Optimization and Analysis of Zeolite Augmented Electrocoagulation Process in the Reduction of High-Strength Ammonia in Saline Landfill Leachate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Leachate Sampling
2.2. Characterization of Natural Zeolite
2.2.1. Brunner–Emmet–Teller Analysis
2.2.2. X-ray Fluorescence (XRF) Analysis
2.2.3. X-ray Diffraction Analysis
2.3. Chemical Reagents and Instrument
2.4. Analytical Methods
2.5. Experimental Set-Up
2.6. Concentration of Removed Pollutant
2.7. Response Surface Methodology Design
3. Results and Discussion
3.1. Leachate Characteristics
3.2. Predicted Against Actual Values
3.3. Analysis of the Design of Experiments
3.4. The Effects of Factor Variables on Pollutant Removal
3.5. Analysis of Variables Optimization
3.6. Comparison of Treatment Performance
3.7. The Economic Aspect of the ZAEP Treatment
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- De Pauli, A.R.; Espinoza-Quiñones, F.R.; Dall’Oglio, I.C.; Trigueros, D.E.G.; Módenes, A.N.; Ribeiro, C.; Borba, F.H.; Kroumov, A.D. New insights on abatement of organic matter and reduction of toxicity from landfill leachate treated by the electrocoagulation process. J. Environ. Chem. Eng. 2017, 5, 5448–5459. [Google Scholar] [CrossRef]
- Aziz, H.A.; Rahim, N.A.; Ramli, S.F.; Alazaiza, M.Y.D.; Omar, F.M.; Hung, Y.T. Potential use of Dimocarpus longan seeds as a flocculant in landfill leachate treatment. Water 2018, 10, 1672. [Google Scholar] [CrossRef] [Green Version]
- Peng, Y. Perspectives on technology for landfill leachate treatment. Arab. J. Chem. 2017, 10, S2567–S2574. [Google Scholar] [CrossRef] [Green Version]
- Aziz, H.A.; Bashir, M.J.K.; Abu Amr, S.S. Trend of municipal landfill leachate treatment via a combination of ozone with various physic-chemical techniques. Int. J. Environ. Eng. 2016, 8, 95. [Google Scholar] [CrossRef]
- Lestari, D.A.; David, J.P.; Park, J.E. Comparison study of bod & cod of leachate quality. J. Environ. Eng. Waste Manag. 2019, 4, 37–42. [Google Scholar]
- Umar, M.; Aziz, H.A.; Yusoff, M.S. Variability in the concentration of indicator bacteria in landfill leachate—A comparative study. Water Environ. Res. 2015, 87, 223–226. [Google Scholar] [CrossRef] [PubMed]
- Verma, M.; Kumar, R.N. Coagulation and electrocoagulation for co-treatment of stabilized landfill leachate and municipal wastewater. J. Water Reuse Desalin. 2018, 8, 234–243. [Google Scholar] [CrossRef] [Green Version]
- Aziz, H.A.; Ramli, S.F. Recent development in sanitary landfilling and landfill leachate treatment in Malaysia. Int. J. Environ. Eng. 2019, 9, 201. [Google Scholar] [CrossRef]
- Aziz, H.A.; Foul, A.A.; Isa, M.H.; Hung, Y.T. Physico-chemical treatment of anaerobic landfill leachate using activated carbon and zeolite: Batch and column studies. Int. J. Environ. Waste Manag. 2010, 5, 269. [Google Scholar] [CrossRef]
- Aziz, S.Q.; Aziz, H.A.; Bashir, M.J.K.; Mojiri, A. Municipal landfill leachate treatment techniques: An Overview. Wastewater Eng. Adv. Wastewater Treat. Syst. 2014, 3, 1–18. [Google Scholar]
- Gautam, P.; Kumar, S.; Lokhandwala, S. Advanced oxidation processes for treatment of leachate from hazardous waste landfill: A critical review. J. Clean. Prod. 2019, 237, 117639. [Google Scholar] [CrossRef]
- Al-Raad, A.; Hanafiah, M.M.; Naje, A.S.; Ajeel, M.A.; O Basheer, A.; Ali Aljayashi, T.; Ekhwan Toriman, M. Treatment of saline water using electrocoagulation with combined electrical connection of electrodes. Processes 2019, 7, 242. [Google Scholar] [CrossRef] [Green Version]
- Garg, K.K.; Prasad, B. Treatment of multicomponent aqueous solution of purified terephthalic acid wastewater by electrocoagulation process: Optimization of process and analysis of sludge. J. Taiwan Inst. Chem. Eng. 2016, 60, 383–393. [Google Scholar] [CrossRef]
- Hassani, G.; Alinejad, A.; Sadat, A.; Esmaeili, A. Optimization of Landfill Leachate Treatment Process by Electrocoagulation, Electroflotation and Sedimentation Sequential Method. Int. J. Electrochem. Sci. 2016, 11, 6705–6706. [Google Scholar] [CrossRef]
- Anjali, A.; Vivek, B.; Jayakumar, P.; Mithran, A. Electrochemical technologies for leachate treatment: A review. Int. J. Sci. Eng. Res. 2018, 9, 38–42. [Google Scholar]
- Song, P.; Yang, Z.; Zeng, G.; Yang, X.; Xu, H.; Wang, L.; Xu, R.; Xiong, W.; Ahmad, K. Electrocoagulation treatment of arsenic in wastewaters: A comprehensive review. Chem. Eng. J. 2017, 317, 707–725. [Google Scholar] [CrossRef]
- Cheballah, K.; Sahmoune, A.; Messaoudi, K.; Drouiche, N.; Lounici, H. Simultaneous removal of hexavalent chromium and COD from industrial wastewater by bipolar electrocoagulation. Chem. Eng. Process. Process Intensif. 2015, 96, 94–99. [Google Scholar] [CrossRef]
- Tchamango, S.; Kamdoum, O.; Donfack, D.; Babale, D. Comparison of electrocoagulation and chemical coagulation processes in the treatment of an effluent of a textile factory. J. Appl. Sci. Environ. Manag. 2017, 21, 1317–1322. [Google Scholar] [CrossRef] [Green Version]
- Zailani, L.W.M.; Zin, N.S.M. Application of Electrocoagulation in wastewater treatment: A general review. IOP Conf. Ser. Earth Environ. Sci. 2018, 140, 1–9. [Google Scholar] [CrossRef]
- Mothil, S.; Devi, V.C.; Raam, R.S.; Senthilkumar, K. Electro-Coagulation of synthetic acid black 210 and acid red 1dye bath effluent using Fe and Al Electrodes in a recirculation cell. Am. Int. J. Res. Sci. Technol. Eng. Math. 2019, 20, 138–143. [Google Scholar]
- Mahmad, M.K.N.; Rozainy, M.A.Z.M.R.; Abustan, I.; Baharun, N. Electrocoagulation process by using aluminium and stainless steel electrodes to treat total chromium, colour and turbidity. Procedia Chem. 2016, 19, 681–686. [Google Scholar] [CrossRef] [Green Version]
- Asaithambi, P.; Beyene, D.; Aziz, A.R.A.; Alemayehu, E. Removal of pollutants with determination of power consumption from landfill leachate wastewater using an electrocoagulation process: Optimization using response surface methodology (RSM). Appl. Water Sci. 2018, 8, 11–12. [Google Scholar] [CrossRef] [Green Version]
- Gao, J.; Chys, M.; Audenaert, W.; He, Y.; Van Hulle, S.W.H. Performance and kinetic process analysis of an Anammox reactor in view of application for landfill leachate treatment. Environ. Technol. 2014, 10, 1226–1233. [Google Scholar] [CrossRef]
- Liu, Z.; Wu, W.; Shi, P.; Guo, J.; Cheng, J. Characterization of dissolved organic matter in landfill leachate during the combined treatment process of air stripping, Fenton, SBR and coagulation. Waste Manag. 2015, 41, 111–118. [Google Scholar] [CrossRef]
- Bashir, M.J.K.; Aziz, H.A.; Amr, S.S.A.; Sethupathi, S.; Ng, C.A.; Lim, J.W. The competency of various applied strategies in treating tropical municipal landfill leachate. Desalin. Water Treat. 2015, 54, 2382–2395. [Google Scholar] [CrossRef]
- Naveen, B.P.; Mahapatra, D.M.; Sitharam, T.G.; Sivapullaiah, P.V.; Ramachandra, T.V. Physico-chemical and biological characterization of urban municipal landfill leachate. Environ. Pollut. 2017, 220, 1–12. [Google Scholar] [CrossRef]
- Ding, J.; Wei, L.; Huang, H.; Zhao, Q.; Hou, W.; Kabutey, F.T.; Yuan, Y.; Dionysiou, D.D. Tertiary treatment of landfill leachate by an integrated electro-oxidation/electro-coagulation/electro-reduction process: Performance and mechanism. J. Hazard. Mater. 2018, 351, 90–97. [Google Scholar] [CrossRef]
- Abdul Halim, A.; Abu Sidi, S.F.; Hanafiah, M.M. Ammonia removal using organic acid modified activated carbon from landfill leachate. Environ. Ecosyst. Sci. 2017, 1, 28–30. [Google Scholar] [CrossRef]
- Karadag, D.; Tok, S.; Akgul, E.; Turan, M.; Ozturk, M.; Demir, A. Ammonium removal from sanitary landfill leachate using natural Gördes clinoptilolite. J. Hazard. Mater. 2008, 153, 60–66. [Google Scholar] [CrossRef]
- Bakar, A.A. Integrated Leachate Treatment by Sequencing Batch Reactor (Sbr) and Micro-Zeolite (MZ). Doctoral Dissertation, Universiti Tun Hussein Onn Malaysia, Johor, Malaysia, 2015. [Google Scholar]
- Lim, C.K.; Seow, T.W.; Neoh, C.H.; Md Nor, M.H.; Ibrahim, Z.; Ware, I.; Mat Sarip, S.H. Treatment of landfill leachate using ASBR combined with zeolite adsorption technology. 3 Biotech 2016, 6, 195. [Google Scholar] [CrossRef] [Green Version]
- Song, L.; Li, C.; Huang, Y.; Zhou, Y. Enhanced electrolytic removal of ammonia from the aqueous phase with a zeolite-packed electrolysis reactor under a continuous mode. J. Environ. Eng. 2015, 141, 4014056. [Google Scholar]
- Ding, J.; Zhao, Q.L.; Wang, K.; Hu, W.; Li, W.; Li, A.; Lee, D.J. Ammonia abatement for low-salinity domestic secondary effluent with a hybrid electrooxidation and adsorption reactor. Ind. Eng. Chem. Res. 2015, 53, 9999–10006. [Google Scholar] [CrossRef]
- APHA. Standard Methods for the Examination of Water and Wastewater, 23rd ed.; American Public Health Association (APHA): Washington, DC, USA, 2017. [Google Scholar]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef] [Green Version]
- Alshameri, A.; Yan, C.; Al-Ani, Y.; Dawood, A.S.; Ibrahim, A.; Zhou, C.; Wang, H. An investigation into the adsorption removal of ammonium by salt activated Chinese (Hulaodu) natural zeolite: Kinetics, isotherms, and thermodynamics. J. Taiwan Inst. Chem. Eng. 2014, 45, 554–564. [Google Scholar] [CrossRef]
- Yang, S.; Lach-hab, M.; Blaisten-Barojas, E.; Li, X.; Karen, V.L. Microporous and Mesoporous Materials Machine learning study of the heulandite family of zeolites. Microporous Mesoporous Mater. 2010, 130, 309–313. [Google Scholar] [CrossRef]
- Favvas, E.P.; Tsanaktsidis, C.G.; Sapalidis, A.A.; Tzilantonis, G.T.; Papageorgiou, S.K.; Mitropoulos, A.C. Clinoptilolite, a natural zeolite material: Structural characterization and performance evaluation on its dehydration properties of hydrocarbon-based fuels. Microporous Mesoporous Mater. 2016, 225, 385–391. [Google Scholar] [CrossRef]
- Bhalla, B.; Saini, M.S.; Jha, M.K. Characterization of Leachate from Municipal Solid Waste (MSW) Landfilling Sites of Ludhiana, India: A Comparative Study. Int. J. Eng. Res. Appl. 2012, 2, 732–745. [Google Scholar]
- Bashir, M.J.K.; Aziz, H.A.; Yusoff, M.S.; Aziz, S.Q.; Mohajeri, S. Stabilized sanitary landfill leachate treatment using anionic resin: Treatment optimization by response surface methodology. J. Hazard. Mater. 2010, 182, 115–122. [Google Scholar] [CrossRef]
- Zakaria, S.N.F.; Abdul Aziz, H.; Abu Amr, S.S. Performance of Ozone/ZrCl4 Oxidation in stabilized landfill leachate treatment. Appl. Mech. Mater. 2015, 802, 501–506. [Google Scholar] [CrossRef]
- Mohajeri, S.; Aziz, H.A.; Isa, M.H.; Zahed, M.A. Treatment of landfill leachate by electrochemicals using aluminium electrodes. J. Appl. Res. Water Wastewater 2018, 10, 435–440. [Google Scholar]
- Zakaria, S.N.; Aziz, A.H. Characteristic of leachate at Alor Pongsu Landfill Site, Perak, Malaysia: A comparative study. IOP Conf. Ser. Earth Environ. Sci. 2018, 140, 12013. [Google Scholar] [CrossRef] [Green Version]
- Aziz, H.A.; Aziz, S.Q.; Yusoff, M.S.; Bashir, M.J.K.; Umar, M. Leachate characterization in semi-aerobic and anaerobic sanitary landfills: A comparative study. J. Environ. Manag. 2010, 91, 2608–2614. [Google Scholar] [CrossRef] [PubMed]
- Thirugnanasambandham, K.; Sivakumar, V. Treatment of egg processing industry effluent using chitosan as an adsorbent. J. Serb. Chem. Soc. 2014, 79, 743–757. [Google Scholar] [CrossRef] [Green Version]
- Guo, J.; Du, J.; Chen, P.; Huang, X.; Chen, Q. Enhanced efficiency of swine wastewater treatment by the composite of modified zeolite and a bioflocculant enriched from biological sludge. Environ. Technol. 2018, 39, 3096–3103. [Google Scholar] [CrossRef] [PubMed]
- Damaraju, M.; Bhattacharyya, D.; Panda, T.; Kurilla, K.K. Application of a continuous bipolar mode electrocoagulation (CBME) system for polishing distillery wastewater. E3S Web Conf. 2019, 93, 2005. [Google Scholar] [CrossRef]
- Drogui, P.; Asselin, M.; Brar, S.K.; Benmoussa, H.; Blais, J.F. Electrochemical removal of pollutants from agro-industry wastewaters. Purif. Technol. 2008, 61, 301–310. [Google Scholar] [CrossRef]
- Ye, Z.; Wang, J.; Sun, L.; Zhang, D.; Zhang, H. Removal of ammonium from municipal landfill leachate using natural zeolites. Environ. Technol. 2015, 36, 2919–2923. [Google Scholar] [CrossRef]
- Eskandari, P.; Farhadian, M.; Solaimany Nazar, A.R.; Jeon, B.H. Adsorption and photodegradation efficiency of TiO2/Fe2O3/PAC /TiO2/Fe2O3/Zeolite nanophotocatalysts for the removal of cyanide. Ind. Eng. Chem. Res. 2019, 58, 2099–2112. [Google Scholar] [CrossRef]
- Khan, S.U.; Islam, D.T.; Farooqi, I.H.; Ayub, S.; Basheer, F. Hexavalent chromium removal in an electrocoagulation column reactor: Process optimization using CCD, adsorption kinetics and pH modulated sludge formation. Process Saf. Environ. Prot. 2019, 122, 118–130. [Google Scholar] [CrossRef]
- Kuang, P.; Chen, N.; Feng, C.; Li, M.; Dong, S.; Lv, L.; Zhang, J.; Hu, Z.; Deng, Y. Construction and optimization of an iron particle–zeolite packing electrochemical–adsorption system for the simultaneous removal of nitrate and by-products. J. Taiwan Inst. Chem. Eng. 2018, 86, 101–112. [Google Scholar] [CrossRef]
- Chan, M.T.; Selvam, A.; Wong, J.W.C. Reducing nitrogen loss and salinity during “struvite” food waste composting by zeolite amendment. Bioresour. Technol. 2016, 200, 838–844. [Google Scholar] [CrossRef] [PubMed]
- Khodam, F.; Rezvani, Z.; Amani-Ghadim, A.R. Enhanced adsorption of Acid Red 14 by co-assembled LDH/MWCNTs nanohybrid: Optimization, kinetic and isotherm. J. Ind. Eng. Chem. 2015, 21, 1286–1294. [Google Scholar] [CrossRef]
- Ahmadi Azqhandi, M.H.; Ghaedi, M.; Yousefi, F.; Jamshidi, M. Application of random forest, radial basis function neural networks and central composite design for modeling and/or optimization of the ultrasonic assisted adsorption of brilliant green on ZnS-NP-AC. J. Colloid Interface Sci. 2017, 505, 278–292. [Google Scholar] [CrossRef] [PubMed]
- Deghles, A.; Kurt, U. Treatment of tannery wastewater by a hybrid electrocoagulation/electrodialysis process. Chem. Eng. Process. Process Intensif. 2016, 104, 43–50. [Google Scholar] [CrossRef]
- Lingamdinne, L.P.; Koduru, J.R.; Chang, Y.Y.; Karri, R.R. Process optimization and adsorption modeling of Pb(II) on nickel ferrite-reduced graphene oxide nano-composite. J. Mol. Liq. 2018, 250, 202–211. [Google Scholar] [CrossRef]
- Tanyol, M.; Kavak, N.; Torlut, G. Synthesis of poly(AN-co-VP)/zeolite composite and its application for the removal of brilliant green by adsorption process: Kinetics, isotherms, and experimental design. Adv. Polym. Technol. 2019, 2019, 8482975. [Google Scholar] [CrossRef]
- Bezerra, M.A.; Santelli, R.E.; Oliveira, E.P.; Villar, L.S.; Escaleira, L.A. Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta 2008, 76, 965–977. [Google Scholar] [CrossRef]
- Abu Amr, S.S.; Aziz, H.A.; Hossain, M.S.; Bashir, M.J.K. Simultaneous removal of COD and color from municipal landfill leachate using Ozone/Zinc sulphate oxidation process. Glob. Nest J. 2017, 19, 498–504. [Google Scholar]
- Mohamad Zailani, L.W.; Mohd Amdan, N.S.; Zin, N.S.M. Removal Efficiency of Electrocoagulation Treatment Using Aluminium Electrode for Stabilized Leachate. IOP Conf. Ser. Earth Environ. Sci. 2018, 140, 12049. [Google Scholar] [CrossRef]
- Ilhan, F.; Kurt, U.; Apaydin, O.; Gonullu, M.T. Treatment of leachate by electrocoagulation using aluminium and iron electrodes. J. Hazard. Mater. 2008, 154, 381–389. [Google Scholar] [CrossRef]
- Li, X.; Song, J.; Guo, J.; Wang, Z.; Feng, Q. Landfill leachate treatment using electrocoagulation. Procedia Environ. Sci. 2011, 10, 1159–1164. [Google Scholar] [CrossRef] [Green Version]
- Mohd Amdan, N.S.; Mohd Zin, N.S.; Mohd Salleh, S.N.A.; Mohamad Zailani, L.W. Addition of composite coagulant (polyaluminium chloride and tapioca flour) into electrocoagulation (aluminium and ferum electrodes) for treatment of stabilized leachate. MATEC Web Conf. 2018, 250, 7. [Google Scholar] [CrossRef] [Green Version]
- Ding, J.; Jiang, J.; Wei, L.; Geng, Y.; Zhao, Q.; Yuan, Y.; Dionysiou, D.D. Organic and nitrogen load removal from bio-treated landfill leachates by a dual-anode system. Environ. Sci. Water Res. Technol. 2018, 4, 2104–2112. [Google Scholar] [CrossRef]
- Aziz, H.A.; Sobri, N.I.M. Extraction and application of starch-based coagulants from sago trunk for semi-aerobic landfill leachate treatment. Environ. Sci. Pollut. Res. 2015, 22, 16943–16950. [Google Scholar] [CrossRef]
- Dia, O.; Drogui, P.; Buelna, G.; Dubé, R. Hybrid process, electrocoagulation-biofiltration for landfill leachate treatment. Waste Manag. 2018, 75, 391–399. [Google Scholar] [CrossRef] [Green Version]
- Moussa, D.T.; El-Naas, M.H.; Nasser, M.; Al-Marri, M.J. A comprehensive review of electrocoagulation for water treatment: Potentials and challenges. J. Environ. Manag. 2017, 186, 24–41. [Google Scholar] [CrossRef]
- Khaled, B.; Wided, B.; Béchir, H.; Elimame, E.; Mouna, L.; Zied, T. Investigation of electrocoagulation reactor design parameters effect on the removal of cadmium from synthetic and phosphate industrial wastewater. Arab. J. Chem. 2015, 12, 1848–1859. [Google Scholar] [CrossRef]
- Kobya, M.; Gengec, E.; Demirbas, E. Operating parameters and costs assessments of a real dyehouse wastewater effluent treated by a continuous electrocoagulation process. Chem. Eng. Process. Process Intensif. 2016, 101, 87–100. [Google Scholar] [CrossRef]
- Nippatla, N.; Philip, L. Electrocoagulation-floatation assisted pulsed power plasma technology for the complete mineralization of potentially toxic dyes and real textile wastewater. Process Saf. Environ. Prot. 2019, 125, 143–156. [Google Scholar] [CrossRef]
- Karamati-Niaragh, E.; Alavi Moghaddam, M.R.; Emamjomeh, M.M.; Nazlabadi, E. Evaluation of direct and alternating current on nitrate removal using a continuous electrocoagulation process: Economical and environmental approaches through RSM. J. Environ. Manag. 2019, 230, 245–254. [Google Scholar] [CrossRef]
- Ghazouani, M.; Akrout, H.; Jellali, S.; Bousselmi, L. Comparative study of electrochemical hybrid systems for the treatment of real wastewaters from agri-food activities. Sci. Total Environ. 2019, 647, 1651–1664. [Google Scholar] [CrossRef] [PubMed]
Component | SiO2 | TiO2 | Al2O3 | Fe2O3 | MnO | MgO | CaO | Na2O | K2O | P2O5 |
---|---|---|---|---|---|---|---|---|---|---|
Weight (%) | 71.8 | 0.13 | 12.63 | 1.43 | 0.03 | 0.61 | 2.11 | 0.93 | 2.56 | 0.02 |
Code | Factor | Unit | Coded Level of Variables | ||
---|---|---|---|---|---|
Low (−1) | Central (0) | High (+1) | |||
A | Zeolite dosage | g | 100 | 110 | 120 |
B | Current density | A/m2 | 540 | 600 | 660 |
C | Electrolysis duration | Min | 55 | 60 | 65 |
D | pH | - | 8 | 9 | 10 |
No. | Parameters | Value (January to June 2019) | Average | Standard Discharge Value from the Environmental Quality (Control of Pollution from Solid Waste Transfer Station and Landfill) Regulation 2009 |
---|---|---|---|---|
1. | BOD5 (mg/L) | 207–283 | 254 | 20 |
2. | COD (mg/L) | 4266–6648 | 4928 | 400 |
3. | Ammonia (mg/L) | 3125–3782 | 3471 | 5 |
4. | Color (Pt-Co) | 4930–18,380 | 8240 | 100 ADMI |
5. | pH | 7.52–8.21 | 8.16 | 6–9 |
6. | Salinity (ppt) | 15.01–17.2 | 15.36 | - |
7. | BOD5/COD | 0.043–0.049 | 0.051 | - |
Final Equation of Actual Factor on Percentage Removal of NH3-N | |||||||
---|---|---|---|---|---|---|---|
% removal = 69.76 − 0.61A + 1.06B − 0.56C − 3.28D − 0.53A2 − 1.53B2 − 1.03C2 − 0.53D2 − 0.063AB − 0.69AC − 0.44AD + 0.31BC − 0.19BD + 0.44CD | |||||||
Analysis of Variance | |||||||
Source | Sum2 | DF | Mean2 | F Value | Prob > F | ||
Model | 317.06 | 14 | 22.65 | 82.06 | <0.0001 (significant) | ||
Lack of fit | 2.14 | 10 | 0.21 | 0.53 | 0.8130 (not significant) | ||
Model Validation | |||||||
R2 | Adjusted R2 | Predicted R2 | Adequate Precision | ||||
0.9871 | 0.9751 | 0.9633 | 33.938 |
Run | Point Type | Variable Factor | Removal | |||
---|---|---|---|---|---|---|
Zeolite Dosage (g) | Current Density (A/m2) | Electrolysis Duration (min) | pH | NH3-N (%) | ||
1 | Center | 110 | 2.10 | 60 | 9 | 69 |
2 | Center | 110 | 2.10 | 60 | 9 | 70 |
3 | Center | 110 | 2.10 | 60 | 9 | 72 |
4 | Center | 110 | 2.10 | 60 | 9 | 71 |
5 | Center | 110 | 2.10 | 60 | 9 | 71 |
6 | Center | 110 | 2.10 | 60 | 9 | 70 |
7 | Axial | 100 | 2.10 | 60 | 9 | 70 |
8 | Axial | 110 | 2.10 | 55 | 9 | 68 |
9 | Axial | 110 | 2.10 | 65 | 9 | 71 |
10 | Axial | 110 | 2.31 | 60 | 9 | 69 |
11 | Axial | 110 | 2.10 | 60 | 8 | 72 |
12 | Axial | 110 | 1.89 | 60 | 8 | 67 |
13 | Axial | 110 | 2.10 | 60 | 10 | 65 |
14 | Axial | 120 | 2.10 | 60 | 9 | 68 |
15 | Fact | 100 | 1.89 | 65 | 8 | 68 |
16 | Fact | 100 | 1.89 | 55 | 8 | 69 |
17 | Fact | 100 | 2.31 | 55 | 8 | 71 |
18 | Fact | 100 | 2.31 | 65 | 10 | 66 |
19 | Fact | 100 | 2.31 | 65 | 8 | 71 |
20 | Fact | 100 | 1.89 | 55 | 10 | 63 |
21 | Fact | 100 | 2.31 | 55 | 10 | 64 |
22 | Fact | 100 | 1.89 | 65 | 10 | 63 |
23 | Fact | 120 | 2.31 | 65 | 8 | 68 |
24 | Fact | 120 | 1.89 | 55 | 8 | 70 |
25 | Fact | 120 | 1.89 | 65 | 8 | 69 |
26 | Fact | 120 | 1.89 | 55 | 10 | 62 |
27 | Fact | 120 | 2.31 | 55 | 10 | 63 |
28 | Fact | 120 | 2.31 | 65 | 10 | 62 |
29 | Fact | 120 | 2.31 | 55 | 8 | 72 |
30 | Fact | 120 | 1.89 | 65 | 10 | 60 |
Zeolite Dosage (g) | Current Density (A/m2) | Electrolysis Duration (min) | pH | NH3-N Removal (%) | |
---|---|---|---|---|---|
Predicted | Experimental | ||||
105 | 600 | 60 | 8.20 | 72.51 | 71.01 |
No. | Water Matrix | Pollutant | Concentration | Experimental | Performance | References |
---|---|---|---|---|---|---|
1 | Leachate | COD | 12,860 mg/L | Current density: 631 A/m2, Time: 45 min, electrode: Al | 59% | [62] |
Ammonia | 2240 mg/L | 14% | ||||
2 | Leachate | COD | 2566 mg/L | Current density: 29.8 A/m2, Time 30 min, pH 6 | 21% | [63] |
Ammonia | 386 mg/L | 20% | ||||
3 | Leachate | COD | 1992 mg/L | Current density: 200 A/m2, pH: 4, Time: 20 min | 60% | [61] |
Ammonia | 982 mg/L | 37% | ||||
Color | 3500 Pt–Co | 94% | ||||
Turbidity | 181 NTU | 88% | ||||
Suspended solids | 330 mg/L | 89% | ||||
4 | Leachate | Color | 2660 mg/L | Current density: 150 A/m2, Time: 60 min, Electrode: Al/Fe, Coagulant: 0.3 g/L, pH: 5 | 88% | [64] |
Ammonia | 577.04 mg/L | 25% | ||||
5 | Leachate | COD | 167–180 mg/L | Current: 1.6, Time: 120 min, Electrode: Dual anode, Type: TiO2/IrO2 | 75% | [65] |
Ammonia | 50–110 mg/L | 80% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hamid, M.A.A.; Aziz, H.A.; Yusoff, M.S.; Rezan, S.A. Optimization and Analysis of Zeolite Augmented Electrocoagulation Process in the Reduction of High-Strength Ammonia in Saline Landfill Leachate. Water 2020, 12, 247. https://doi.org/10.3390/w12010247
Hamid MAA, Aziz HA, Yusoff MS, Rezan SA. Optimization and Analysis of Zeolite Augmented Electrocoagulation Process in the Reduction of High-Strength Ammonia in Saline Landfill Leachate. Water. 2020; 12(1):247. https://doi.org/10.3390/w12010247
Chicago/Turabian StyleHamid, Mohd Azhar Abd, Hamidi Abdul Aziz, Mohd Suffian Yusoff, and Sheikh Abdul Rezan. 2020. "Optimization and Analysis of Zeolite Augmented Electrocoagulation Process in the Reduction of High-Strength Ammonia in Saline Landfill Leachate" Water 12, no. 1: 247. https://doi.org/10.3390/w12010247
APA StyleHamid, M. A. A., Aziz, H. A., Yusoff, M. S., & Rezan, S. A. (2020). Optimization and Analysis of Zeolite Augmented Electrocoagulation Process in the Reduction of High-Strength Ammonia in Saline Landfill Leachate. Water, 12(1), 247. https://doi.org/10.3390/w12010247