream conditions. Water Res. 2018, 128, 331–340. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.-Y.; Cheng, Y.-F.; Zhu, W.-Q.; Bai, Y.-H.; Xu, L.-Z.-J.; Wu, X.-Q.; Jin, R.-C. Effect of chromium on granule-based anammox processes. Bioresour. Technol. 2018, 260, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Arrigo, K.R. Marine microorganisms and global nutrient cycles. Nature 2005, 437, 349–355. [Google Scholar] [CrossRef]
- Francis, C.A.; Beman, J.M.; Kuypers, M.M.M. New processes and players in the nitrogen cycle: The microbial ecology of anaerobic and archaeal ammonia oxidation. ISME J. 2007, 1, 19–27. [Google Scholar] [CrossRef] [Green Version]
- Kartal, B.; Kuenen, J.G.; Van Loosdrecht, M.C.M. Sewage treatment with anammox. Science 2010, 328, 702–703. [Google Scholar] [CrossRef]
- Cho, S.; Fujii, N.; Lee, T.; Okabe, S. Development of a simultaneous partial nitrification and anaerobic ammonia oxidation process in a single reactor. Bioresour. Technol. 2011, 102, 652–659. [Google Scholar] [CrossRef]
- De Cocker, P.; Bessiere, Y.; Hernandez-raquet, G.; Dubos, S.; Mozo, I.; Gaval, G. Bioresource Technology Enrichment and adaptation yield high anammox conversion rates under low temperatures. Bioresour. Technol. 2018, 250, 505–512. [Google Scholar] [CrossRef]
- Kuenen, J.G.; Kartal, B.; Van Loosdrecht, M.C.M. Application of anammox for N-removal can turn sewage treatment plant into biofuel factory. Biofuels 2011, 2, 237–241. [Google Scholar] [CrossRef]
- Cao, Y.; Van Loosdrecht, M.C.M.; Daigger, G.T. Mainstream partial nitritation-anammox in municipal wastewater treatment: Status, bottlenecks, and further studies. Appl. Microbiol. Biotechnol. 2017, 101, 1365–1383. [Google Scholar] [CrossRef] [PubMed]
- Lackner, S.; Terada, A.; Smets, B.F. Heterotrophic activity compromises autotrophic nitrogen removal in membrane-aerated biofilms: Results of a modeling study. Water Res. 2008, 42, 1102–1112. [Google Scholar] [CrossRef] [PubMed]
- Lackner, S.; Gilbert, E.M.; Vlaeminck, S.E.; Joss, A.; Horn, H.; van Loosdrecht, M.C.M. Full-scale partial nitritation/anammox experiences—An application survey. Water Res. 2014, 55, 292–303. [Google Scholar] [CrossRef] [PubMed]
- Jetten, M.S.M.; Horn, S.J.; van Loosdrecht, M.C.M. Towards a more sustainable municipal wastewater treatment system. Water Sci. Technol. 1997, 35, 171–180. [Google Scholar] [CrossRef]
- Wett, B. Solved upscaling problems for implementing deammonification of rejection water. Water Sci. Technol. 2006, 53, 121–128. [Google Scholar] [CrossRef] [Green Version]
- Daigger, G.T. Oxygen and carbon requirements for biological nitrogen removal processes accomplishing nitrification, nitritation, and anammox. Water Environ. Res. 2014, 86, 204–209. [Google Scholar] [CrossRef]
- Van Loosdrecht, M.C.M.; Brdjanovic, D. Anticipating the next century of wastewater treatment. Science 2014, 344, 1452–1453. [Google Scholar] [CrossRef]
- Kartal, B.; De Almeida, N.M.; Maalcke, W.J.; Op den Camp, H.J.M.; Jetten, M.S.M.; Keltjens, J.T. How to make a living from anaerobic ammonium oxidation. FEMS Microbiol. Rev. 2013, 37, 428–461. [Google Scholar] [CrossRef] [Green Version]
- Ma, H.; Zhang, Y.; Xue, Y.; Li, Y.Y. A new process for simultaneous nitrogen removal and phosphorus recovery using an anammox expanded bed reactor. Bioresour. Technol. 2018, 267, 201–208. [Google Scholar] [CrossRef]
- Petrie, B.; Barden, R.; Kasprzyk-Hordern, B. A review on emerging contaminants in wastewaters and the environment: Current knowledge, understudied areas and recommendations for future monitoring. Water Res. 2014, 72, 3–27. [Google Scholar] [CrossRef]
- Jin, R.-C.; Yang, G.-F.; Yu, J.-J.; Zheng, P. The inhibition of the Anammox process: A review. Chem. Eng. J. 2012, 197, 67–79. [Google Scholar] [CrossRef]
- Alvarino, T.; Suarez, S.; Lema, J.M.; Omil, F. Understanding the removal mechanisms of PPCPs and the influence of main technological parameters in anaerobic UASB and aerobic CAS reactors. J. Hazard. Mater. 2014, 278, 506–513. [Google Scholar] [CrossRef] [PubMed]
- De Graaff, M.S.; Temmink, H.; Zeeman, G.; van Loosdrecht, M.C.M.; Buisman, C.J.N. Autotrophic nitrogen removal from black water: Calcium addition as a requirement for settleability. Water Res. 2011, 45, 63–74. [Google Scholar] [CrossRef] [PubMed]
- Strous, M.; Fuerst, J.A.; Kramer, E.H.M.; Logemann, S.; Muyzer, G.; Van De Pas-Schoonen, K.T.; Webb, R.; Kuenen, J.G.; Jetten, M.S.M. Missing lithotroph identified as new planctomycete. Nature 1999, 400, 446–449. [Google Scholar] [CrossRef] [PubMed]
- Dapena-Mora, A.; Fernández, I.; Campos, J.L.; Mosquera-Corral, A.; Méndez, R.; Jetten, M.S.M. Evaluation of activity and inhibition effects on Anammox process by batch tests based on the nitrogen gas production. Enzyme Microb. Technol. 2007, 40, 859–865. [Google Scholar] [CrossRef]
- Egli, K.; Fanger, U.; Alvarez, P.J.J.; Siegrist, H.; Van der Meer, J.R.; Zehnder, A.J.B. Enrichment and characterization of an anammox bacterium from a rotating biological contactor treating ammonium-rich leachate. Arch. Microbiol. 2001, 175, 198–207. [Google Scholar] [CrossRef]
- Lotti, T.; Cordola, M.; Kleerebezem, R.; Caffaz, S.; Lubello, C.; van Loosdrecht, M.C.M. Inhibition effect of swine wastewater heavy metals and antibiotics on anammox activity. Water Sci. Technol. 2012, 66, 1519–1526. [Google Scholar] [CrossRef]
- Lotti, T.; Kleerebezem, R.; Lubello, C.; van Loosdrecht, M.C.M. Physiological and kinetic characterization of a suspended cell anammox culture. Water Res. 2014, 60, 1–14. [Google Scholar] [CrossRef]
- Xu, G.; Zhou, Y.; Yang, Q.; Lee, Z.M.P.; Gu, J.; Lay, W.; Cao, Y.; Liu, Y. The challenges of mainstream deammonification process for municipal used water treatment. Appl. Microbiol. Biotechnol. 2015, 99, 2485–2490. [Google Scholar] [CrossRef]
- Lotti, T.; Kleerebezem, R.; van Loosdrecht, M.C.M. Effect of temperature change on anammox activity. Biotechnol. Bioeng. 2015, 112, 98–103. [Google Scholar] [CrossRef]
- Park, G.; Takekawa, M.; Soda, S.; Ike, M.; Furukawa, K. Temperature dependence of nitrogen removal activity by anammox bacteria enriched at low temperatures. J. Biosci. Bioeng. 2017, 123, 505–511. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Li, J.; Gao, R.; Wang, M.; Yang, L.; Wang, X.; Zhang, L.; Peng, Y. A critical review of one-stage anammox processes for treating industrial wastewater: Optimization strategies based on key functional microorganisms. Bioresour. Technol. 2018, 265, 498–505. [Google Scholar] [CrossRef] [PubMed]
- Strous, M.; Van Gerven, E.; Zheng, P.; Kuenen, J.G.; Jetten, M.S.M. Ammonium removal from concentrated waste streams with the anaerobic ammonium oxidation (anammox) process in different reactor configurations. Water Res. 1997, 31, 1955–1962. [Google Scholar] [CrossRef] [Green Version]
- Byrne, N.; Strous, M.; Crépeau, V.; Kartal, B.; Birrien, J.L.; Schmid, M.; Lesongeur, F.; Schouten, S.; Jaeschke, A.; Jetten, M.; et al. Presence and activity of anaerobic ammonium-oxidizing bacteria at deep-sea hydrothermal vents. ISME J. 2009, 3, 117–123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jaescnke, A.; Abbas, B.; Zabel, M.; Hopmans, E.C.; Schouten, S.; Sinninghe Damsté, J.S. Molecular evidence for anaerobic ammonium-oxidizing (anammox) bacteria in continental shelf and slope sediments off northwest Africa. Limnol. Oceanogr. 2010, 55, 365–376. [Google Scholar] [CrossRef]
- Zhu, G.; Xia, C.; Shanyun, W.; Zhou, L.; Liu, L.; Zhao, S. Occurrence, activity and contribution of anammox in some freshwater extreme environments. Environ. Microbiol. Rep. 2015, 7, 961–969. [Google Scholar] [CrossRef] [PubMed]
- Castro-Barros, C.M.; Jia, M.; van Loosdrecht, M.C.M.; Volcke, E.I.P.; Winkler, M.K.H. Evaluating the potential for dissimilatory nitrate reduction by anammox bacteria for municipal wastewater treatment. Bioresour. Technol. 2017, 233, 363–372. [Google Scholar] [CrossRef]
- Jetten, M.S.M.; Wagner, M.; Fuerst, J.; Van Loosdrecht, M.; Kuenen, G.; Strous, M. Microbiology and application of the anaerobic ammonium oxidation (‘anammox’) process. Curr. Opin. Biotechnol. 2001, 12, 283–288. [Google Scholar] [CrossRef]
- Isanta, E.; Bezerra, T.; Fernández, I.; Suárez-Ojeda, M.E.; Pérez, J.; Carrera, J. Microbial community shifts on an anammox reactor after a temperature shock using 454-pyrosequencing analysis. Bioresour. Technol. 2015, 181, 207–213. [Google Scholar] [CrossRef] [Green Version]
- He, S.; Chen, Y.; Qin, M.; Mao, Z.; Yuan, L.; Niu, Q.; Tan, X. Effects of temperature on anammox performance and community structure. Bioresour. Technol. 2018, 260, 186–195. [Google Scholar] [CrossRef]
- Dosta, J.; Fern, I.; Alvarez, J.M. Short- and long-term effects of temperature on the Anammox process. J. Hazard. Mater. 2008, 154, 688–693. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, E.M.; Agrawal, S.; Schwartz, T.; Horn, H.; Lackner, S. Comparing different reactor configurations for Partial Nitritation/Anammox at low temperatures. Water Res. 2015, 81, 92–100. [Google Scholar] [CrossRef] [PubMed]
- Fux, C.; Boehler, M.; Huber, P.; Brunner, I.; Siegrist, H. Biological treatment of ammonium-rich wastewater by partial nitritation and subsequent anaerobic ammonium oxidation (anammox) in a pilot plant. J. Biotechnol. 2002, 99, 295–306. [Google Scholar] [CrossRef]
- Dapena-Mora, A.; Arrojo, B.; Campos, J.L.; Mosquera-Corral, A.; Méndez, R. Improvement of the settling properties of Anammox sludge in an SBR. J. Chem. Technol. Biotechnol. 2004, 79, 1417–1420. [Google Scholar] [CrossRef]
- Han, P.; Huang, Y.T.; Lin, J.G.; Gu, J.D. A comparison of two 16S rRNA gene-based PCR primer sets in unraveling anammox bacteria from different environmental samples. Appl. Microbiol. Biotechnol. 2013, 97, 10521–10529. [Google Scholar] [CrossRef]
- Isaka, K.; Suwa, Y.; Kimura, Y.; Yamagishi, T.; Sumino, T.; Tsuneda, S. Anaerobic ammonium oxidation (anammox) irreversibly inhibited by methanol. Appl. Microbiol. Biotechnol. 2008, 81, 379–385. [Google Scholar] [CrossRef]
- Mulder, A.; van de Graaf, A.A.; Robertson, L.A.; Kuenen, J.G. Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor. FEMS Microbiol. Ecol. 1995, 16, 177–183. [Google Scholar] [CrossRef]
- Vlaeminck, S.E.; De Clippeleir, H.; Verstraete, W. Microbial resource management of one-stage partial nitritation/anammox. Microb. Biotechnol. 2012, 5, 433–448. [Google Scholar] [CrossRef]
- Ma, B.; Wang, S.; Cao, S.; Miao, Y.; Jia, F.; Du, R.; Peng, Y. Biological nitrogen removal from sewage via anammox: Recent advances. Bioresour. Technol. 2016, 200, 981–990. [Google Scholar] [CrossRef]
- Jin, R.-C.; Yang, G.-F.; Zhang, Q.-Q.; Ma, C.; Yu, J.-J.; Xing, B.-S. The effect of sulfide inhibition on the ANAMMOX process. Water Res. 2013, 47, 1459–1469. [Google Scholar] [CrossRef]
- Jetten, M.S.M.; van Niftrik, L.; Strous, M.; Kartal, B.; Keltjens, J.T.; Op den Camp, H.J.M. Biochemistry and molecular biology of anammox bacteria. Crit. Rev. Biochem. Mol. Biol. 2009, 44, 65–84. [Google Scholar] [CrossRef]
- Moss, F.R.; Shuken, S.R.; Mercer, J.A.M.; Cohen, C.M.; Weiss, T.M.; Boxer, S.G.; Burns, N.Z. Ladderane phospholipids form a densely packed membrane with normal hydrazine and anomalously low proton/hydroxide permeability. Proc. Natl. Acad. Sci. USA 2018, 115, 9098–9103. [Google Scholar] [CrossRef] [Green Version]
- Rattray, J.E.; De Van Vossenberg, J.; Jaeschke, A.; Hopmans, E.C.; Wakeham, S.G.; Lavik, G.; Kuypers, M.M.M.; Strous, M.; Jetten, M.S.M.; Schouten, S.; et al. Impact of temperature on ladderane lipid distribution in anammox bacteria. Appl. Environ. Microbiol. 2010, 76, 1596–1603. [Google Scholar] [CrossRef] [Green Version]
- Fernández, I.; Dosta, J.; Fajardo, C.; Campos, J.L.; Mosquera-Corral, A.; Méndez, R. Short- and long-term effects of ammonium and nitrite on the Anammox process. J. Environ. Manag. 2012, 95, S170–S174. [Google Scholar] [CrossRef]
- Fernández, I.; Dosta, J.; Mata-Álvarez, J. A critical review of future trends and perspectives for the implementation of partial nitritation/anammox in the main line of municipal WWTPs. Desalin. Water Treat. 2016, 57, 27890–27898. [Google Scholar]
- Hoekstra, M.; de Weerd, F.A.; Kleerebezem, R.; van Loosdrecht, M.C.M. Deterioration of the anammox process at decreasing temperatures and long SRTs. Environ. Technol. 2018, 39, 658–668. [Google Scholar] [CrossRef]
- Laureni, M.; Weissbrodt, D.G.; Szivák, I.; Robin, O.; Nielsen, J.L.; Morgenroth, E.; Joss, A. Activity and growth of anammox biomass on aerobically pre-treated municipal wastewater. Water Res. 2015, 80, 325–336. [Google Scholar] [CrossRef] [Green Version]
- Val del Rio, A.; Pichel, A.; Fernandez-Gonzalez, N.; Pedrouso, A.; Fra-Vázquez, A.; Morales, N.; Mendez, R.; Campos, J.L.; Mosquera-Corral, A. Performance and microbial features of the partial nitritation-anammox process treating fish canning wastewater with variable salt concentrations. J. Environ. Manag. 2018, 208, 112–121. [Google Scholar] [CrossRef]
- Ma, B.; Peng, Y.; Zhang, S.; Wang, J.; Gan, Y.; Chang, J.; Wang, S.; Wang, S.; Zhu, G. Performance of anammox UASB reactor treating low strength wastewater under moderate and low temperatures. Bioresour. Technol. 2013, 129, 606–611. [Google Scholar] [CrossRef]
- Wang, D.; Wang, Q.; Laloo, A.; Xu, Y.; Bond, P.L.; Yuan, Z. Achieving stable nitritation for mainstream deammonification by combining free nitrous acid-based sludge treatment and oxygen limitation. Sci. Rep. 2016, 6, 520–527. [Google Scholar] [CrossRef] [Green Version]
- Park, H.D.; Noguera, D.R. Characterization of two ammonia-oxidizing bacteria isolated from reactors operated with low dissolved oxygen concentrations. J. Appl. Microbiol. 2007, 102, 1401–1417. [Google Scholar] [CrossRef]
- Van Der Star, W.R.L.; Miclea, A.I.; Van Dongen, U.G.J.M.; Muyzer, G.; Picioreanu, C.; Van Loosdrecht, M.C.M. The membrane bioreactor: A novel tool to grow anammox bacteria as free cells. Biotechnol. Bioeng. 2008, 101, 286–294. [Google Scholar] [CrossRef]
- Van Niftrik, L.; Jetten, M.S.M. Anaerobic Ammonium-oxidizing bacteria: Unique microorganisms with exceptional properties. Microbiol. Mol. Biol. Rev. 2012, 76, 585–596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Isaka, K.; Date, Y.; Sumino, T.; Yoshie, S.; Tsuneda, S. Growth characteristic of anaerobic ammonium-oxidizing bacteria in an anaerobic biological filtrated reactor. Appl. Microbiol. Biotechnol. 2006, 70, 47–52. [Google Scholar] [CrossRef] [PubMed]
- Awata, T.; Kindaichi, T.; Ozaki, N.; Ohashi, A. Biomass yield efficiency of the marine anammox bacterium, “candidatus scalindua sp.,” is affected by salinity. Microbes Environ. 2015, 30, 86–91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, J.; Zhang, L.; Hira, D.; Fukuzaki, Y.; Furukawa, K. Anammox treatment of high-salinity wastewater at ambient temperature. Bioresour. Technol. 2011, 102, 2367–2372. [Google Scholar] [CrossRef] [PubMed]
- Ganigué, R.; Gabarró, J.; Sànchez-Melsió, A.; Ruscalleda, M.; López, H.; Vila, X.; Colprim, J.; Balaguer, M.D. Long-term operation of a partial nitritation pilot plant treating leachate with extremely high ammonium concentration prior to an anammox process. Bioresour. Technol. 2009, 100, 5624–5632. [Google Scholar] [CrossRef]
- Roller, B.R.K.; Stoddard, S.F.; Schmidt, T.M. Exploiting rRNA Operon copy number to investigate bacterial reproductive strategies HHS public access author manuscript. Nat. Microbiol. 2017, 1, 1–19. [Google Scholar]
- Tang, C.; Zheng, P.; Mahmood, Q.; Chen, J. Start-up and inhibition analysis of the Anammox process seeded with anaerobic granular sludge. J. Ind. Microbiol. Biotechnol. 2009, 36, 1093–1100. [Google Scholar] [CrossRef]
- Jung, J.Y.; Kang, S.H.; Chung, Y.C.; Ahn, D.H. Factors affecting the activity of anammox bacteria during start up in the continuous culture reactor. Water Sci. Technol. 2007, 55, 459–468. [Google Scholar] [CrossRef]
- Ni, S.Q.; Fessehaie, A.; Lee, P.H.; Gao, B.Y.; Xu, X.; Sung, S. Interaction of anammox bacteria and inactive methanogenic granules under high nitrogen selective pressure. Bioresour. Technol. 2010, 101, 6910–6915. [Google Scholar] [CrossRef] [PubMed]
- Third, K.A.; Paxman, J.; Schmid, M.; Strous, M.; Jetten, M.S.M.; Cord-Ruwisch, R. Enrichment of anammox from activated sludge and its application in the CANON process. Microb. Ecol. 2005, 49, 236–244. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Ji, Q.; Zheng, P.; Chen, T.; Wang, C.; Mahmood, Q. Floatation and control of granular sludge in a high-rate anammox reactor. Water Res. 2010, 44, 3321–3328. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Zhang, H.; Gao, D.; Yang, F.; Zhang, G. Comparison between MBR and SBR on Anammox start-up process from the conventional activated sludge. Bioresour. Technol. 2012, 122, 78–82. [Google Scholar] [CrossRef]
- He, S.; Niu, Q.; Ma, H.; Zhang, Y.; Li, Y.Y. The treatment performance and the bacteria preservation of anammox: A review. Water Air. Soil Pollut. 2015, 226, 163. [Google Scholar] [CrossRef]
- Gonzalez-Martinez, A.; Muñoz-Palazon, B.; Rodriguez-Sanchez, A.; Gonzalez-Lopez, J. New concepts in anammox processes for wastewater nitrogen removal: Recent advances and future prospects. FEMS Microbiol. Lett. 2018, 365, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Thamdrup, B.; Dalsgaard, T.; Jensen, M.M.; Ulloa, O.; Farías, L.; Escribano, R. Anaerobic ammonium oxidation in the oxygen-deficient waters off northern Chile. Limnol. Oceanogr. 2006, 51, 2145–2156. [Google Scholar] [CrossRef] [Green Version]
- Ward, B.B.; Devol, A.H.; Rich, J.J.; Chang, B.X.; Bulow, S.E.; Naik, H.; Pratihary, A.; Jayakumar, A. Denitrification as the dominant nitrogen loss process in the Arabian Sea. Nature 2009, 461, 78–81. [Google Scholar] [CrossRef]
- Koeve, W.; Kähler, P. Heterotrophic denitrification vs. autotrophic anammox-quantifying collateral effects on the oceanic carbon cycle. Biogeosciences 2010, 7, 2327–2337. [Google Scholar] [CrossRef] [Green Version]
- Dalsgaard, T.; Thamdrup, B.; Farías, L.; Revsbech, N.P. Anammox and denitrification in the oxygen minimum zone of the eastern South Pacific. Limnol. Oceanogr. 2012, 57, 1331–1346. [Google Scholar] [CrossRef] [Green Version]
- Dähnke, K.; Thamdrup, B. Isotope fractionation and isotope decoupling during anammox and denitrification in marine sediments. Limnol. Oceanogr. 2016, 61, 610–624. [Google Scholar] [CrossRef] [Green Version]
- Morales, N.; Val Del Río, A.; Vázquez-Padín, J.R.; Gutiérrez, R.; Fernández-González, R.; Icaran, P.; Rogalla, F.; Campos, J.L.; Méndez, R.; Mosquera-Corral, A. Influence of dissolved oxygen concentration on the start-up of the anammox-based process: ELAN®. Water Sci. Technol. 2015, 72, 520–527. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Yang, F.; Xue, Y.; Gong, Z.; Chen, H.; Wang, T.; Su, Z. Evaluation of oxygen adaptation and identification of functional bacteria composition for anammox consortium in non-woven biological rotating contactor. Bioresour. Technol. 2008, 99, 8273–8279. [Google Scholar] [CrossRef] [PubMed]
- Blackburne, R.; Yuan, Z.; Keller, J. Partial nitrification to nitrite using low dissolved oxygen concentration as the main selection factor. Biodegradation 2008, 19, 303–312. [Google Scholar] [CrossRef]
- Wang, T.; Zhang, H.; Yang, F. Performance of Anammox process and low-oxygen adaptability of Anammox biofilms in a FBR with small ring non-woven carriers. Ecol. Eng. 2016, 86, 126–134. [Google Scholar] [CrossRef]
- Nielsen, M.; Bollmann, A.; Sliekers, O.; Jetten, M.; Schmid, M.; Strous, M.; Schmidt, I.; Larsen, L.H.; Nielsen, L.P.; Revsbech, N.P. Kinetics, diffusional limitation and microscale distribution of chemistry and organisms in a CANON reactor. FEMS Microbiol. Ecol. 2005, 51, 247–256. [Google Scholar] [CrossRef]
- Bellucci, M.; Ofiţeru, I.D.; Graham, D.W.; Head, I.M.; Curtis, T.P. Low-dissolved-oxygen nitrifying systems exploit ammonia-oxidizing bacteria with unusually high yields. Appl. Environ. Microbiol. 2011, 77, 7787–7796. [Google Scholar] [CrossRef] [Green Version]
- Xie, G.J.; Liu, T.; Cai, C.; Hu, S.; Yuan, Z. Achieving high-level nitrogen removal in mainstream by coupling anammox with denitrifying anaerobic methane oxidation in a membrane biofilm reactor. Water Res. 2018, 131, 196–204. [Google Scholar] [CrossRef]
- Zhang, B.; Zhao, J.; Zuo, J.; Shi, X.; Gong, J.; Ren, H. Realizing stable operation of anaerobic ammonia oxidation at low temperatures treating low strength synthetic wastewater. J. Environ. Sci. 2019, 75, 193–200. [Google Scholar] [CrossRef]
- Martins, T.H.; Souza, T.S.O.; Varesche, M.B.A. The Influence of stirring speed, temperature and initial nitrogen concentration on specific anammox activity. Braz. Arch. Biol. Technol. 2018, 60, 1–11. [Google Scholar] [CrossRef]
- Puyol, D.; Carvajal-Arroyo, J.M.; Sierra-Alvarez, R.; Field, J.A. Nitrite (not free nitrous acid) is the main inhibitor of the anammox process at common pH conditions. Biotechnol. Lett. 2014, 36, 547–551. [Google Scholar] [CrossRef] [PubMed]
- Lackner, S.; Horn, H. Evaluating operation strategies and process stability of a single stage nitritation-anammox SBR by use of the oxidation-reduction potential (ORP). Bioresour. Technol. 2012, 107, 70–77. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.; Takahashi, Y.; Fujii, N.; Yamada, Y.; Satoh, H.; Okabe, S. Nitrogen removal performance and microbial community analysis of an anaerobic up-flow granular bed anammox reactor. Chemosphere 2010, 78, 1129–1135. [Google Scholar] [CrossRef] [PubMed]
- Tian, Z.; Zeng, P.; Song, Y.; Li, D.; Zhang, J. Nitrogen removal potential and biofilm characteristics in the anaerobic ammonium oxidation (‘ANAMMOX’) biofilter reactor. In Proceedings of the 4th International Conference on Bioinformatics and Biomedical Engineering, iCBBE, Chengdu, China, 18–20 June 2010. [Google Scholar]
- Van Dongen, U.; Jetten, M.S.M.; Loosdrecht, M.C.M. Van Ammonium Rich Wastewater. Growth Lakel. 2001, 44, 153–160. [Google Scholar]
- Winkler, M.K.H.; Kleerebezem, R.; Van Loosdrecht, M.C.M. Integration of anammox into the aerobic granular sludge process for main stream wastewater treatment at ambient temperatures. Water Res. 2012, 46, 136–144. [Google Scholar] [CrossRef] [PubMed]
- Winkler, M.K.H.; Yang, J.; Kleerebezem, R.; Plaza, E.; Trela, J.; Hultman, B.; van Loosdrecht, M.C.M. Nitrate reduction by organotrophic Anammox bacteria in a nitritation/anammox granular sludge and a moving bed biofilm reactor. Bioresour. Technol. 2012, 114, 217–223. [Google Scholar] [CrossRef] [PubMed]
- Molinuevo, B.; García, M.C.; Karakashev, D.; Angelidaki, I. Anammox for ammonia removal from pig manure effluents: Effect of organic matter content on process performance. Bioresour. Technol. 2009, 100, 2171–2175. [Google Scholar] [CrossRef]
- Takekawa, M.; Park, G.; Soda, S.; Ike, M. Simultaneous anammox and denitrification (SAD) process in sequencing batch reactors. Bioresour. Technol. 2014, 174, 159–166. [Google Scholar] [CrossRef]
- Bi, Z.; Qiao, S.; Zhou, J.; Tang, X.; Zhang, J. Fast start-up of Anammox process with appropriate ferrous iron concentration. Bioresour. Technol. 2014, 170, 506–512. [Google Scholar] [CrossRef]
- García-Ruiz, M.J.; Maza-Márquez, P.; González-López, J.; Osorio, F. Nitrogen removal capacity and bacterial community dynamics of a Canon biofilter system at different organic matter concentrations. Chemosphere 2018, 193, 591–601. [Google Scholar] [CrossRef]
- Kartal, B.; Kuypers, M.M.M.; Lavik, G.; Schalk, J.; Op Den Camp, H.J.M.; Jetten, M.S.M.; Strous, M. Anammox bacteria disguised as denitrifiers: Nitrate reduction to dinitrogen gas via nitrite and ammonium. Environ. Microbiol. 2007, 9, 635–642. [Google Scholar] [CrossRef] [PubMed]
- Ruscalleda, M.; López, H.; Ganigué, R.; Puig, S.; Balaguer, M.D.; Colprim, J. Heterotrophic denitrification on granular anammox SBR treating urban landfill leachate. Water Sci. Technol. 2008, 58, 1749–1755. [Google Scholar] [CrossRef] [PubMed]
- Kartal, B.; Rattray, J.; van Niftrik, L.A.; van de Vossenberg, J.; Schmid, M.C.; Webb, R.I.; Schouten, S.; Fuerst, J.A.; Damsté, J.S.; Jetten, M.S.M.; et al. Candidatus “Anammoxoglobus propionicus” a new propionate oxidizing species of anaerobic ammonium oxidizing bacteria. Syst. Appl. Microbiol. 2007, 30, 39–49. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Sun, F.; Zhang, H.; Wang, J.; Shen, Y.; Liang, X. Evaluation of COD effect on anammox process and microbial communities in the anaerobic baffled reactor (ABR). Bioresour. Technol. 2016, 216, 571–578. [Google Scholar] [CrossRef]
- Kimura, Y.; Isaka, K.; Kazama, F. Effects of inorganic carbon limitation on anaerobic ammonium oxidation (anammox) activity. Bioresour. Technol. 2011, 102, 4390–4394. [Google Scholar] [CrossRef]
- Ma, Y.; Sundar, S.; Park, H.; Chandran, K. The effect of inorganic carbon on microbial interactions in a biofilm nitritation-anammox process. Water Res. 2015, 70, 246–254. [Google Scholar] [CrossRef]
- Carvajal-Arroyo, J.M.; Puyol, D.; Li, G.; Lucero-Acuña, A.; Sierra-Álvarez, R.; Field, J.A. Pre-exposure to nitrite in the absence of ammonium strongly inhibits anammox. Water Res. 2014, 48, 52–60. [Google Scholar] [CrossRef]
- Li, G.; Vilcherrez, D.; Carvajal-Arroyo, J.M.; Sierra-Alvarez, R.; Field, J.A. Exogenous nitrate attenuates nitrite toxicity to anaerobic ammonium oxidizing (anammox) bacteria. Chemosphere 2016, 144, 2360–2367. [Google Scholar] [CrossRef]
- Lotti, T.; van der Star, W.R.L.; Kleerebezem, R.; Lubello, C.; van Loosdrecht, M.C.M. The effect of nitrite inhibition on the anammox process. Water Res. 2012, 46, 2559–2569. [Google Scholar] [CrossRef]
- Raudkivi, M.; Zekker, I.; Rikmann, E.; Vabamäe, P.; Kroon, K.; Tenno, T. Nitrite inhibition and limitation—The effect of nitrite spiking on anammox biofilm, suspended and granular biomass. Water Sci. Technol. 2017, 75, 313–321. [Google Scholar] [CrossRef]
- Carvajal-Arroyo, J.M.; Sun, W.; Sierra-Alvarez, R.; Field, J.A. Inhibition of anaerobic ammonium oxidizing (anammox) enrichment cultures by substrates, metabolites and common wastewater constituents. Chemosphere 2013, 91, 22–27. [Google Scholar] [CrossRef] [PubMed]
- Bettazzi, E.; Caffaz, S.; Vannini, C.; Lubello, C. Nitrite inhibition and intermediates effects on Anammox bacteria: A batch-scale experimental study. Process Biochem. 2010, 45, 573–580. [Google Scholar] [CrossRef]
- Kimura, Y.; Isaka, K.; Kazama, F.; Sumino, T. Effects of nitrite inhibition on anaerobic ammonium oxidation. Appl. Microbiol. Biotechnol. 2010, 86, 359–365. [Google Scholar] [CrossRef] [PubMed]
- Zekker, I.; Rikmann, E.; Kroon, K.; Mandel, A.; Mihkelson, J.; Tenno, T.; Tenno, T. Ameliorating nitrite inhibition in a low-temperature nitritation–anammox MBBR using bacterial intermediate nitric oxide. Int. J. Environ. Sci. Technol. 2017, 14, 2343–2356. [Google Scholar] [CrossRef]
- Zekker, I.; Rikmann, E.; Tenno, T.; Loorits, L.; Kroon, K.; Fritze, H.; Tuomivirta, T.; Vabamäe, P.; Raudkivi, M.; Mandel, A.; et al. Nitric oxide for anammox recovery in a nitrite-inhibited deammonification system. Environ. Technol. 2015, 36, 2477–2487. [Google Scholar] [CrossRef]
- Yang, G.-F.; Jin, R.-C. The joint inhibitory effects of phenol, copper (II), oxytetracycline (OTC) and sulfide on Anammox activity. Bioresour. Technol. 2012, 126, 187–192. [Google Scholar] [CrossRef]
- Val del Río, Á.; da Silva, T.; Martins, T.H.; Foresti, E.; Campos, J.L.; Méndez, R.; Mosquera-Corral, A. Partial nitritation-anammox granules: Short-term inhibitory effects of seven metals on anammox activity. Water Air Soil Pollut. 2017, 228, 439. [Google Scholar] [CrossRef]
- Zhang, Z.-Z.; Zhang, Q.-Q.; Xu, J.-J.; Deng, R.; Ji, Z.-Q.; Wu, Y.-H.; Jin, R.-C. Evaluation of the inhibitory effects of heavy metals on anammox activity: A batch test study. Bioresour. Technol. 2016, 200, 208–216. [Google Scholar] [CrossRef]
- Guo, Q.; Yang, C.-C.; Xu, J.-L.; Hu, H.-Y.; Huang, M.; Shi, M.-L.; Jin, R.-C. Individual and combined effects of substrate, heavy metal and hydraulic shocks on an anammox system. Sep. Purif. Technol. 2015, 154, 128–136. [Google Scholar] [CrossRef]
- Yang, G.-F.; Ni, W.-M.; Wu, K.; Wang, H.; Yang, B.-E.; Jia, X.-Y.; Jin, R.-C. The effect of Cu(II) stress on the activity, performance and recovery on the Anaerobic Ammonium-Oxidizing (Anammox) process. Chem. Eng. J. 2013, 226, 39–45. [Google Scholar] [CrossRef]
- Kimura, Y.; Isaka, K. Evaluation of inhibitory effects of heavy metals on anaerobic ammonium oxidation (anammox) by continuous feeding tests. Appl. Microbiol. Biotechnol. 2014, 98, 6965–6972. [Google Scholar] [CrossRef]
- Li, G.; Puyol, D.; Carvajal-Arroyo, J.M.; Sierra-Alvarez, R.; Field, J.A. Inhibition of anaerobic ammonium oxidation by heavy metals. J. Chem. Technol. Biotechnol. 2015, 90, 830–837. [Google Scholar] [CrossRef]
- Daverey, A.; Chen, Y.-C.; Sung, S.; Lin, J.-G. Effect of zinc on anammox activity and performance of simultaneous partial nitrification, anammox and denitrification (SNAD) process. Bioresour. Technol. 2014, 165, 105–110. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.-Q.; Zhang, Z.-Z.; Guo, Q.; Wang, J.-J.; Wang, H.-Z.; Jin, R.-C. Analyzing the revolution of anaerobic ammonium oxidation (anammox) performance and sludge characteristics under zinc inhibition. Appl. Microbiol. Biotechnol. 2015, 99, 3221–3232. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Chen, Z.; Ma, Y.; Zhou, Y.; Zhao, S.; Wang, L.; Zhai, H. Influence of elevated Zn (II) on Anammox system: Microbial variation and zinc tolerance. Bioresour. Technol. 2018, 251, 108–113. [Google Scholar] [CrossRef] [PubMed]
- Bi, Z.; Qiao, S.; Zhou, J.; Tang, X.; Cheng, Y. Inhibition and recovery of Anammox biomass subjected to short-term exposure of Cd, Ag, Hg and Pb. Chem. Eng. J. 2014, 244, 89–96. [Google Scholar] [CrossRef]
- Yu, C.; Song, Y.-X.; Chai, L.-Y.; Duan, C.-S.; Tang, C.-J.; Ali, M.; Peng, C. Comparative evaluation of short-term stress of Cd(II), Hg(II), Pb(II), As(III) and Cr(VI) on anammox granules by batch test. J. Biosci. Bioeng. 2016, 122, 722–729. [Google Scholar] [CrossRef]
- Nie, J.; Pan, Y.; Shi, J.; Guo, Y.; Yan, Z.; Duan, X.; Xu, M. A comparative study on the uptake and toxicity of nickel added in the form of different salts to maize seedlings. Int. J. Environ. Res. Public Health 2015, 12, 15075–15087. [Google Scholar] [CrossRef] [Green Version]
- Van de Graaf, A.A.; de Bruijn, P.; Robertson, L.A.; Jetten, M.S.M.; Kuenen, J.G. Autotrophic growth of anaerobic ammonium-oxidizing micro-organisms in a fluidized bed reactor. Microbiology 1996, 142, 2187–2196. [Google Scholar] [CrossRef] [Green Version]
- Jensen, M.M.; Thamdrup, B.; Dalsgaard, T. Effects of specific inhibitors on anammox and denitrification in marine sediments. Appl. Environ. Microbiol. 2007, 73, 3151–3158. [Google Scholar] [CrossRef] [Green Version]
- Güven, D.; Dapena, A.; Kartal, B.; Schmid, M.C.; Maas, B.; van de Pas-Schoonen, K.; Sozen, S.; Mendez, R.; Op den Camp, H.J.M.; Jetten, M.S.M.; et al. Propionate oxidation by and methanol inhibition of anaerobic ammonium-oxidizing bacteria. Appl. Environ. Microbiol. 2005, 71, 1066–1071. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oshiki, M.; Shimokawa, M.; Fujii, N.; Satoh, H.; Okabe, S. Physiological characteristics of the anaerobic ammonium-oxidizing bacterium “Candidatus Brocadia sinica.”. Microbiology 2011, 157, 1706–1713. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schalk, J.; de Vries, J.S.; Kuenen, J.S.; Jetten, M.S.M. Involvement of a novel hydroxylamine oxidoreductase in anaerobic ammonium oxidation. Biochemistry 2000, 39, 5405–5412. [Google Scholar] [CrossRef] [PubMed]
- Tang, C.-J.; Zheng, P.; Zhang, L.; Chen, J.-W.; Mahmood, Q.; Chen, X.-G.; Hu, B.-L.; Wang, C.-H.; Yu, Y. Enrichment features of anammox consortia from methanogenic granules loaded with high organic and methanol contents. Chemosphere 2010, 79, 613–619. [Google Scholar] [CrossRef]
- Yeom, S.H.; Daugulis, A.J.; Lee, S.H. Bioremediation of phenol-contaminated water and soil using magnetic polymer beads. Process Biochem. 2010, 45, 1582–1586. [Google Scholar] [CrossRef]
- Zhao, L.; Wu, Q.; Ma, A. Biodegradation of phenolic contaminants: Current Status and perspectives. IOP Conf. Ser. Earth Environ. Sci. 2018, 111, 012024. [Google Scholar] [CrossRef]
- Dosta, J.; Nieto, J.M.; Vila, J.; Grifoll, M.; Mata-Álvarez, J. Phenol removal from hypersaline wastewaters in a Membrane Biological Reactor (MBR): Operation and microbiological characterisation. Bioresour. Technol. 2011, 102, 4013–4020. [Google Scholar] [CrossRef]
- Toh, S.; Ashbolt, N. Adaptation of anaerobic ammonium-oxidising consortium to synthetic coke-ovens wastewater. Appl. Microbiol. Biotechnol. 2002, 59, 344–352. [Google Scholar]
- Oshiki, M.; Masuda, Y.; Yamaguchi, T.; Araki, N. Synergistic inhibition of anaerobic ammonium oxidation (anammox) activity by phenol and thiocyanate. Chemosphere 2018, 213, 498–506. [Google Scholar] [CrossRef]
- Jin, R.C.; Zhang, Q.Q.; Yang, G.F.; Xing, B.S.; Ji, Y.X.; Chen, H. Evaluating the recovery performance of the ANAMMOX process following inhibition by phenol and sulfide. Bioresour. Technol. 2013, 142, 162–170. [Google Scholar] [CrossRef]
- Yang, G.F.; Guo, X.L.; Chen, S.X.; Liu, J.H.; Guo, L.X.; Jin, R.C. The evolution of Anammox performance and granular sludge characteristics under the stress of phenol. Bioresour. Technol. 2013, 137, 332–339. [Google Scholar] [CrossRef] [PubMed]
- Pereira, A.D.; Leal, C.D.; Dias, M.F.; Etchebehere, C.; Chernicharo, C.A.L.; De Araújo, J.C. Effect of phenol on the nitrogen removal performance and microbial community structure and composition of an anammox reactor. Bioresour. Technol. 2014, 166, 103–111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, Q.; Shi, Z.-J.; Yang, C.-C.; Huang, M.; Xu, J.-L.; Xu, Y.-Q.; Ni, W.-M.; Jin, R.-C. Individual and combined inhibition of phenol and thiocyanate on microbial activity of partial nitritation. Environ. Sci. Pollut. Res. 2017, 24, 14207–14217. [Google Scholar] [CrossRef] [PubMed]
- Lyu, L.; Zhang, K.; Li, Z.; Ma, Y.; Chai, T.; Pan, Y.; Wang, X.; Li, S.; Zhu, T. Inhibition of anammox activity by phenol: Suppression effect, community analysis and mechanism simulation. Int. Biodeterior. Biodegradation 2019, 141, 30–38. [Google Scholar] [CrossRef]
- Toh, S.K.; Webb, R.I.; Ashbolt, N.J. Enrichment of Autotrophic Anaerobic Ammonium-Oxidizing Consortia from Various Wastewaters. Microb. Ecol. 2002, 43, 154–167. [Google Scholar] [CrossRef] [PubMed]
- Van de Graaf, A.A.; Mulder, A.; de Bruijn, P.; Jetten, M.S.; Robertson, L.A.; Kuenen, J.G. Anaerobic oxidation of ammonium is a biologically mediated process. Appl. Environ. Microbiol. 1995, 61, 1246–1251. [Google Scholar] [PubMed]
- Ramos, C.; Fernández, I.; Suárez-Ojeda, M.E.; Carrera, J. Inhibition of the anammox activity by aromatic compounds. Chem. Eng. J. 2015, 279, 681–688. [Google Scholar] [CrossRef] [Green Version]
- Guan, Y.; Wang, B.; Gao, Y.; Liu, W.; Zhao, X.; Huang, X.; Yu, J. Occurrence and fate of antibiotics in the aqueous environment and their removal by constructed wetlands in China: A review. Pedosphere 2017, 27, 42–51. [Google Scholar] [CrossRef]
- Kümmerer, K. Antibiotics in the aquatic environment—A review—Part I. Chemosphere 2009, 75, 417–434. [Google Scholar] [CrossRef]
- Fernández, I.; Mosquera-Corral, A.; Campos, J.L.; Méndez, R. Operation of an Anammox SBR in the presence of two broad-spectrum antibiotics. Process Biochem. 2009, 44, 494–498. [Google Scholar] [CrossRef]
- Zhang, Z.-Z.; Zhang, Q.-Q.; Guo, Q.; Chen, Q.-Q.; Jiang, X.-Y.; Jin, R.-C. Anaerobic ammonium-oxidizing bacteria gain antibiotic resistance during long-term acclimatization. Bioresour. Technol. 2015, 192, 756–764. [Google Scholar] [CrossRef] [PubMed]
- Shi, Z.-J.; Hu, H.-Y.; Shen, Y.-Y.; Xu, J.-J.; Shi, M.-L.; Jin, R.-C. Long-term effects of oxytetracycline (OTC) on the granule-based anammox: Process performance and occurrence of antibiotic resistance genes. Biochem. Eng. J. 2017, 127, 110–118. [Google Scholar] [CrossRef]
- Noophan, P.; Narinhongtong, P.; Wantawin, C.; Munakata-Marr, J. Effects of oxytetracycline on anammox activity. J. Environ. Sci. Heal. Part A Toxic/Hazard. Subst. Environ. Eng. 2012, 47, 873–877. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.-F.; Zhang, Q.-Q.; Jin, R.-C. Changes in the nitrogen removal performance and the properties of granular sludge in an Anammox system under oxytetracycline (OTC) stress. Bioresour. Technol. 2013, 129, 65–71. [Google Scholar] [CrossRef]
- Jin, R.-C.; Zheng, P.; Mahmood, Q.; Hu, B.-L. Osmotic stress on nitrification in an airlift bioreactor. J. Hazard. Mater. 2007, 146, 148–154. [Google Scholar] [CrossRef]
- Xiao, Y.; Roberts, D.J. A review of anaerobic treatment of saline wastewater. Environ. Technol. 2010, 31, 1025–1043. [Google Scholar] [CrossRef]
- Gonzalez-Silva, B.M.; Rønning, A.J.; Andreassen, I.K.; Bakke, I.; Cervantes, F.J.; Østgaard, K.; Vadstein, O. Changes in the microbial community of an anammox consortium during adaptation to marine conditions revealed by 454 pyrosequencing. Appl. Microbiol. Biotechnol. 2017, 101, 5149–5162. [Google Scholar] [CrossRef]
- Lu, H.; Li, Y.; Shan, X.; Abbas, G.; Zeng, Z.; Kang, D.; Wang, Y.; Zheng, P.; Zhang, M. A holistic analysis of ANAMMOX process in response to salinity: From adaptation to collapse. Sep. Purif. Technol. 2019, 215, 342–350. [Google Scholar] [CrossRef]
- Fernández, I.; Vázquez-Padín, J.R.; Mosquera-Corral, A.; Campos, J.L.; Méndez, R. Biofilm and granular systems to improve Anammox biomass retention. Biochem. Eng. J. 2008, 42, 308–313. [Google Scholar] [CrossRef]
- Dapena-Mora, A.; Vázquez-Padín, J.R.; Campos, J.L.; Mosquera-Corral, A.; Jetten, M.S.M.; Méndez, R. Monitoring the stability of an Anammox reactor under high salinity conditions. Biochem. Eng. J. 2010, 51, 167–171. [Google Scholar] [CrossRef]
- Windey, K.; De Bo, I.; Verstraete, W. Oxygen-limited autotrophic nitrification–denitrification (OLAND) in a rotating biological contactor treating high-salinity wastewater. Water Res. 2005, 39, 4512–4520. [Google Scholar] [CrossRef] [PubMed]
- Kartal, B.; Koleva, M.; Arsov, R.; van der Star, W.; Jetten, M.S.M.; Strous, M. Adaptation of a freshwater anammox population to high salinity wastewater. J. Biotechnol. 2006, 126, 546–553. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Yamamoto, T.; Nishiyama, T.; Fujii, T.; Furukawa, K. Effect of salt concentration in anammox treatment using non woven biomass carrier. J. Biosci. Bioeng. 2009, 107, 519–523. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Jin, R.-C.; Yang, G.-F.; Yu, J.-J.; Xing, B.-S.; Zhang, Q.-Q. Impacts of transient salinity shock loads on Anammox process performance. Bioresour. Technol. 2012, 112, 124–130. [Google Scholar] [CrossRef] [PubMed]
- Wei, Q.; Kawagoshi, Y.; Huang, X.; Hong, N.; Van Duc, L.; Yamashita, Y.; Hama, T. Nitrogen removal properties in a continuous marine anammox bacteria reactor under rapid and extensive salinity changes. Chemosphere 2016, 148, 444–451. [Google Scholar] [CrossRef] [PubMed]
- Malovanyy, A.; Plaza, E.; Trela, J.; Malovanyy, M. Ammonium removal by partial nitritation and Anammox processes from wastewater with increased salinity. Environ. Technol. 2015, 36, 595–604. [Google Scholar] [CrossRef]
- Chen, H.; Ma, C.; Ji, Y.-X.; Ni, W.-M.; Jin, R.-C. Evaluation of the efficacy and regulation measures of the anammox process under salty conditions. Sep. Purif. Technol. 2014, 132, 584–592. [Google Scholar] [CrossRef]
- Fernández, I.; Bravo, J.I.; Mosquera-Corral, A.; Pereira, A.; Campos, J.L.; Méndez, R.; Melo, L.F. Influence of the shear stress and salinity on Anammox biofilms formation: Modelling results. Bioprocess Biosyst. Eng. 2014, 37, 1955–1961. [Google Scholar] [CrossRef] [Green Version]
- Jiang, X.; Hou, L.; Zheng, Y.; Liu, M.; Yin, G.; Gao, J.; Li, X.; Wang, R.; Yu, C.; Lin, X. Salinity-driven shifts in the activity, diversity, and abundance of anammox bacteria of estuarine and coastal wetlands. Phys. Chem. Earth Parts A/B/C 2017, 97, 46–53. [Google Scholar] [CrossRef]
- Xing, H.; Wang, H.; Fang, F.; Li, K.; Liu, L.; Chen, Y.; Guo, J. Effect of increase in salinity on ANAMMOX–UASB reactor stability. Environ. Technol. 2017, 38, 1184–1190. [Google Scholar] [CrossRef]
- Meng, Y.; Yin, C.; Zhou, Z.; Meng, F. Increased salinity triggers significant changes in the functional proteins of ANAMMOX bacteria within a biofilm community. Chemosphere 2018, 207, 655–664. [Google Scholar] [CrossRef] [PubMed]
Temp. | pH | Anammox Species | Reactor Capacity | Bioreactor Type | Removal Rate | Growth Rate | Ref. |
---|---|---|---|---|---|---|---|
35–46 °C | 7.5–8.5 | Brocadia anammoxidans, Brocadia fulgida, Brocadia sp., and “Candidatus Kuenenia” | 10.0 L | SBR (Sequencing bioreactor) | 0.25 g N L−1 d−1 | - | [40] |
45–55 °C | 7–8 | Kuenenia stuttgartiensis | 1.0 L | SBR | - | - | [42] |
15 °C | 7–8 | Kuenenia stuttgartiensis | 1.0 L | SBR | 0.05 g N L−1 d−1 | Slow growth | [42] |
37 °C | 7.86 | “Candidatus Brocadia anammoxidans” | 1.25 L | Single PN/A up flow reactor | 0.22−0.35 Kg N m−3 d−1 | High growth but no value mentioned | [9] |
20 °C | 7 | “Candidatus Brocadia” | 10.0 L | MBR (Membrane bioreactor) | - | 0.0011 d−1 | [57] |
30 °C | 7 | “Candidatus Brocadia” | 10.0 L | MBR | - | 0.33 d−1 | [57] |
29 °C | 7.5 | “Candidatus Brocadia fulgida” | 12.0 L | SBR | 100–400 mg N L−1 d−1 | 0.015–0.095 d−1 | [58] |
15 °C | 7.4 | “Candidatus Brocadia” | 12.0 L | SBR-PN/A | 20–40 mg N L−1 d−1 | - | [2] |
13–18 °C | 7.5–7.9 | “Candidatus Kuenenia” | 2.5 L | UASB | 5.16–5.40 kg N m−3 d−1 | Lower growth rate | [41] |
23–28 °C | 7.5–7.9 | “Candidatus Kuenenia” | 2.5 L | UASB | 5.72 kg N m−3 d−1 | - | [41] |
10–20 °C | 7.3 | “Candidatus Brocadia fulgida” | 2.7 L | SBAR | 0.4 g N L−1 d−1 | High growth rate at 15 °C | [29] |
24 °C | 7.8 | “Candidatus Brocadia”, “C. Scalindua” | 1.5 L | SBR | 0.048–0.156 g N L−1 d−1 | - | [59] |
30 °C | - | - | 8.0 L | UASB | 5.72 Kg N m−3 d−1 | High growth rate but not specific number | [60] |
16 °C | - | - | 8.0 L | UASB | 2.28 Kg N m−3 d−1 | Slightly low in growth rate | [60] |
29–30 °C | 8.0–8.1 | Brocadia fulgida | 200–1200 L | SBR | 0.6 g N L−1 d−1 | - | [61] |
DO Level | Specific Bioreactor | Reactor Capacity | Problems | Removal Rate | Ref. |
---|---|---|---|---|---|
2–8 mg O2 L−1 | SBR | 2.6 L | Increasing O2 from 2 to 8 mg L−1 decreased the removal rate | 46–380 g N L−1 d−1 | [61] |
<0.04 mg O2 L−1 | NRBC (non-woven rotating biological contactor) | 7 L | Increasing O2 in the system reduced the AOB activity, nitrogen removal rate, and caused high nitrite concentrations | 2.1 kg N L−1 d−1 | [84] |
<0.3 mg O2 L−1 | SBR | 10 L | Suspended anammox biomass activity inhibited by low temperature | 6–8 mg N L−1 d−1 | [43] |
0.4 mg O2 L−1 | SBR | 1200 L | Thin layers of granules can easily be penetrated by oxygen | 0.6 g N L−1 d−1 | [83] |
3.0 mg O2 L−1 | SBR | 200 L | More difficult for oxygen to penetrate thick layers and it protected anammox from non-suitable liquid media conditions (benefit to anammox) | 0.6 g N L−1 d−1 | [83] |
0.4–4 mg O2 L−1 | SBR | 10 L | Appearance of AOB in anoxic conditions | 0.25 g N L−1 d−1 | [40] |
0.18 mg O2 L−1 | SBR-MBBR (moving bed biofilm reactor) | 12 L | High nitrite and ammonia concentrations during low temperature, <11 °C, anammox activity decreases | 0.047 g N L−1 d−1 | [2] |
0.15 mg O2 L−1 | SBR-HMBBR | 12 L | High nitrite and ammonia concentrations during low temperature, <11 °C, anammox activity decreases | 0.026 g N L−1 d−1 | [2] |
0.4 mg O2 L−1 | CFR (continuous flow reactor) | 12 L | Slow response of anammox because of lower loading rate and low anammox biomass | 0.42 g NH4 -N L−1 | [85] |
Nitrogen Loading Rate | Reactor Type | Culture Period | Nitrogen Removal Rate | Removal Efficiency | Nitrogen Effluent | Problems | Ref. |
---|---|---|---|---|---|---|---|
0.1–0.31 kg N L−1 d−1 | MBFR | 730-d | 0.2 kg N L−1 d−1 | 91.7%–94.7% | <5 mg N L−1 | High effluent nitrogen in the system causes unsatisfactory nutrient ratio 1.32:1 (nitrite to ammonium) at 20 °C | [89] |
40–61 mg N L−1 d−1 | MBBR | 240-d | 30–47 mg N L−1 d−1 | 73%–91% | 5.7 mg N L−1 | No interruption because nitrogen load was less | [2] |
38–42 mg N L−1 | Hybrid MBBR | 240-d | 26 mg N L−1 d−1 | 63% | 8 mg N L−1 | Less stable in removing nitrogen owing to increase in nitrate produced | [2] |
206–291 mg N L−1 | SBR | 155-d | 150–200 mg N L−1 | 80% | 100 mg N L−1 | Reduced removal rate because of high salt concentrations >3.5–15 g NaCl L−1 | [59] |
220–262 mg N L−1 | SBR | 445-d | 50–100 mg N L−1 d−1 | <80% | 200–300 mg N L−1 | High salt and nitrite levels >75 mg L−1, decline in anammox activity | [59] |
1.2–1.34 kg N L−1 d−1 | SBR | 101-d | 0.71–0.98 kg N L−1 d−1 | 66%–75% | 20 mg N L−1 | Reduced anammox activity by reducing enzyme activity at low temperature | [90] |
1800 mg N L−1 d−1 | UASB | 580-d | 1800–2000 mg N L−1 d−1 | nd | 18 mg N L−1 | Source of the influent came from municipal WWTP (wastewater treatment plant) comprising heavy metals that inhibit anammox activity | [4] |
0.32 kg N L−1 d−1 | SBR | 240-d | <800 mg N L−1 d−1 | 46%–75% | <50 mg N L−1 | High inorganic carbon content in the sludge promoted high accumulation of other bacteria and then reduced NRR (Nitrogen revomal rate) | [50] |
0.78–0.90 g N L−1 d−1 | SBR (a) | 955-d | 400–500 mg N L−1 d−1 | 47%–55% | - | Reducing temperature to 15 °C can directly reduce the nitrogen removal up to 16% | [83] |
0.76–0.79 g N L−1 d−1 | SBR (b) | 1120-d | 190–440 mg N L−1 d−1 | 16%–57% | - | Reduced temperature reduced the removal ability of anammox | [83] |
0.11–0.31 g N L−1 d−1 | SBR (c) | 186-d, 1676-d | 40–80 mg N L−1 d−1 | 10%–70% | <20 mg N L−1 | Lower temperature reduced ability of NRR, while adapted anammox can perform better NRR | [83] |
Influent Carbon (COD/IC) | Reactor Type | Culture Period | Carbon Concentration Effluent | Nitrogen Removal Efficiency/Effluent Nitrogen | Problems | Ref. |
---|---|---|---|---|---|---|
70.6–284.1 COD mg L−1 | ABR | 91 d | 50 mg L−1 | 89%–96% | High COD concentration damages the anammox activity | [106] |
100 mg COD·L−1 | CANON | 60 d | nd | 85% | Lower carbon resulted in high removal rate | [102] |
400 mg COD L−1 | CANON | 60 d | nd | 68.1% | Partial inhibition of nitrogen removal rate and increase in the heterotrophic bacteria | [102] |
533 mg COD L−1 | MBBR | 280 d | 40 mg COD L−1 | 73%–91% | No interruption because nitrogen load was less | [2] |
533 mg COD L−1 | Hybrid MBBR | 210 d | 33 mg COD L−1 | 63% | Less stable in removing nitrogen owing to increase in nitrate produced | [2] |
60 mg IC L−1 | Fixed bed Reactor | 39 d | nd | 4–4.5 kg N L−1 d−1 | High IC reduced the NRR | [107] |
<10 mg IC L−1 | Fixed bed Reactor | 39 d | 4 mg C L−1 | 3.5 kg N L−1 d−1 | Low IC reduced the anammox removal of nitrogen, the NRR, and the saturation found at 1.2 mg L−1 | [107] |
90 mg IC L−1 | Lab Scale PN/A | 40 d | nd | 78% | Low nitrite was produced because of imbalance in bacterial population in the process | [108] |
9.6 mg IC L−1 | Lab Scale PN/A | 86 d | nd | 46% | Anammox was outcompeted by NOB for nitrite; then, nitrate becomes abundant | [108] |
Seeding Sources | Reactor | Operation Mode | NO2−-N Concentration (mg/L) | Effect | Ref. |
---|---|---|---|---|---|
Anammox sludge dominated by Brocadia | Serum bottle | Batch test | 400 | Inhibition by 50% | [111] |
1000 | Total inhibition | ||||
Anammox sludge from pilot scale SBR (40 L) | 1.1-L reactor | Batch test | 30 | Losses in activity | [114] |
60 | Maximum nitrite removal rate decreased by 25% | ||||
Anammox biomass dominated by “Candidatus Kuenenia stuttgartiensis” | Serum vial | Batch test | 350 | Inhibition by 50% | [26] |
Anammox biofilm | SBR reactor 5 L | Continuous | <240 | No inhibition | [55] |
Anaerobic granular sludge from UASB (upflow anaerobic sludge blanket reactor) reactor | UBF reactor | Continuous | 380 | Nitrogen removal sharply decreased | [70] |
Anammox sludge entrapped in a polyethylene glycol (PEG) gel carrier | Cylindrical reactor (500 mL) | Continuous | 750 | Activity decreased by 10% | [115] |
Granular anammox sludge | Serum bottle | Batch test | 561 | Inhibition | [92] |
MBBR biofilm | Air-tight 800 mL bottle | Batch test | 85 | Inhibition by 50% | [112] |
SBR sludge | 98 | Inhibition by 50% | |||
UASB granular sludge | 240 | Inhibition by 50% | |||
Biofilm carriers taken from the MBBR | 1.2 L vessel | Batch test | 100 | Activity decreased by 26% | [116] |
160 | Total inhibition | ||||
Suspended anammox culture | Serum flask (160 mL) | Batch test | 151 | Inhibition by 50% | [113] |
Granular anammox enrichment | 185 | Inhibition by 50% | |||
Anammox granular sludge | Serum flasks (160 mL) | Batch test | 53 | Inhibition by 50% in the absence of ammonium | [109] |
384 | Inhibition by 50% in the presence of ammonium | ||||
Loose biomass taken from the MBBR | Serum flask (800 mL) | Batch test | 52 | Activity decreased by >35% | [117] |
Seeding Sources | Reactor | Operation Mode | Sulfide-S Concentration (mg/L) | Effect | Ref. |
---|---|---|---|---|---|
Suspended enrichment culture Granular anammox enrichment | Serum flasks | Batch test | 1.023 (H2S) 3.751 (H2S) | Inhibition by 50% Inhibition by 50% | [113] |
Anammox granular sludge | Serum bottles Up-flow anaerobic sludge blanket reactor | Batch test Continuous | 264 40 | Inhibition by 50% Activity decreased by 17.2% | [51] |
Anammox mixed sludge | Serum bottles | Batch test | 48 96 192 | Activity decreased by 14.0% Activity decreased by 21.2% Activity decreased by 35.6% | [118] |
Anammox biomass dominated by “Candidatus Kuenenia stuttgartiensis” | Serum vial | Batch test | 160 | Total inhibition | [26] |
Suspended and granular anammox culture | Serum flasks | Batch test | 320 | Irreversible inhibition | [113] |
Seeding Sources | Reactor | Operation Mode | Toxic Metals and Concentration (mg/L) | Effect | Ref. |
---|---|---|---|---|---|
Anammox sludge dominated by KSU-1 strain | 120 mL serum vials | Batch test | Cd: 11.16 Ag: 11.52 Hg: 60.35 Pb: 40 | Inhibition by 50% Inhibition by 50% Inhibition by 50% Activity decreased by 7.19% | [128] |
Anammox sludge dominated by “Candidatus Kuenenia stuttgartiensis” | 160 mL serum flask | Batch test | Cu: 16.3 Zn: 20.0 | Activity decreased by 20.1% | [120] |
Non-acclimated microbial sludge | Serum bottles | Batch test | Zn: 6.9 | Inhibition by 50% | [125] |
Acclimated microbial sludge | Stirring SBBR (2.5 L) | Continuous | Zn: <10 | Stimulated anammox performance | [125] |
Anammox sludge from 1-year operating reactor | 2.7 L reactor | Continuous | Cu: 5.95 Cu: 12.6 | No significant inhibition Clear inhibition | [121] |
Anammox granular sludge | 1 L UASB reactors | Batch test | Cu: 12.6 | Inhibition by 50% | [122] |
granular anammox biomass | 340 mL serum bottles | Batch test | Cu: 1.9 Zn: 3.9 | Inhibition by 50% Inhibition by 50% | [28] |
Anammox sludge dominated by “Candidatus” and Planctomycetes | 500 mL reactor | Continuous feeding | Ni: 5 Cu: 5 Co: 5 Zn: 10 Mo: 0.2 | Anammox activity decreased by more than 10% | [123] |
Anammox sludge dominated by “Candidatus Brocadia” | 120 mL serum bottle | Batch test | Cd: 7.00 Hg: 2.33 Pb: 10.40 Cr: 9.84 As: 60 | Inhibition by 50% Inhibition by 50% Inhibition by 50% Inhibition by 50% Activity decreased by 29.67% | [129] |
Granular anammox biomass | 160 mL serum bottles | Batch test | Cu: 4.2 Zn: 7.6 Cd: 11.2 Ni: 48.6 Mo: 22.7 Pb: 6.0 | Inhibition by 50% Inhibition by 50% Inhibition by 50% Inhibition by 50% Moderately inhibitory Moderately inhibitory | [124] |
Anammox granular sludge | 1 L UASB reactor | Continuous | Zn: 25 | Inhibition by 50% | [126] |
Anammox sludge and nitrification sludge | Anammox biofilter reactor | Continuous | Zn: 20 | Irreversible inhibition | [127] |
Granular sludge dominated by Brocadia fulgida | 25 mL vials | Batch test | Cu: 19.3 Cr: 26.9 Pb: 45.6 Zn: 59.1 Ni: 69.2 Cd: 174.6 Mn: 175.8 | Inhibition by 50% | [119] |
Seeding Sources | Reactor | Operation Mode | Antibiotics and Concentration (mg/L) | Effect | Ref. |
---|---|---|---|---|---|
Sludge from the denitrifying fluidized bed reactor | 500 mL serum bottle | Batch test | Penicillin: 1 Penicillin: 100 Chloramphenicol: 20 Chloramphenicol: 200 Ampicillin: 400 Ampicillin: 800 | Activity decreased by 17% Activity decreased by 36% Activity decreased by 36% Activity decreased by 98% for first 3 d and 68% after 3 d Activity decreased by 71% Activity decreased by 94% | [148] |
Granular Anammox sludge | 25 mL serum vials | Batch test | Tetracycline hydrochloride: 100–1000 Chloramphenicol: 250–1000 | Activity decreased from 20% to 80% Activity decreased from 20% to 80% | [152] |
Granular Anammox sludge | 1 L SBR reactor | Continuous | Tetracycline hydrochloride: 10 Chloramphenicol: 20 | Activity decreased by 60% Activity decreased by 80% after | [152] |
Anammox biomass dominated by “Candidatus Kuenenia stuttgartiensis” | 25 mL serum vials | Batch test | Allylthiourea: 1 Chloramphenicol: 1 | Activity decreased by more than 20% - No inhibition | [26] |
Granular anammox biomass | 200 mL vials | Batch test | Sulfathiazole: 650 Oxytetracycline: 1100 | Inhibition by 50% Inhibition by 50% | [28] |
Anammox seed granules dominated by “Candidatus Kuenenia stuttgartiensis” | 1 L UASB reactor | Continuous | Amoxicillin: 150 Florfenicol: 20 Sulfamethazine: 200 | Severely inhibited Inhibition by 50% Slight inhibition | [153] |
Anammox seed granules dominated by “Candidatus Kuenenia stuttgartiensis” | 1 L UASB reactor | Continuous | Oxytetracycline: 2 | Specific anammox activity decreased by 81.3% | [154] |
Anammox bacteria from an SBR | 1 L serum bottle | Batch test | Oxytetracycline: 10–100 | Complete inhibition | [155] |
Anammox mixed culture from UASB reactor | 160 mL serum bottle | Batch test | Oxytetracycline: 517.5 | Inhibition by 50% | [156] |
Anammox mixed culture from UASB reactor | 1 L UASB | Continuous | Oxytetracycline: 50 | Activity loss of 90.4% | [156] |
Seeding Sources | Reactor | Operation Mode | Salts and Concentration (g/L) | Effect | Ref. |
---|---|---|---|---|---|
Anammox sludge from an SBR | 2 L SBR | Batch | NaCl: 5–10 | Improved biomass retention Anammox activity slightly reduced initially but gradually increases | [161] |
Mature anammox sludge | 3 L SBR | Continuous | NaCl: 0–30 | Enhanced the aggregation of anammox biomass Stimulated the activity at concentrations of 6–15 g/L Activity decreased at concentrations higher than 15 g/L | [162] |
Anammox sludge | 50 L lab-scale RBC | Batch test | NaCl: 6 NaCl: 30 (shock load) | No significant effect 96% loss in anammox activity for non-adapted biomass 58% loss in anammox activity for adapted biomass | [163] |
Anammox sludge dominated by “Candidatus Kuenenia stuttgartiensis” | 25 mL vials | Batch test | NaCl: 13.45 Na2SO4: 11.36 KCl: 14.9 | Inhibition by 50% Inhibition by 50% Inhibition by 50% | [26] |
Anaerobic activated sludge | 5 L UASB bioreactor | Batch test | NaCl: 30 (shock load) | Activity decreased by 67.5% for non-adapted biomass Activity decreased by 45.1% for adapted biomass | [164] |
Freshwater anammox sludge | 2.8 L up-flow fixed- bed column reactor | Continuous | NaCl: 30 NaCl: >30 | Stable nitrogen removal rate Nitrogen removal sharply declined | [165] |
Anammox bacterium KU2 | 7 L up-flow column reactor that | Continuous | NaCl: 30 | Stable nitrogen removal after a period of adaptation | [67] |
Anammox sludge | 2.5 L UASB reactor | Continuous | NaCl: 5–60 | Sludge retention time decreased with the increase in NaCl load Nitrogen removal rate decreased significantly with NaCl > 10 g/L | [166] |
Marine anammox bacteria dominated by Planctomycete UKU-1 | 0.2 L up-flow column reactor containing | Continuous | NaCl: 0–75 | Stable nitrogen removal with NaCl < 50 g/L Activity significantly declined with NaCl of 75 g/L | [167] |
Anammox granule dominated by “Candidatus Brocadia fulgida” | 10 L MBBR | Continuous | NaCl: 0–15 | Complete inhibition at 15 g/L | [168] |
Anammox sludge | 1 L UASB reactor | Continuous | NaCl: 5–30 | Performance degraded at NaCl higher than 15 g/L | [169] |
Anammox sludge | 1 L SBR | Continuous | NaCl: 5, 15 CaCl2: 5 | 5 g/L of NaCl and CaCl2 favored the formation of anammox biofilm Inhibitory effect observed at NaCl 15 g/L | [170] |
Anammox bacteria from estuarine and coastal wetlands | 12 mL vials | Batch test | NaCl: 0–40 | Maximal anammox activity at NaCl 5 g/L Inhibition at NaCl higher than 30 g/L | [171] |
Anammox sludge | 6 L UASB reactor | Continuous | NaCl: 8–38 | Activity inhibition from shock load of 8–38 g/L NaCl Nitrogen removal decreased slightly and stable at NaCl range of 8–18 g/L | [172] |
Anammox sludge | 5 L non-woven biofilm reactors | Continuous | NaCl: 0–20 | Nitrogen removal deteriorated at NaCl higher than 10 g/L | [173] |
Fresh water anammox sludge | 350 mL UASB reactors | Continuous | NaCl: 3–30 | Dominant anammox bacteria shifted from "Candidatus Brocadia fulgida" to "C. Kuenenia stuttgartiensis" | [159] |
Anammox sludge | 2.2 L UASB reactor | Continuous | NaCl: 35.1 | Anammox performance collapsed | [160] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cho, S.; Kambey, C.; Nguyen, V.K. Performance of Anammox Processes for Wastewater Treatment: A Critical Review on Effects of Operational Conditions and Environmental Stresses. Water 2020, 12, 20. https://doi.org/10.3390/w12010020
Cho S, Kambey C, Nguyen VK. Performance of Anammox Processes for Wastewater Treatment: A Critical Review on Effects of Operational Conditions and Environmental Stresses. Water. 2020; 12(1):20. https://doi.org/10.3390/w12010020
Chicago/Turabian StyleCho, Sunja, Cicilia Kambey, and Van Khanh Nguyen. 2020. "Performance of Anammox Processes for Wastewater Treatment: A Critical Review on Effects of Operational Conditions and Environmental Stresses" Water 12, no. 1: 20. https://doi.org/10.3390/w12010020
APA StyleCho, S., Kambey, C., & Nguyen, V. K. (2020). Performance of Anammox Processes for Wastewater Treatment: A Critical Review on Effects of Operational Conditions and Environmental Stresses. Water, 12(1), 20. https://doi.org/10.3390/w12010020