Application of a Self-Organizing Map of Isotopic and Chemical Data for the Identification of Groundwater Recharge Sources in Nasunogahara Alluvial Fan, Japan
Abstract
:1. Introduction
2. Study Area
2.1. Location, Land Use, and Water Use
2.2. Hydrogeological Settings
3. Methods
3.1. Sample Acquisition
3.2. Analysis of Environmental Isotopic and Hydrochemical Compositions
3.3. SOM
4. Results
4.1. Groundwater Level
4.2. Chemical Compositions
4.3. Isotopic Compositions
4.4. SOM and Clustering Results
5. Discussion
5.1. Influence of Recharge Sources on Groundwater Hydrochemical and Isotopic Compositions
5.2. Characterization of Groundwater Using SOM
6. Conclusions
- Group 1 groundwater, distributed around the Houki River, which flows along the western edge of the fan, had relatively low isotopic ratios, but high EC values and high Na+ and Cl− concentrations. Group 1 groundwater was thus inferred to have been greatly affected by infiltration from the Houki River, which had water of a different chemical composition compared to the other rivers.
- Group 2 groundwater, distributed in the central and lower part of the fan, had high isotopic ratios and was inferred to be recharged mainly by infiltration of paddy waters that had been affected by evaporative isotopic enrichment. However, the area of group 2 shrank during the non-irrigation period when the infiltration of paddy water did not occur.
- Group 3 groundwater, distributed around the Sabi and Kuma Rivers, which flows down the center of the fan, had a low EC and low isotopic ratios, indicating a greater influence of infiltration of water from the two rivers compared to other recharge sources.
- Group 4 groundwater, distributed on the upstream side of group 2 groundwater, had lower isotopic ratios than group 2 groundwater. In the upper part of the fan, few paddy rice fields but many livestock farms are distributed throughout this region; thus, recharge from paddy rice fields was relatively small. Furthermore, NO3-N concentrations in group 4 groundwaters were higher than those in the other groups.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Seto, R. Land use by landform classification in Japan -Analysis with the data of grid square basis-. Map 1986, 24, 1–11, (In Japanese with English abstract). [Google Scholar]
- Tabayashi, A. Irrigation systems in Japan. Geogr. Rev. Jpn. 1987, 60, 41–65. [Google Scholar] [CrossRef] [Green Version]
- Li, F.; Pan, G.; Tang, C.; Zhang, Q.; Yu, J. Recharge source and hydrogeochemical evolution of shallow groundwater in a complex alluvial fan system, southwest of north China plain. Environ. Geol. 2008, 55, 1109–1122. [Google Scholar] [CrossRef]
- Yu, H.L.; Chu, H.J. Understanding space-time patterns of groundwater system by empirical orthogonal functions: A case study in the Choshui River alluvial fan, Taiwan. J. Hydrol. 2010, 381, 239–247. [Google Scholar] [CrossRef]
- Eastoe, C.J.; Hutchison, W.R.; Hibbs, B.J.; Hawley, J.; Hogan, J.F. Interaction of a river with an alluvial basin aquifer: Stable isotopes, salinity and water budgets. J. Hydrol. 2010, 395, 67–78. [Google Scholar] [CrossRef]
- Bourke, S.A.; Cook, P.G.; Shanafield, M.; Dogramaci, S.; Clark, J.F. Characterisation of hyporheic exchange in a losing stream using radon-222. J. Hydrol. 2014, 519, 94–105. [Google Scholar] [CrossRef] [Green Version]
- Karan, S.; Sebok, E.; Engesgaard, P. Air/water/sediment temperature contrasts in small streams to identify groundwater seepage locations. Hydrol. Process. 2017, 31, 1258–1270. [Google Scholar] [CrossRef]
- Yoshioka, Y.; Nakamura, K.; Nakano, T.; Horino, H.; Shin, K.C.; Hashimoto, S.; Kawashima, S. Multiple-indicator study of groundwater flow and chemistry and the impacts of river and paddy water on groundwater in the alluvial fan of the Tedori River, Japan. Hydrol. Process. 2016, 30, 2804–2816. [Google Scholar] [CrossRef]
- Doveri, M.; Mussi, M. Water isotopes as environmental tracers for conceptual understanding of groundwater flow: An application for fractured aquifer systems in the “Scansano-Magliano in Toscana” area (Southern Tuscany, Italy). Water 2014, 6, 2255–2277. [Google Scholar] [CrossRef] [Green Version]
- Yeh, H.F.; Lin, H.I.; Lee, C.H.; Hsu, K.C.; Wu, C.S. Identifying seasonal groundwater recharge using environmental stable isotopes. Water 2014, 6, 2849–2861. [Google Scholar] [CrossRef]
- Zhong, C.H.; Yang, Q.C.; Ma, H.Y.; Bian, J.M.; Zhang, S.H.; Lu, X.G. Application of environmental isotopes to identify recharge source, age, and renewability of phreatic water in Yinchuan Basin. Hydrol. Process. 2019, 33, 2166–2173. [Google Scholar] [CrossRef]
- Liu, Y.; Yamanaka, T. Tracing groundwater recharge sources in a mountain-plain transitional area using stable isotopes and hydrochemistry. J. Hydrol. 2012, 464, 116–126. [Google Scholar] [CrossRef] [Green Version]
- Valder, J.F.; Long, A.J.; Davis, A.D.; Kenner, S.J. Multivariate statistical approach to estimate mixing proportions for unknown end members. J. Hydrol. 2012, 460–461, 65–76. [Google Scholar] [CrossRef]
- Cortes, J.E.; Muñoz, L.F.; Gonzalez, C.A.; Niño, J.E.; Polo, A.; Suspes, A.; Siachoque, S.C.; Hernãndez, A.; Trujillo, H. Hydrogeochemistry of the formation waters in the San Francisco field, UMV basin, Colombia—A multivariate statistical approach. J. Hydrol. 2016, 539, 113–124. [Google Scholar] [CrossRef]
- Islam, M.M.; Lenz, O.K.; Azad, A.K.; Ara, M.H.; Rahman, M.; Hassan, N. Assessment of spatio-temporal variations in water quality of Shailmari River, Khulna (Bangladesh) using multivariate statistical techniques. J. Geosci. Environ. Protect. 2017, 5, 1–26. [Google Scholar] [CrossRef]
- Dieng, N.M.; Orban, P.; Stumpp, C.; Faye, S.; Dassargues, A. Temporal changes in groundwater quality of the Saloum coastal aquifer. J. Hydrol. Reg. Stud. 2017, 9, 163–182. [Google Scholar] [CrossRef]
- Chen, I.T.; Chang, L.C.; Chang, F.J. Exploring the spatio-temporal interrelation between groundwater and surface water by using the self-organizing maps. J. Hydrol. 2018, 556, 131–142. [Google Scholar] [CrossRef]
- Choi, B.Y.; Yun, S.T.; Kim, K.H.; Kim, J.W.; Kim, H.M.; Koh, Y.K. Hydrogeochemical interpretation of South Korean groundwater monitoring data using Self-Organizing Maps. J. Geochem. Explor. 2014, 137, 73–84. [Google Scholar] [CrossRef]
- Nakagawa, K.; Amano, H.; Kawamura, A.; Berndtsson, R. Classification of groundwater chemistry in Shimabara, using self-organizing maps. Hydrol. Res. 2017, 48, 840–850. [Google Scholar] [CrossRef] [Green Version]
- Agoubi, B. Assessing hydrothermal groundwater flow path using Kohonen’s SOM geochemical data and groundwater temperature cooling trend. Environ. Sci. Pollut. Res. 2018, 25, 13597–13610. [Google Scholar] [CrossRef]
- An, Y.; Zou, Z.; Li, R. Descriptive Characteristics of Surface Water Quality in Hong Kong by a Self-Organising Map. Int. J. Environ. Res. Public Health 2016, 13, 115. [Google Scholar] [CrossRef] [PubMed]
- Rural Development Bureau, Ministry of Agriculture, Forestry and Fisheries (MAFF). Actual Use of Groundwater for Agriculture; MAFF: Tokyo, Japan, 2011; pp. 1–13. (In Japanese) [Google Scholar]
- Otawara City Habitat of Three-Spined Stickleback (Taya River). Available online: https://www.city.ohtawara.tochigi.jp/docs/2013082781284/ (accessed on 28 October 2019). (In Japanese).
- Wakui, H.; Yamanaka, T. Source of groundwater recharge and their local differences in the central part of Nasu fan as revealed by stable isotopes. J. Groundw. Hydrol. 2006, 48, 263–277, (In Japanese with English abstract). [Google Scholar] [CrossRef]
- Hiyama, T.; Suzuki, Y. Groundwater in the Nasuno basin -Spatial and seasonal changes in water quality-. J. Jpn. Assoc. Hydrol. Sci. 1991, 21, 143–154, (In Japanese with English abstract). [Google Scholar]
- Babiker, I.S.; Mohamed, M.A.A.; Hiyama, T. Assessing groundwater quality using GIS. Water Resour. Manag. 2007, 21, 699–715. [Google Scholar] [CrossRef]
- Somura, H.; Goto, A.; Matsui, H.; Elhassan, A.M. Impacts of nutrient management and decrease in paddy field area on groundwater nitrate concentration: A case study at the Nasunogahara alluvial fan, Tochigi Prefecture, Japan. Hydrol. Process. 2008, 22, 4752–4766. [Google Scholar] [CrossRef]
- Elhassan, A.M.; Goto, A.; Mizutani, M. Combining a tank model with a groundwater model for simulating regional groundwater flow in an alluvial fan. Trans. Jpn. Soc. Irrig. 2001, 215, 21–29. [Google Scholar]
- National Land Information Division, National Spatial Planning and Regional Policy Bureau, MILT of Japan. National Land Numerical Information Download Service. Available online: http://nlftp.mlit.go.jp/ksj/ (accessed on 4 September 2019).
- Geospatial Information Authority of Japan. GSI Map. Available online: https://maps.gsi.go.jp/ (accessed on 4 September 2019).
- Hydrogeological Map of Nasuno-ga-hara Area. Kanto Regional Agricultural Administration Office; MAFF of Japan: Tokyo, Japan, 1993. (In Japanese)
- The Survey Report of Subsurface Dam in Kanto Area. Kanto Regional Agricultural Administration Office; MAFF of Japan: Tokyo, Japan, 1999. (In Japanese)
- IAEA/GNIP Precipitation Sampling Guide (V2.02). September 2014. Available online: http://www-naweb.iaea.org/napc/ih/documents/other/gnip_manual_v2.02_en_hq.pdf (accessed on 31 October 2019).
- Hoehn, E.; von Gunten, H.R. Radon in groundwater: A tool to assess infiltration from surface waters to aquifers. Water Resour. Res. 1989, 25, 1795–1803. [Google Scholar] [CrossRef] [Green Version]
- Hamada, H. Estimation of groundwater flow rate using the decay of 222Rn in a well. J. Environ. Radioact. 2000, 47, 1–13. [Google Scholar] [CrossRef]
- Hamada, H.; Komae, T. Investigation on shallow groundwater in a small basin using natural radioisotopes. Radioisotopes 1996, 45, 71–81. [Google Scholar] [CrossRef] [Green Version]
- Gat, J.R. Oxygen and hydrogen isotopes in the hydrologic cycle. Annu. Rev. Earth Planet. Sci. 1996, 24, 225–262. [Google Scholar] [CrossRef] [Green Version]
- Dansgaard, W. Stable isotopes in precipitation. Tellus 1964, 16, 436–468. [Google Scholar] [CrossRef]
- Kohonen, T. Self-organized formation of topologically correct feature maps. Biol. Cybern. 1982, 43, 59–69. [Google Scholar] [CrossRef]
- Jin, Y.H.; Kawamura, A.; Park, S.C.; Nakagawa, N.; Amaguchi, H.; Olsson, J. Spatiotemporal classification of environmental monitoring data in the Yeongsan River basin, Korea, using self-organizing maps. J. Environ. Monit. 2011, 13, 2886–2894. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.T.; Kawamura, A.; Tong, T.N.; Nakagawa, N.; Amaguchi, H.; Gilbuena, R. Clustering spatio–seasonal hydrogeochemical data using self-organizing maps for groundwater quality assessment in the Red River Delta. J. Hydrol. 2015, 522, 661–673. [Google Scholar] [CrossRef]
- Farsadnia, F.; Rostami Kamrood, M.; Moghaddam Nia, A.; Modarres, R.; Bray, M.T.; Han, D.; Sadatinejad, J. Identification of homogeneous regions for regionalization of watersheds by two-level self-organizing feature maps. J. Hydrol. 2014, 509, 387–397. [Google Scholar] [CrossRef]
- Hentati, A.; Kawamura, A.; Amaguchi, H.; Iseri, Y. Evaluation of sedimentation vulnerability at small hillside reservoirs in the semi-arid region of Tunisia using the Self-Organizing Map. Geomorphology 2010, 122, 56–64. [Google Scholar] [CrossRef]
- Vesanto, J.; Alhoniemi, R. Clustering of the self organizing map. IEEE Trans. Neural Netw. 2000, 11, 586–600. [Google Scholar] [CrossRef]
- Faggiano, L.; Zwart, D.; García-Berthou, E.; Lek, S.; Gevrey, M. Patterning ecological risk of pesticide contamination at the river basin scale. Sci. Total Environ. 2010, 408, 2319–2326. [Google Scholar] [CrossRef]
- Wehrens, R.; Buydens, L.M.C. Self-and super-organizing maps in r: The kohonen package. J. Stat. Softw. 2017, 21, 1–19. [Google Scholar]
- Ogawa, R.; Yamanaka, M. Hydrogeochemical controlling on groundwater in the Hadano Basin, Kanagawa Prefecture: Processes of mineral weathering and dissolved inorganic carbon supply. In Proceedings of the Institute of Natural Sciences. Sect; Nihon University: Tokyo, Japan, 2018; Volume 53, pp. 125–134, (In Japanese with English abstract). [Google Scholar]
- Yamanaka, T.; Tanaka, T.; Asanuma, J.; Hamada, Y. Interaction Between Groundwater and River Water in the Nasu Fan, Tochigi; Bull Terr Environment Research Ctr., University of Tsukuba: Tsukuba, Japan, 2003; Volume 4, pp. 51–59, (In Japanese with English abstract). [Google Scholar]
- Craig, H. Isotopic variations in meteoric waters. Science 1961, 133, 1702–1703. [Google Scholar] [CrossRef]
- Ichiyanagi, K.; Tanoue, M. Spatial analysis of annual mean stable isotopes in precipitation across Japan based on an intensive observation period throughout 2013. Istopes Environ. Health Stud. 2016, 52, 353–362. [Google Scholar] [CrossRef] [PubMed]
- Yoshimura, K.; Ichiyanagi, K. A reconsideration of seasonal variation in precipitation deuterium excess over East Asia. J. Jpn. Soc. Hydrol. Water Res. 2009, 22, 262–276, (In Japanese with English abstract). [Google Scholar] [CrossRef] [Green Version]
- Gibson, J.J.; Prepas, E.E.; McEachern, P. Quantitative comparison of lake throughflow, residency, and catchment runoff using stable isotopes: Modelling and results from a regional survey of Boreal lakes. J. Hydrol. 2002, 262, 128–144. [Google Scholar] [CrossRef]
- Tsuchihara, T.; Shirahata, K.; Yoshimoto, S.; Ishida, S. National-scale variations in the stable isotopic compositions of irrigation-pond and spring waters across Japan. Paddy Water Environ. 2019, 17, 429–438. [Google Scholar] [CrossRef]
- Mahindawansha, A.; Breuer, L.; Chamorro, A.; Kraft, P. High-frequency water isotopic analysis using an automatic water sampling system in rice-based cropping systems. Water 2018, 10, 1327. [Google Scholar] [CrossRef] [Green Version]
- Hamada, H.; Komae, T. Analysis of recharge by paddy field irrigation using 222Rn concentration in groundwater as an indicator. J. Hydrol. 1998, 205, 92–100. [Google Scholar] [CrossRef]
Type | Group/Site | n | Period | EC | Na+ | K+ | Mg2+ | Ca2+ | HCO3− | Cl− | SO42− | NO3-N | δ18O | δ2H | d-Excess | 222Rn | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
mS/m | mg/L | mg/L | mg/L | mg/L | mg/L | mg/L | mg/L | mg/L | ‰ | ‰ | ‰ | Bq/L | |||||
Groundwater | All | 222 | IP, NP | Mean | 17.3 | 9.0 | 0.3 | 1.3 | 4.9 | 42.0 | 8.7 | 20.1 | 2.6 | −8.5 | −56 | 12.5 | 12.4 |
Median | 17.4 | 8.6 | 0.3 | 1.2 | 4.6 | 40.3 | 8.1 | 20.7 | 2.5 | −8.6 | −56 | 12.6 | 12.9 | ||||
25th | 15.1 | 7.1 | 0.2 | 0.9 | 3.9 | 30.4 | 6.1 | 18.2 | 1.9 | −8.9 | −57 | 11.4 | 10.7 | ||||
75th | 19.7 | 10.1 | 0.3 | 1.6 | 5.8 | 50.8 | 10.2 | 22.8 | 3.1 | −8.2 | −54 | 13.4 | 14.5 | ||||
Group 1 | 34 | IP, NP | Mean | 20.3 | 13.9 | 2.0 | 4.1 | 16.8 | 46.4 | 15.4 | 24.0 | 1.9 | −8.8 | −57 | 12.9 | 11.6 | |
Median | 20.0 | 13.8 | 2.1 | 3.8 | 16.4 | 46.9 | 15.4 | 23.5 | 1.6 | −8.8 | −57 | 13.0 | 12.4 | ||||
25th | 19.5 | 13.3 | 1.9 | 3.6 | 15.8 | 44.4 | 13.8 | 22.8 | 1.2 | −9.1 | −59 | 12.4 | 10.1 | ||||
75th | 20.6 | 15.1 | 2.3 | 4.1 | 17.5 | 50.3 | 16.5 | 24.4 | 2.0 | −8.6 | −56 | 13.3 | 13.5 | ||||
Group 2 | 73 | IP, NP | Mean | 17.2 | 8.6 | 1.4 | 5.1 | 13.5 | 39.0 | 8.6 | 20.2 | 3.0 | −8.0 | −53 | 11.0 | 12.5 | |
Median | 17.0 | 8.5 | 1.4 | 5.2 | 13.0 | 38.4 | 8.1 | 20.6 | 3.0 | −8.1 | −54 | 11.1 | 12.9 | ||||
25th | 16.2 | 7.6 | 1.1 | 4.6 | 12.1 | 33.6 | 7.1 | 18.6 | 2.6 | −8.3 | −55 | 10.2 | 10.6 | ||||
75th | 18.0 | 9.1 | 1.5 | 5.7 | 14.6 | 45.2 | 9.8 | 23.5 | 3.4 | −7.7 | −52 | 11.8 | 14.6 | ||||
Group 3 | 72 | IP, NP | Mean | 14.4 | 6.8 | 1.1 | 3.9 | 10.7 | 29.6 | 5.5 | 19.2 | 2.1 | −8.8 | −57 | 13.5 | 12.2 | |
Median | 14.0 | 6.7 | 1.0 | 3.9 | 10.8 | 28.9 | 5.2 | 20.4 | 2.0 | −8.8 | −57 | 13.5 | 12.9 | ||||
25th | 13.2 | 6.1 | 0.7 | 3.5 | 9.7 | 24.9 | 4.3 | 18.3 | 1.7 | −9.1 | −58 | 12.8 | 10.4 | ||||
75th | 15.2 | 7.3 | 1.4 | 4.2 | 11.7 | 33.7 | 6.4 | 21.3 | 2.3 | −8.6 | −56 | 14.5 | 15.0 | ||||
Group 4 | 43 | IP, NP | Mean | 20.0 | 9.7 | 1.0 | 6.7 | 18.2 | 64.4 | 9.1 | 18.3 | 3.4 | −8.6 | −56 | 12.9 | 13.2 | |
Median | 20.0 | 9.8 | 1.0 | 6.6 | 17.8 | 62.8 | 8.9 | 18.5 | 3.2 | −8.7 | −56 | 12.9 | 13.0 | ||||
25th | 19.3 | 9.2 | 0.8 | 6.0 | 16.4 | 56.3 | 8.3 | 15.8 | 2.8 | −8.8 | −57 | 12.3 | 11.2 | ||||
75th | 21.2 | 10.3 | 1.2 | 7.1 | 19.8 | 69.7 | 9.8 | 20.7 | 4.0 | −8.4 | −55 | 13.4 | 14.8 | ||||
Spring water | SP1 | 1 | IP | 11.8 | 5.3 | 0.6 | 2.8 | 9.0 | 19.4 | 3.6 | 19.1 | 1.4 | −9.4 | −60 | 15.1 | 13.3 | |
SP2 | 1 | IP | 11.3 | 5.3 | 0.7 | 2.8 | 9.5 | 24.4 | 3.8 | 20.9 | 1.5 | −9.3 | −60 | 14.3 | 8.4 | ||
SP3 | 1 | IP | 13.6 | 5.9 | 0.8 | 3.4 | 10.5 | 22.0 | 5.1 | 21.0 | 1.9 | −9.0 | −58 | 13.8 | 11.3 | ||
SP4 | 2 | IP, NP | Mean | 14.1 | 7.7 | 1.2 | 4.0 | 11.5 | 36.9 | 4.9 | 18.9 | 1.9 | −8.9 | −57 | 13.7 | 11.7 | |
SP5 | 2 | IP, NP | Mean | 14.4 | 7.9 | 1.1 | 4.3 | 11.0 | 31.7 | 6.0 | 19.1 | 2.2 | −8.8 | −57 | 13.4 | 12.6 | |
SP6 | 2 | IP, NP | Mean | 18.4 | 12.2 | 2.0 | 3.7 | 16.4 | 42.6 | 13.1 | 23.8 | 1.9 | −8.9 | −58 | 13.1 | 13.3 | |
Paddy water | 14 | IP | Mean | 11.7 | 6.2 | 3.3 | 2.9 | 7.1 | 19.1 | 6.9 | 20.5 | 0.5 | −5.4 | −45 | −2.2 | – | |
River water | Naka R. | 2 | IP, NP | Mean | 15.7 | 10.2 | 0.2 | 1.6 | 15.9 | 25.3 | 2.7 | 42.7 | 0.1 | −10.0 | −63 | 17.3 | 0.3 |
Kuma R. | 2 | IP, NP | Mean | 14.8 | 5.0 | 0.2 | 2.0 | 17.6 | 9.6 | 1.0 | 52.5 | 0.2 | −9.9 | −62 | 16.4 | 0.2 | |
Sabi R. | 2 | IP, NP | Mean | 11.1 | 3.6 | 0.4 | 2.5 | 10.6 | 11.9 | 1.2 | 32.5 | 0.2 | −9.7 | −62 | 15.4 | 0.5 | |
Houki R. | 2 | IP, NP | Mean | 23.2 | 23.3 | 2.8 | 2.8 | 14.9 | 47.5 | 23.9 | 27.5 | 0.3 | −10.0 | −64 | 15.8 | 0.3 | |
Rainwater | P1 | 16 | All year | Mean | – | – | – | – | – | – | – | – | – | −8.5 | −56 | 12.1 | – |
P2 | 12 | All year | Mean | – | – | – | – | – | – | – | – | – | −8.0 | −52 | 12.1 | – |
EC | Na+ | K+ | Mg2+ | Ca2+ | HCO3− | Cl− | SO42− | NO3-N | |
---|---|---|---|---|---|---|---|---|---|
EC | 1 | ||||||||
Na+ | 0.67 | 1 | |||||||
K+ | 0.24 | 0.45 | 1 | ||||||
Mg2+ | 0.52 | 0.19 | −0.19 | 1 | |||||
Ca2+ | 0.82 | 0.60 | 0.19 | 0.56 | 1 | ||||
HCO3− | 0.67 | 0.50 | 0.02 | 0.70 | 0.84 | 1 | |||
Cl− | 0.66 | 0.91 | 0.54 | 0.15 | 0.61 | 0.42 | 1 | ||
SO42− | 0.31 | 0.29 | 0.19 | −0.01 | 0.26 | −0.13 | 0.23 | 1 | |
NO3-N | 0.32 | 0.01 | −0.07 | 0.69 | 0.27 | 0.28 | 0.08 | −0.18 | 1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsuchihara, T.; Shirahata, K.; Ishida, S.; Yoshimoto, S. Application of a Self-Organizing Map of Isotopic and Chemical Data for the Identification of Groundwater Recharge Sources in Nasunogahara Alluvial Fan, Japan. Water 2020, 12, 278. https://doi.org/10.3390/w12010278
Tsuchihara T, Shirahata K, Ishida S, Yoshimoto S. Application of a Self-Organizing Map of Isotopic and Chemical Data for the Identification of Groundwater Recharge Sources in Nasunogahara Alluvial Fan, Japan. Water. 2020; 12(1):278. https://doi.org/10.3390/w12010278
Chicago/Turabian StyleTsuchihara, Takeo, Katsushi Shirahata, Satoshi Ishida, and Shuhei Yoshimoto. 2020. "Application of a Self-Organizing Map of Isotopic and Chemical Data for the Identification of Groundwater Recharge Sources in Nasunogahara Alluvial Fan, Japan" Water 12, no. 1: 278. https://doi.org/10.3390/w12010278
APA StyleTsuchihara, T., Shirahata, K., Ishida, S., & Yoshimoto, S. (2020). Application of a Self-Organizing Map of Isotopic and Chemical Data for the Identification of Groundwater Recharge Sources in Nasunogahara Alluvial Fan, Japan. Water, 12(1), 278. https://doi.org/10.3390/w12010278