SewerSedFoam: A Model for Free Surface Flow, Sediment Transport, and Deposited Bed Morphology in Sewers
Abstract
:1. Introduction
2. Model Description
2.1. Hydrodynamics
2.2. Computational Mesh and Finite Area Method (FAM)
2.3. Sediment Fractions
2.4. Suspended Sediment Transport
2.5. Bedload Transport
2.6. Critical Shields Parameter
2.7. Bed Morphology
2.8. Model Implementation
3. Model Validation
3.1. Sediment Deposition
3.1.1. Mesh Setup and Flow Initialization
3.1.2. Sediment and Deposited Bed Module Setup
3.1.3. Results and Discussion
3.2. Sediment Erosion
3.2.1. Mesh Setup and Flow Initialization
3.2.2. Sediment and Deposited Bed Setup
3.2.3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Banasiak, R.; Tait, S. The reliability of sediment transport predictions in sewers: Influence of hydraulic and morphological uncertainties. Water Sci. Technol. 2008, 57, 1317–1327. [Google Scholar] [CrossRef] [PubMed]
- Ashley, R.M.; Bertrand-Krajewski, J.L.; Hvitved-Jacobsen, T.; Verbanck, M.A. Solids in Sewers: Characteristics, Effects and Control of Sewer Solids and Associated Pollutants; IWA Publishing: Cornwall, UK, 2004; p. 340. [Google Scholar]
- Murali, M.K.; Hipsey, M.R.; Ghadouani, A.; Yuan, Z. The development and application of improved solids modelling to enable resilient urban sewer networks. J. Environ. Manag. 2019, 240, 219–230. [Google Scholar] [CrossRef] [PubMed]
- Marleni, N.; Gray, S.; Sharma, A.; Burn, S.; Muttil, N. Impact of water management practice scenarios on wastewater flow and contaminant concentration. J. Environ. Manag. 2015, 151, 461–471. [Google Scholar] [CrossRef] [PubMed]
- DeZellar, J.T.; Maier, W.J. Effects of Water Conservation on Sanitary Sewers and Wastewater Treatment Plants. J. Water Pollut. Control Fed. 1980, 52, 76–88. [Google Scholar] [CrossRef]
- Penn, R.; Schutze, M.; Friedler, E. Modelling the effects of on-site greywater reuse and low flush toilets on municipal sewer systems. J. Environ. Manag. 2013, 114, 72–83. [Google Scholar] [CrossRef]
- Langeveld, J.G.; Schilperoort, R.P.S.; Weijers, S.R. Climate change and urban wastewater infrastructure: There is more to explore. J. Hydrol. 2013, 476, 112–119. [Google Scholar] [CrossRef]
- Marleni, N.; Gray, S.; Sharma, A.; Burn, S.; Muttil, N. Impact of water source management practices in residential areas on sewer networks a review. Water Sci. Technol. 2012, 65, 624. [Google Scholar] [CrossRef]
- Verbanck, M.A. Computing near-bed solids transport in sewers and similar sediment-carrying open-channel flows. Urban Water 2000, 2, 277–284. [Google Scholar] [CrossRef]
- Butler, D.; May, R.W.P.; Ackers, J.C. Sediment Transport in Sewers Part 1: Background. Proc. Inst. Civ. Eng. Water Marit. Energy 1996, 118, 103–112. [Google Scholar] [CrossRef]
- Ashley, R.M.; Verbanck, M.A. Mechanics of sewer sediment erosion and transport. J. Hydraul. Res. 1996, 34, 753–770. [Google Scholar] [CrossRef]
- Creaco, E.; Bertrand-Krajewski, J.-L. Numerical simulation of flushing effect on sewer sediments and comparison of four sediment transport formulas. J. Hydraul. Res. 2009, 47, 195–202. [Google Scholar] [CrossRef]
- Butler, D.; Davies, J.W. Urban Drainage: Second Edition; Taylor and Francis: London, UK, 2004. [Google Scholar]
- Langeveld, J.G.; Veldkamp, R.G.; Clemens, F. Suspended solids transport: An analysis based on turbidity measurements and event based fully calibrated hydrodynamic models. Water Sci. Technol. 2005, 52, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Sattar, A.M.A.; Jasak, H.; Skuric, V. Three dimensional modeling of free surface flow and sediment transport with bed deformation using automatic mesh motion. Environ. Model. Softw. 2017, 97, 303–317. [Google Scholar] [CrossRef]
- Liu, X.; Garcia, M. Three-Dimensional Numerical Model with Free Water Surface and Mesh Deformation for Local Sediment Scour. J. Waterw. Port Coast. Ocean Eng. 2008, 134, 203–217. [Google Scholar] [CrossRef]
- García, M. ASCE Manual of Practice No. 110—Sedimentation Engineering: Processes, Measurements, Modeling and Practice; American Society of Civil Engineers: Reston, VA, USA, 2006; pp. 1–4. [Google Scholar] [CrossRef]
- Saul, A.; Skipworth, P.; Tait, S.; Rushforth, P. Movement of Total Suspended Solids in Combined Sewers. J. Hydraul. Eng. 2003, 129, 298–307. [Google Scholar] [CrossRef]
- Hrissanthou, V.; Hartmann, S. Measurements of critical shear stress in sewers. Water Res. 1998, 32, 2035–2040. [Google Scholar] [CrossRef]
- Jacobsen, N.G. A Full Hydro-and Morphodynamic Description of Breaker Bar Development. Ph.D. Thesis, DTU Mechanical Engineering, Kongens Lyngby, Denmark, 2011. [Google Scholar]
- The OpenFOAM Foundation. Features of OpenFOAM. Available online: http://www.openfoam.org/features/ (accessed on 15 June 2019).
- Hirt, C.W.; Nichols, B.D. Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 1981, 39, 201–225. [Google Scholar] [CrossRef]
- Jiang, C.; Chen, J.; Yao, Y.; Liu, J.; Deng, Y. Study on threshold motion of sediment and bedload transport by tsunami waves. Ocean Eng. 2015, 100, 97–106. [Google Scholar] [CrossRef]
- Deshpande, S.S.; Anumolu, L.; Trujillo, M.J. Evaluating the performance of the two-phase flow solver interFoam. Comput. Sci. Discov. 2012, 5, 14016. [Google Scholar] [CrossRef]
- Hoang, D.A.; van Steijn, V.; Portela, L.M.; Kreutzer, M.T.; Kleijn, C.R. Benchmark numerical simulations of segmented two-phase flows in microchannels using the Volume of Fluid method. Comput. Fluids 2013, 86, 28–36. [Google Scholar] [CrossRef]
- OpenCFD Ltd. OpenFOAM User Guide: Schemes. Available online: https://www.openfoam.com/documentation/guides/latest/doc/guide-schemes.html (accessed on 10 September 2019).
- Tukovic, Z.; Jasak, H. A Moving Mesh Finite Volume Interface Tracking Method for Surface Tension Dominated Interfacial Fluid Flow. Comput. Fluids 2012, 55, 70–84. [Google Scholar] [CrossRef] [Green Version]
- Crabtree, R.W. Sediments in Sewers. Water Environ. J. 1989, 3, 569–578. [Google Scholar] [CrossRef]
- Graf, W.H. Hydraulics of Sediment Transport; McGraw-Hill: New York, NY, USA, 1971. [Google Scholar]
- Brown, P.P.; Lawler, D.F. Sphere Drag and Settling Velocity Revisited. J. Environ. Eng. 2003, 129, 222–231. [Google Scholar] [CrossRef]
- Roulund, A.; Sumer, B.M.; Fredsøe, J.; Michelsen, J. Numerical and experimental investigation of flow and scour around a circular pile. J. Fluid Mech. 2005, 534, 351–401. [Google Scholar] [CrossRef]
- Engelund, F.; Fredsøe, J. A Sediment Transport Model for Straight Alluvial Channels. Nord. Hydrol. 1976, 7, 293–306. [Google Scholar] [CrossRef] [Green Version]
- Zhou, L. Numerical Modelling of Scour in Steady Flows. Ph.D. Thesis, Universite de Lyon, Lyon, France, 2017. [Google Scholar]
- van Rijn, L. Unified View of Sediment Transport by Currents and Waves. I: Initiation of Motion, Bed Roughness, and Bed-Load Transport. J. Hydraul. Eng. 2007, 133, 649–667. [Google Scholar] [CrossRef] [Green Version]
- Regueiro-Picallo, M.; Naves, J.; Anta, J.; Suárez, J.; Puertas, J. Monitoring accumulation sediment characteristics in full scale sewer physical model with urban wastewater. Water Sci. Technol. 2017, 76, 115–123. [Google Scholar] [CrossRef]
- van Rijn, L. Sediment Transport, Part II: Suspended Load Transport. J. Hydraul. Eng. 1984, 110, 1613–1641. [Google Scholar] [CrossRef]
- Shuard, A.M.; Mahmud, H.B.; King, A.J. Comparison of Two-Phase Pipe Flow in OpenFOAM with a Mechanistic Model. Iop Conf. Ser. Mater. Sci. Eng. 2016, 121, 12018. [Google Scholar] [CrossRef] [Green Version]
- Shahsavari, G.; Arnaud-Fassetta, G.; Campisano, A. A field experiment to evaluate the cleaning performance of sewer flushing on non-uniform sediment deposits. Water Res. 2017, 118, 59–69. [Google Scholar] [CrossRef]
- Mannina, G.; Viviani, G. An urban drainage stormwater quality model: Model development and uncertainty quantification. J. Hydrol. 2010, 381, 248–265. [Google Scholar] [CrossRef]
- Zhang, Y.; Meerschaert, M.M.; Packman, A.I. Linking fluvial bed sediment transport across scales. Geophys. Res. Lett. 2012, 39. [Google Scholar] [CrossRef] [Green Version]
- Chen, D.; Sun, H.; Zhang, Y. Fractional dispersion equation for sediment suspension. J. Hydrol. 2013, 491, 13–22. [Google Scholar] [CrossRef]
Sediment Type | Description | Diameter Range (mm) | Density Range (kg/m3) | Transport Mode |
---|---|---|---|---|
A | Coarse mineral sand and gravel that tends to dominate sewer deposited beds. | 1–6 1 | 1600–2000 1 | Transported exclusively as bedload. |
C | Fine-grained organic sediment in the silt or sand diameter range that tends to form easily eroded deposits on top of Type A sediment. May increase bed cohesion by introducing additional smaller diameter particles in the deposited bed and due to its high organic content. | 0.04–1 1,2 | 1000–1200 1,2 | Transported exclusively as suspended sediment. |
E | Fine-grained mineral sand. May increase bed cohesion by introducing additional smaller diameter particles in the deposited bed. | 0.063–2 1,2 | 1600–2000 1,2 | Transported exclusively as suspended sediment. |
Sediment Module | Parameter | Value |
---|---|---|
Suspended Sediment Transport | Type C sediment diameter (dC) | 75 µm |
Type C sediment density (ρC) | 1125 kg/m3 | |
Type C sediment inlet concentration (C) | Scenario 6: 19.7 mg/L Scenario 7: 23.5 mg/L | |
Type C sediment mass proportion in bed (PC) | 0.5 | |
Bedload Transport | Type A sediment diameter (dA) | Scenario 6: 280 µm Scenario 7: 405 µm |
Type A sediment density (ρA) | Both Scenarios: 1795 kg/m3 | |
Type A sediment mass proportion in bed (PA) | 0.5 | |
Deposited bed morphology | Bed porosity (n) | 0.45 |
Initial maximum bed height for critical Shields parameter scaling (hmax) | 2 mm |
Sediment Module | Parameter | Value |
---|---|---|
Suspended Sediment Transport | Type E sediment diameter (dE) | 0.2 mm |
Type E sediment density (ρE) | 2000 kg/m3 | |
Initial Type C sediment mass proportion in bed (PE) | 0.5 | |
Bedload Transport | Type A sediment diameter (dA) | 4.15 mm |
Type A sediment density (ρA) | 2317 kg/m3 | |
Initial Type A sediment mass proportion in bed (PA) | 0.5 | |
Deposited bed morphology | Bed porosity (n) | 0.41 |
Erosion Case | θCmax | CE |
---|---|---|
EC1 | 2 × θCi | 20 mg/L |
EC2 | 2 × θCi | 40 mg/L |
EC3 | 2 × θCi | 60 mg/L |
EC4 | 3 × θCi | 40 mg/L |
EC5 | 4 × θCi | 40 mg/L |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Murali, M.K.; Hipsey, M.R.; Ghadouani, A.; Yuan, Z. SewerSedFoam: A Model for Free Surface Flow, Sediment Transport, and Deposited Bed Morphology in Sewers. Water 2020, 12, 270. https://doi.org/10.3390/w12010270
Murali MK, Hipsey MR, Ghadouani A, Yuan Z. SewerSedFoam: A Model for Free Surface Flow, Sediment Transport, and Deposited Bed Morphology in Sewers. Water. 2020; 12(1):270. https://doi.org/10.3390/w12010270
Chicago/Turabian StyleMurali, Madhu K, Matthew R Hipsey, Anas Ghadouani, and Zhiguo Yuan. 2020. "SewerSedFoam: A Model for Free Surface Flow, Sediment Transport, and Deposited Bed Morphology in Sewers" Water 12, no. 1: 270. https://doi.org/10.3390/w12010270
APA StyleMurali, M. K., Hipsey, M. R., Ghadouani, A., & Yuan, Z. (2020). SewerSedFoam: A Model for Free Surface Flow, Sediment Transport, and Deposited Bed Morphology in Sewers. Water, 12(1), 270. https://doi.org/10.3390/w12010270