Application of Ionizing Radiation in Wastewater Treatment: An Overview
Abstract
:1. Introduction
2. Decomposition and Removal Mechanisms
3. Advances in Treating Agricultural Wastewaters
4. Advance in Dyes Treatments
5. Advances in Wastewater and Sludge Disinfection
6. Advances in Pharmaceutical and Petrochemical Wastewater Treatments
7. Sustainability of the Technology
- The usable output power of the electron accelerator limits its wide scale use as a safe substitute for chlorination for medium scale wastewater treatment plants.
- Capital costs of electron accelerators needs to be reduced to ensure economical feasibility, where capital cost of installing an electron accelerator of 1MeV/400KW, could be attributed to half the accelerator price, whereas the design, construction, transportation, and installation of the facility contribute to 37.5% of capital cost.
- Appropriate safety measures, i.e., shielding requirements, operational procedures, provision of safety assessment documents, should be applied to ensure radiological containments.
- Appropriate security measures should be applied to ensure safety of workers and public.
8. Conclusions
- Most of the published work focused on the quantification of ionizing radiation effects on primary pollutants and the secondary intermediates toxicity, and determination of optimum irradiation conditions in different effluents. Research efforts are needed to study the feasibility of ionizing radiation treatment for petrochemical wastewater effluents,
- Despite real industrial wastewater effluents were studied, there is a need to study the kinetics reactions in these complex systems to enable a better understanding and a better design for combined treatment schemes.
- Compared to other disinfection technologies, the ionizing radiation technology provides economical, reliable, and safer operations that are not affected by the seasonal variation in the effluent composition, and reduces the generation of secondary toxic intermediates.
- Operational safety of industrial irradiators has been improved due to the increasing stringent regulatory requirements and the updating the operational procedures, which lead to the reduction of accidents probability from 10−2 to 10−4 a−1.
Author Contributions
Funding
Conflicts of Interest
References
- Allaoui, M.; Schmitz, T.; Campbell, D.; Porte, C.A.D.L. Good Practices, For Regulating Wastewater Treatment, Legislations, Policies and Standards; United Nations Environment Programme: Nairobi, Kenya, 2015. [Google Scholar]
- UNESCAP. Policy Guidance Manual on Wastewater Management, with a Special Emphasis on Decentralized Wastewater Treatment Systems; UNESCAP: Bangkok, Thailand, 2015. [Google Scholar]
- FAO. Wastewater Treatment and Use in Agricultural-FAO Irrigation and Drainage Paper 47; FAO: Rome, Italy, 1992; Available online: http://www.fao.org/3/t0551e/t0551e00.htm#Contents (accessed on 20 November 2019).
- Quach-Cu, J.; Herrera-Lynch, B.; Marciniak, C.; Adams, S.; Simmerman, A.; Reinke, R.A. The Effect of Primary, Secondary, and Tertiary Wastewater Treatment Processes on Antibiotic Resistance Gene (ARG) Concentrations in Solid and DissolvedWastewater Fractions. Water 2018, 10, 37. [Google Scholar] [CrossRef] [Green Version]
- Deng, Y.; Zhao, R. Advanced Oxidation Processes (AOPs) in Wastewater Treatment. Curr. Pollut. Rep. 2015, 1, 167–176. [Google Scholar] [CrossRef] [Green Version]
- Shon, H.; Vigneswaran, S.; Snyder, S. Effluent organic matter (EfOM) in wastewater: Constituents, effects, and treatment. Crit. Rev. Environ. Sci. Technol. 2006, 36, 327–374. [Google Scholar] [CrossRef]
- Tchobanoglous, G.; Burton, F.L.; Stensel, H.D. Waste Water Engineering: Treatment and Reuse; Metcalf and Eddy: Wakefield, UK, 2003. [Google Scholar]
- EU. Effluent Charging Systems in the EU Member States; European Parliament: Luxembourg, 2001. [Google Scholar]
- Wastewater Treatment Requirement. Available online: https://www.lacsd.org/civicax/filebank/blobdload.aspx?blobid=3325 (accessed on 18 December 2019).
- Munter, R. Industrial wastewater characteristics. In Sustainable Water Management in the Baltic Sea Basin: Water Use and Management; Lundin, L.C., Ed.; The Baltic University Programme, Uppsala University: Uppsala, Sweden, 2000; pp. 185–194. [Google Scholar]
- Kumar, M.; Puri, A. A review of permissible limits of drinking water. Indian J. Occup. Environ. Med. 2012, 16, 40–44. [Google Scholar] [PubMed] [Green Version]
- WHO. A Compendium of Standards for Wastewater Reuse in the Eastern Mediterranean Region; WHO-EM/CEH/142/E; WHO: Cairo, Egypt, 2006. [Google Scholar]
- Environmental Management Act. Municipal Wastewater Regulation B.C. Reg. 87/2012, Consolidation Current to 20 June2018. Available online: http://archives.leg.bc.ca/civix/document/id/crbc/crbc/87_2012 (accessed on 20 August 2019).
- Councel Directive of 21 May 1991 Concerning Urban Wastewater Treatment (91/271/EEC). Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:1991:135:0040:0052:EN:PDF%20 (accessed on 18 December 2019).
- EU. Minimum Quality Requirements for Water Reuse in Agricultural Irrigation and Aquifer Recharge; Publications Office of the European Union: Luxembourg, 2017.
- Luo, Y.; Guo, W.; Ngo, H.H.; Nghiem, L.D.; Hai, F.I.; Zhang, J.; Liang, S.; Wang, X.C. A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Sci. Total Environ. 2014, 473, 619–641. [Google Scholar] [CrossRef]
- Naing, T.T.; Lay, K.K. Utilization of gamma radiation in industrial wastewater treatment. Int. J. Mech. Prod. Eng. 2015, 3, 1–5. [Google Scholar]
- Miklos, D.B.; Remy, C.; Jekel, M.; Linden, K.G.; Drewes, J.E.; Hübner, U. Evaluation of advanced oxidation processes for water and wastewater treatment—A critical review. Water Res. 2018, 139, 118–131. [Google Scholar] [CrossRef]
- Babu, D.S.; Srivastava, V.; Nidheesh, P.V.; Kumar, M.S. Detoxification of water and wastewater by advanced oxidation processes. Sci. Total Environ. 2019, 696, 133961. [Google Scholar] [CrossRef]
- Liu, N.; Lei, Z.D.; Wanga, T.; Wang, J.J.; Zhang, X.D.; Xu, G.; Tang, L. Radiolysis of carbamazepine aqueous solution using electron beam irradiation combining with hydrogen peroxide: Efficiency and mechanism. Chem. Eng. J. 2016, 295, 484–493. [Google Scholar] [CrossRef]
- Meng, M.; Pellizzari, F.; Boukari, S.O.B.; Leitner, N.K.V.; Teychene, B. Impact of e-beam irradiation of municipal secondary effluent on MF and RO membranes performances. J. Membr. Sci. 2014, 471, 1–8. [Google Scholar] [CrossRef]
- IAEA. Radiation Treatment of Polluted Water and Wastewater; IAEA: Vienna, Austria, 2008. [Google Scholar]
- Wojnarovits, L.; Takacs, E. Irradiation treatment of azo dye containing wastewater: An overview. Radiat. Phys. Chem. 2008, 77, 225–244. [Google Scholar] [CrossRef]
- Sampa, M.H.O.; Takacs, E.; Gehringer, P.; Rela, P.R.; Ramirez, T.; Amro, H.; Trojanowicz, M.; Botelho, M.L.; Han, B.; Solpan, D.; et al. Remediation of polluted waters and wastewater by radiation processing. Nukleonika 2007, 52, 137–144. [Google Scholar]
- Jan, S.; Kamili, A.N.; Parween, T.; Hami, R.; Parray, J.A.; Siddiqi, T.O.; Ahmad, M.P. Feasibility of radiation technology for wastewater Treatment. Desalin. Water Treat. 2015, 55, 2053–2068. [Google Scholar] [CrossRef]
- Abdel Rahman, R.O.; Kozak, M.W.; Hung, Y.T. Radioactive pollution and control. In Handbook of Environment and Waste Management; Hung, Y.T., Wang, L.K., Shammas, N.K., Eds.; World Scientific Publishing Co: Singapore, 2014; pp. 949–1027. [Google Scholar] [CrossRef]
- Gehringer, P. Advances in radiation processing of wastewater—Basics of the process. In Status of Industrial Scale Radiation Treatment of Wastewater and Its Future; IAEA-TECDOC-1407; IAEA: Vienna, Austria, 2003; pp. 7–17. [Google Scholar]
- Shojaie, F. Comparison of the rate constants of a bimolecular reaction using two methods. Arab. J. Chem. 2017, 10, S148–S156. [Google Scholar] [CrossRef] [Green Version]
- IAEA. Status of Industrial Scale Radiation Treatment of Wastewater and Its Future; IAEA-TECDOC-1407; IAEA: Vienna, Austria, 2003. [Google Scholar]
- Wojnárovits, L.; Takacs, E. Wastewater treatment with ionizing radiation. J. Radioanal. Nucl. Chem. 2017, 311, 973–981. [Google Scholar] [CrossRef]
- Chaychian, M.; Al-Sheikhly, M.; Silverman, J.; McLaughlin, W.L. The mechanisms of removal of heavy metals from water by ionizing radiation. Radiat. Phys. Chem. 1998, 53, 145–150. [Google Scholar] [CrossRef]
- Chmielewski, A.G. Application of ionizing radiation to environment protection. Nukleonika 2005, 50, s17–s24. [Google Scholar] [CrossRef]
- Dalalia, N.; Kazeraninejada, M.; Akhavan, A. Removal of heavy metal ions from wastewater samples using electron beam radiation in the presence of TiO2. Desalin. Water Treat. 2017, 71, 136–144. [Google Scholar] [CrossRef] [Green Version]
- El-Motaium, R.A. Application of nuclear techniques in Environmental studies and pollution Control. In Proceedings of the 2nd Environmental Physics Conference, Alexandria, Egypt, 18–22 February 2006; pp. 169–182. [Google Scholar]
- Rela, P.R.; Sampa, M.H.O.; Duarte, C.L.; Costa, F.E.D.; Rela, C.S.; Borrely, S.I.; Mori, M.N.; Somessari, E.S.R.; Silveira, C.G. The status of radiation process to treat industrial effluents in Brazil. In Radiation Treatment of Polluted Water and Waste Water; IAEA TECDOC-1598; IAEA: Vienna, Austria, 2008; pp. 27–41. [Google Scholar]
- Ramirez, T.; Armas, M.; Uzcategui, M. Effect of accelerated electron beam on pesticides removal of effluents from flower plantations. In Radiation Treatment of Polluted Water and Waste Water; IAEA TECDOC-1598; IAEA: Vienna, Austria, 2008; pp. 43–58. [Google Scholar]
- Emmi, S.S.; De Paoli, G.; Takács, E.; Caminati, S.; Pálfi, T. The e-induced decomposition of pesticides in water: A gamma and pulse radiolysis investigation on carbofuran. In Radiation Treatment of Polluted Water and Waste Water; IAEA TECDOC-1598; IAEA: Vienna, Austria, 2008; pp. 77–88. [Google Scholar]
- Şolpan, D. The degradation of some pesticides in aqueous solutions by gamma radiation. In Radiation Treatment of Polluted Water and Waste Water; IAEA TECDOC-1598; IAEA: Vienna, Austria, 2008; pp. 177–199. [Google Scholar]
- Utrill, J.R.; Abdel Daiem, M.M.; Polo, M.S.; Pérez, R.O.; Peñalver, J.J.L.; Gala, I.V.; Mota, A.J. Removal of compounds used as plasticizers and herbicides from water by means of gamma irradiation. Sci. Total Environ. 2016, 569, 518–526. [Google Scholar] [CrossRef]
- Sabbagh, S.; El Mahmoudi, A.S.; Al-Dakheel, Y.Y. Waste Water Sterilization by Cobalt Co-60 for the Agricultural Irrigation: A Case Study. Int. J. Water Resour. Arid Environ. 2014, 3, 11–18. [Google Scholar]
- Lim, S.J.; Kim, T.H. Combined treatment of swine wastewater by electron beam irradiation and ion-exchange biological reactor system. Sep. Purif. Technol. 2015, 146, 42–49. [Google Scholar] [CrossRef]
- Alkhuraiji, T.S.; Boukari, S.O.B.; Alfadhl, F.S. Gamma irradiation-induced complete degradation and mineralization of phenol in aqueous solution: Effects of reagent. J. Hazard. Mater. 2017, 328, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Chen, L.; Tian, J.; Wang, J.; He, S. Degradation of a monoazo dye Alizarin Yellow GG in aqueous solutions by gamma irradiation: Decolorization and biodegradability enhancement. Radiat. Phys. Chem. 2013, 83, 86–89. [Google Scholar] [CrossRef]
- Takacs, E.; Wojnarovits, L.; Palfi, T. Azo dye degradation by high-energy irradiation: Kinetics and mechanism of destruction. Nukleonika 2007, 52, 69–75. [Google Scholar]
- Muneer, M.; Bhatti, I.A.; Bhatti, H.N.; Rehman, K.U. Treatment of Dyes Industrial Effluents by Ionizing Radiation. Asian J. Chem. 2011, 23, 2392–2394. [Google Scholar]
- Abdou, L.A.W.; Hakeim, O.A.; Mahmoud, M.S.; El-Naggar, A.M. Comparative study between the efficiency of electron beam and gamma irradiation for treatment of dye solutions. Chem. Eng. J. 2011, 168, 752–758. [Google Scholar] [CrossRef]
- Borrely, S.I.; Morais, A.V.; Rosa, J.M.; Pedroso, C.B.; Pereira, M.D.C.; Hig, M.C. Decoloration and detoxification of effluents by ionizing radiation. Radiat. Phys. Chem. 2016, 124, 98–202. [Google Scholar] [CrossRef]
- Meibodi, M.E.; Parsaeian, M.R.; Amraei, R.; Banaei, M.; Anvari, F.; Tahami, S.M.R.; Vakhshoor, B.; Mehdizadeh, A.; FallahNejad, N.; Shirmardi, S.P.; et al. An experimental investigation of wastewater treatment using electron beam irradiation. Radiat. Phys. Chem. 2016, 125, 82–87. [Google Scholar] [CrossRef]
- Deogaonkar, S.C.; Wakode, P.; Rawat, K.P. Electron beam irradiation post treatment for degradation of non biodegradable contaminants in textile wastewater. Radiat. Phys. Chem. 2019, 165, 108377. [Google Scholar] [CrossRef]
- Basfar, A.A.; Abdel Rehim, F. Disinfection of wastewater from a Riyadh Wastewater Treatment Plant with ionizing radiation. Radiat. Phys. Chem. 2002, 65, 527–532. [Google Scholar] [CrossRef]
- Lee, O.M.; Kim, H.Y.; Park, W.; Kim, T.H.; Yu, S. A comparative study of disinfection efficiency and regrowth control of microorganism in secondary wastewater effluent using UV, ozone, and ionizing irradiation process. J. Hazard. Mater. 2015, 295, 201–208. [Google Scholar] [CrossRef] [PubMed]
- Sági, G.; Kovács, K.; Bezsenyi, A.; Csay, T.; Takács, E.; Wojnárovits, L. Enhancing the biological degradability of sulfamethoxazole by ionizing radiation treatment in aqueous solution. Radiat. Phys. Chem. 2016, 124, 179–183. [Google Scholar] [CrossRef]
- Tegze, A.; Sági, G.; Kovács, K.; Tótha, T.; Takács, E.; Wojnárovits, L. Radiation induced degradation of ciprofloxacin and norfloxacin: Kinetics and product analysis. Radiat. Phys. Chem. 2019, 158, 68–75. [Google Scholar] [CrossRef]
- Changotra, R.; Rajput, H.; Guin, J.P.; Varshney, L.; Dhir, A. Hybrid coagulation, gamma irradiation and biological treatment of real pharmaceutical wastewater. Chem. Eng. J. 2019, 370, 595–605. [Google Scholar] [CrossRef]
- Changotra, R.; Rajput, H.; Guin, J.P.; Khader, S.A.; Dhir, A. Techno-Economical Evaluation of Coupling Ionizing Radiation and Biological Treatment Process for the Remediation of Real Pharmaceutical Wastewater. J. Clean. Prod. 2020, 242, 118544. [Google Scholar] [CrossRef]
- Chu, L.; Yu, S.; Wang, J. Gamma radiolytic degradation of naphthalene in aqueous solution. Radiat. Phys. Chem. 2016, 123, 97–102. [Google Scholar] [CrossRef]
- Economical Aspects of Radiation Sterilization with Electron Beam. Available online: https://www.osti.gov/etdeweb/servlets/purl/644045 (accessed on 18 December 2019).
- Maruthi1, Y.A.; Das, N.L.; Hossain, K.; Rawat, K.P.; Sarma, K.S.S.; Sabharwal, S. Application of electron beam technology in improving sewage water quality: An advance technique. Eur. J. Sustain. Dev. 2013, 2, 1–18. [Google Scholar]
- Hossain, K.Y.; Maruthi, A.; Das, N.L.; Rawat, K.P.; Sarma1, K.S.S. Irradiation of wastewater with electron beam is a key to sustainable smart/green cities: a review. Appl. Water Sci. 2018, 8, 6. [Google Scholar] [CrossRef] [Green Version]
- Gala, I.V.; Peñalver, J.J.L.; Polo, M.S.; Utrilla, J.R. Degradation of X-ray contrast media diatrizoate in different water matrices by gamma irradiation. Chem. Technol. Biotechnol. 2013, 88, 1336–1343. [Google Scholar] [CrossRef]
- Maruthi, A.Y.; Das, N.L.; Hossain, K.; Rawat, K.P.; Sarma, K.S.S.; Sabharwal, S. Disinfection and reduction of organic load of sewage water by electron beam radiation. Appl. Water Sci. 2011, 1, 49–56. [Google Scholar] [CrossRef] [Green Version]
- Ndong, J.E.; Uribe, R.M.; Gregory, R.; Gangoda, M.; Nickelsen, M.G.; Loar, P. Effect of electron beam irradiation on bacterial and Ascaris ova loads and volatile organiccompounds in municipal sewage sludge. Radiat. Phys. Chem. 2015, 112, 6–12. [Google Scholar] [CrossRef]
- IAEA. Radiation Technology for Cleaner Products and Processes; IAEA-TECDOC-1786; IAEA: Vienna, Austria, 2016. [Google Scholar]
- Pereira, L.S.; Cordery, I.; Iacovides, I. Coping with Water Scarcity; IHP VI, Technical Documents in Hydrology 58; UNSCO: Paris, France, 2002. [Google Scholar]
- Ortiz, P.; Oresegun, M.; Weatley, J. Lessons from Major Radiation Accidents. In Proceedings of the 10th International Congress of the International Radiation Protection Association—IRPA 10, Hiroshima, Japan, 14–19 May 2000. [Google Scholar]
- IAEA. Management for the Prevention of Accidents from Disused Sealed Radioactive Sources; IAEA, TECDOC-1205; IAEA: Vienna, Austria, 2001. [Google Scholar]
- Abdel Rahman, R.O. Introductory Chapter: Introduction to Current Trends in Nuclear Material Research and Technology. In Nuclear Material Performance; Abdel Rahman, R.O., Saleh, H.E.M., Eds.; Intech: Rijeka, Croatia, 2016; pp. 3–14. Available online: http://www.intechopen.com/books/nuclear-material-performance/introductory-chapter-introduction-to-current-trends-in-nuclear-material-research-and-technology (accessed on 18 December 2019).
- USDOE. Safety of Accelerator Facilities; DOE O440.C; USDOE: Washington, DC, USA, 2011.
- IAEA. Directory of Gamma Processing Facilities in Member States; IAEA-DGPF/CD; IAEA: Vienna, Austria, 2004. [Google Scholar]
- IAEA. Radiation Safety of Gamma, Electron and X Ray Irradiation Facilities; SSG No. 8; IAEA: Vienna, Austria, 1996. [Google Scholar]
- Janžekovič, H. Overview of Radiation Accidents at Industrial Accelerator Facilities. In Proceedings of the 26th International Conference on Nuclear Energy for New Europe, NENE, Bled, Slovenia, 11–14 September 2017; p. 7. [Google Scholar]
WHO, Reuse, ppb [11] | FAO, Reuse, ppb [12] | US, ppb [9] | WHO, Reuse, ppb [11] | FAO, Reuse, ppb [12] | US, ppb [9] | ||||
---|---|---|---|---|---|---|---|---|---|
Discharge | Reuse | Discharge | Reuse | ||||||
As | 50 | 100 | 3000 | 50 | Hg | 1 | NA | 2000 | 2 |
Cd | 5 | 100 | 15,000 | 5 | Ni | 0 | 200 | 12,000 | 100 |
Cr | NA | 100 | 10,000 | 50 | Ag | NA | NA | 5000 | 50 |
Cu | 1 | 200 | 15,000 | NA | Zn | 5000 | 200 | 25,000 | 5000 |
CN | NA | NA | 10,000 | 5.2 | pH | 6.5–8.5 | 6.5–8.4 | 6–9 | |
Pb | 50 | 5000 | 40,000 | 50 |
Indicator | Reuse | Discharge | |||||||
---|---|---|---|---|---|---|---|---|---|
EU [14,15] | EU [14,15] | US [11] | Canada [13] | ||||||
A | B | C | D | A | B | C | |||
BOD5, ppm | 10 | 25 | 45 | 10 | 10 | 45 | |||
TSS, ppm | 10 | 35 | 45 | 10 | 10 | 45 | |||
COD, ppm | NA | NA | NA | NA | 125 | NA | NA | NA | NA |
E. coli, (CFU/100 mL) | 10 | 102 | 103 | 104 | NA | 2.2 | 2.2 | 400 | NA |
Turbidity (NTU) | 5 | NA | NA | NA | NA | 2 | 2 | NA | NA |
TN, ppm | NA | NA | NA | NA | 15 | 10 | 20 | NA | NA |
Compound | Rate Constant, M−1 s−1, × 109 | Compound | Rate Constant, M−1 s−1, × 109 | ||||
---|---|---|---|---|---|---|---|
OH | e− | H | OH | e− | H | ||
Perchloroethylene | 1.7 | 13 | Bicarbonate | 0.0085 | 4 × 10−3 | ||
Trichloroethylene | 2.6 | 19 | Nitrogen | 9.7 | |||
Dichloroethylene | 7 | 7.5 | Oxygen | 19 | |||
Vinylchloride | 12 | 0.25 | Methyl t-butyl ether | 2 | 0.018 | ||
1,1,1-Trichloroethane | 0.04 | Ethyl t-butyl Ether | 1.8 | 0.01 | 7 × 10−3 | ||
Chloroform | 0.005 | 30 | Diisopropyl Ether | 2.5 | 7 × 10−3 | 0.067 | |
T-Amyl Methyl Ether | 2.4 | 3 × 10−3 | 3 × 10−3 | Acetylenes | 0.1–1 | ||
Alcohols | 0.1–1 | Aldehydes | 1 | ||||
Alkanes | 0.001–1 | Aromatics | 0.1–100 | ||||
Carboxyl Acids | 0.01–1 | Ketones | 1 | ||||
Organo-Nitrogen | 0.1–100 | Olefins | 1–10 | ||||
Phenols | 1–10 | Organo-Sulfure | 1–10 | ||||
Trichloronitromethane (TCNM), Chloropicrin | 0.0497 ± 0.28 | 21.3 ± 0.03 | Carbofuran | 6.6 | |||
Benzene | 7.8 | Carbendazim | 2.2 |
Pollutant | Origin | Degradation Performance | Initial Contaminant Concentration, ppm | Dose, KGy | References |
---|---|---|---|---|---|
Polychlorinated Biphenyls (PCB) | Pesticide | 96% | NA | <0.1 | [34] |
Alkali Halides | Herbicides, fungicides, insecticide | 98% | 100 | 1 | [25] |
Trihalomethanes | Disinfection by products | 87.4% | NA | 2 | [25] |
95% | 145–780 | 6 | [35] | ||
87.8% | 264 | 8 | [35] | ||
Nitrophenols | Degradation products | 0.139 | 5 | [25] | |
Carbofuran, Dimethoate, Imidacloprid, Procloraz | Pesticide | 99% | 50, (pH 5.5) | 5 | [36] |
Methiocarb | Pesticide | 67% | [36] | ||
2,4-Dichlorophenol | Pesticide | Complete degradation | 50 | 10 | [22] |
Model Compound | Primary Intermediate | Rate Coefficient, × 1010 mol−1·L·s−1 | Secondary Intermediate |
---|---|---|---|
Aniline | OH− | 0.86–1 | - |
H+ | 0.2 | Anilino radical (directly and after water elimination.) | |
Phenol | OH− | 0.66–1.4 | Cyclohexadienyl-type radical |
H+ | 0.17 | ||
Atrazine | OH− | 0.24 | |
Azobenzene | e− | 1–3.3 | Hydrazyl radicals |
OH− | 2 | ||
4-amino-5-hydroxynaphthalene-2,7-disulphonic acid | OH− | - | Anilino-type |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdel Rahman, R.O.; Hung, Y.-T. Application of Ionizing Radiation in Wastewater Treatment: An Overview. Water 2020, 12, 19. https://doi.org/10.3390/w12010019
Abdel Rahman RO, Hung Y-T. Application of Ionizing Radiation in Wastewater Treatment: An Overview. Water. 2020; 12(1):19. https://doi.org/10.3390/w12010019
Chicago/Turabian StyleAbdel Rahman, Rehab O., and Yung-Tse Hung. 2020. "Application of Ionizing Radiation in Wastewater Treatment: An Overview" Water 12, no. 1: 19. https://doi.org/10.3390/w12010019
APA StyleAbdel Rahman, R. O., & Hung, Y. -T. (2020). Application of Ionizing Radiation in Wastewater Treatment: An Overview. Water, 12(1), 19. https://doi.org/10.3390/w12010019