Spatial Distribution of Sea Salt Deposition in a Coastal Pinus thunbergii Forest
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Field Survey
2.2.1. Survey in 2010 (Preliminary Survey)
2.2.2. Survey in 2011–2012
2.3. Sampling Methods of Throughfall and Soil-Infiltration Water
2.4. Topography and Vegetation
2.5. Chemical Analysis
3. Results
3.1. Throughfall and Groundwater Chemistry (Preliminary Survey in 2010)
3.2. Forest Structure and Sea Salt Deposition (Survey in 2011–2012)
4. Discussion
4.1. Chemical Interaction in Canopy and Soil Surface in the Sea Salt Deposition Process
4.2. Sea Salt Scavenging by Coastal Forests
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Farrell, E.P. Atmospheric deposition in maritime environments and its impact on terrestrial ecosystems. Water Air Soil Pollut. 1995, 85, 123–130. [Google Scholar] [CrossRef]
- Pedersen, L.B.; Bille-Hansen, J. Effects of airborne sea salts on soil water acidification and leaching of aluminium in different forest ecosystems in Denmark. Plant Soil 1995, 168–169, 365–372. [Google Scholar] [CrossRef]
- Campbell, D.J. Salt-wind induced wave regeneration in coastal pine forests in New Zealand. Can. J. For. Res. 1998, 28, 953–960. [Google Scholar] [CrossRef]
- Griffiths, M.E.; Orians, C.M. Salt spray differentially affects water status, necrosis, and growth in coastal sandplain heathland species. Am. J. Bot. 2003, 90, 1188–1196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Z.-H. Impact of seasalt deposition on acid soils in maritime regions. Pedosphere 2003, 13, 375–380. [Google Scholar]
- Marosz, A.; Nowak, J.S. Effect of salinity stress on growth and macroelements uptake of four tree species. Dendrobiology 2008, 59, 23–29. [Google Scholar]
- Gustafsson, M.E.R.; Franzén, L.G. Inland transport of marine aerosols in southern Sweden. Atmos. Environ. 2000, 34, 313–325. [Google Scholar] [CrossRef]
- Silva, B.; Rivas, T.; García-Rodeja, E.; Prieto, B. Distribution of ions of marine origin in Galicia (NW Spain) as a function of distance from the sea. Atmos. Environ. 2007, 41, 4396–4407. [Google Scholar] [CrossRef]
- Kreutzer, K.; Beier, C.; Bredemeier, M.; Blanck, K.; Cummins, T.; Farrell, E.P.; Lammersdorf, N.; Rasmussen, L.; Rothe, A.; De Visser, P.H.B.; et al. Atmospheric deposition and soil acidification in five coniferous forest ecosystems: A comparison of the control plots of the EXMAN sites. For. Ecol. Manag. 1998, 101, 125–142. [Google Scholar] [CrossRef]
- Konta, F. Why is it Japanese black pine? the disaster prevention of the coastal forest in Japan. J. Jpn. Soc. Coast. For. 2013, 12, 23–28, (In Japanese with English summary). [Google Scholar]
- Mukai, Y.; Sugimura, T. Extraction of areas infested by pine bark beetle using Landsat MSS data. Photogr. Eng. Remote Sens. 1987, 53, 77–81. [Google Scholar]
- Haraguchi, A.; Sakaki, M. Formation of soil chemical environment in coastal Pinus thunbergii Parlatore forest in southwestern Japan. Water 2020, 12, 1544. [Google Scholar] [CrossRef]
- Jung, K.; Chang, S.X.; Arshad, M.A. Effects of canopy-deposition interaction on H+ supply to soils in Pinus banksiana and Populus tremuloides ecosystems in the Athabasca oil sands region in Alberta, Canada. Environ. Pollut. 2011, 159, 1327–1333. [Google Scholar] [CrossRef] [PubMed]
- Neal, C.; Ryland, G.P.; Conway, T.; Jeffery, H.A.; Neal, M.; Robson, A.J.; Smith, C.J.; Walls, J.; Bhardwaj, C.L. Interception of chemicals at a forest edge for a rural low-lying site at Black Wood, Hampshire, Southern England. Sci. Total Environ. 1994, 142, 127–141. [Google Scholar] [CrossRef]
- Vanguelova, E.I.; Pitman, R.M. Nutrient and carbon cycling along nitrogen deposition gradients in broadleaf and conifer forest stands in the east of England. For. Ecol. Manag. 2019, 447, 180–194. [Google Scholar] [CrossRef]
- Beier, C.; Gundersen, P. Atmospheric deposition to the edge of a spruce forest in Denmark. Environ. Pollut. 1989, 60, 257–271. [Google Scholar] [CrossRef]
- Cole, D.W.; Rapp, M. Elemental cycling in forest ecosystems. In Dynamic Properties of Forest Ecosystems; Reichle, D.E., Ed.; Cambridge University Press: Cambridge, UK, 1981; pp. 341–409. [Google Scholar]
- Haraguchi, A.; Iytobe, T.; Nishijima, H.; Tomizawa, H. Acid and sea-salt accumulation in coastal peat mires of a Picea glehnii forest in Ochiishi, eastern Hokkaido, Japan. Wetlands 2003, 23, 229–235. [Google Scholar] [CrossRef]
Independent Variable | Sample | Regression | n | Significance |
---|---|---|---|---|
Na+ (mg/L) | Throughfall | y = 0.892ax + 0.062A | 86 | *** |
(log-transformed) | Soil infiltration water | y = 0.931ax + 0.216B | 86 | *** |
Cl− (mg/L) | Throughfall | y = 0.913ax − 0.190A | 86 | *** |
(log-transformed) | Soil infiltration water | y = 0.879ax + 0.056B | 86 | *** |
Pinus thunbergii Forest | ||||
---|---|---|---|---|
Throughfall | Soil Infiltration Water | N | Significance | |
pH | 5.18 ± 0.70 | 5.09 ± 0.70 | 491 | ** |
EC (mS m−1) | 11.48 ± 16.48 | 18.00 ± 23.22 | 497 | *** |
Na+ (mg L−1) | 6.01 ± 5.51 | 6.31 ± 6.40 | 59 | NS |
K+ (mg L−1) | 1.81 ± 3.58 | 2.91 ± 1.90 | 59 | *** |
Mg2+ (mg L−1) | 0.89 ± 1.60 | 2.11 ± 3.67 | 59 | *** |
Ca2+ (mg L−1) | 1.31 ± 1.33 | 4.69 ± 8.43 | 59 | *** |
NH4+ (mg L−1) | 0.32 ± 0.81 | 0.44 ± 0.66 | 59 | NS |
Cl− (mg L−1) | 11.01 ± 10.45 | 11.65 ± 14.10 | 59 | NS |
NO3− (mg L−1) | 1.76 ± 1.29 | 9.66 ± 23.48 | 59 | *** |
SO42− (mg L−1) | 3.58 ± 4.84 | 4.96 ± 3.86 | 59 | *** |
TOC (mg L−1) | 5.76 ± 4.03 | 21.35 ± 8.68 | 59 | *** |
Evergreen Broadleaf Forest | ||||
Throughfall | Soil Infiltration Water | N | Significance | |
pH | 5.76 ± 0.62 | 5.58 ± 0.70 | 156 | ** |
EC (mS m−1) | 10.81 ± 11.48 | 23.69 ± 15.76 | 157 | *** |
Na+ (mg L−1) | 5.24 ± 3.78 | 10.76 ± 8.43 | 16 | *** |
K+ (mg L−1) | 3.87 ± 2.21 | 10.08 ± 6.87 | 16 | *** |
Mg2+ (mg L−1) | 0.76 ± 0.53 | 5.60 ± 3.28 | 16 | *** |
Ca2+ (mg L−1) | 1.96 ± 0.96 | 25.79 ± 16.15 | 16 | *** |
NH4+ (mg L−1) | 0.17 ± 0.09 | 0.34 ± 0.72 | 16 | NS |
Cl− (mg L−1) | 10.58 ± 7.46 | 18.70 ± 14.54 | 16 | *** |
NO3− (mg L−1) | 2.54 ± 1.50 | 64.23 ± 43.15 | 16 | *** |
SO42− (mg L−1) | 3.17 ± 1.56 | 12.79 ± 9.27 | 16 | *** |
TOC (mg L−1) | 6.94 ± 5.34 | 23.74 ± 9.00 | 16 | *** |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haraguchi, A.; Sakaki, M. Spatial Distribution of Sea Salt Deposition in a Coastal Pinus thunbergii Forest. Water 2020, 12, 2682. https://doi.org/10.3390/w12102682
Haraguchi A, Sakaki M. Spatial Distribution of Sea Salt Deposition in a Coastal Pinus thunbergii Forest. Water. 2020; 12(10):2682. https://doi.org/10.3390/w12102682
Chicago/Turabian StyleHaraguchi, Akira, and Masato Sakaki. 2020. "Spatial Distribution of Sea Salt Deposition in a Coastal Pinus thunbergii Forest" Water 12, no. 10: 2682. https://doi.org/10.3390/w12102682
APA StyleHaraguchi, A., & Sakaki, M. (2020). Spatial Distribution of Sea Salt Deposition in a Coastal Pinus thunbergii Forest. Water, 12(10), 2682. https://doi.org/10.3390/w12102682