Impact of the City on the Rapid Increase in the Runoff and Transport of Suspended and Dissolved Solids During Rainfall—The Example of the Silnica River (Kielce, Poland)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. State of the Silnica River Channel
2.3. Areas Supplying Material to the Watercourses within the Catchment
2.4. Research Methods
3. Results
3.1. Runoff and Fluvial Transport during Rainfall-Induced Floods
3.2. Examples of Hydrotechnical Solutions as an Effect of Hydrological Research
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Paul, M.J.; Meyer, J.L. Streams in the urban landscape. Ann. Rev. Ecol. Syst. 2001, 32, 333–365. [Google Scholar] [CrossRef]
- McGrane, S. Impacts of urbanisation on hydrological and water quality dynamics, and urban water management: A review. Hydrol. Sci. J. 2016, 61, 2295–2311. [Google Scholar] [CrossRef]
- Espey, W.H., Jr.; Morgan, C.W.; Masch, F.D. A Study of Some Effects of Urbanization on Storm Water Runoff from a Small Watershed; Report No. 23; Texas Water Development Board: Austin, TX, USA, 1966. [Google Scholar]
- Roesner, L.A. Urban runoff processes. In Urban Stormwater Hydrology; Kibler, D.F., Ed.; American Geophysical Union: Washington, DC, USA, 1982; Volume 7, pp. 137–159. [Google Scholar]
- Brun, S.E.; Band, L.E. Simulating runoff behavior in an urbanizing watershed. Comput. Environ. Urban. Syst. 2000, 24, 5–22. [Google Scholar] [CrossRef]
- Shuster, W.D.; Bonta, J.; Thurston, H.; Warnemuende, E.; Smith, D.R. Impacts of impervious surface on watershed hydrology: A review. Urban Water J. 2005, 2, 263–275. [Google Scholar] [CrossRef]
- Vicars-Groening, J.; Williams, H.F.L. Impact of urbanization on storm response of White Rock Creek, Dallas, TX. Environ. Geol. 2007, 51, 1263–1269. [Google Scholar] [CrossRef]
- Huang, S.Y.; Cheng, S.J.; Wen, J.C.; Lee, J.H. Identifying peak-imperviousness-recurrence relationships on a growing-impervious watershed, Taiwan. J. Hydrol. 2008, 362, 320–336. [Google Scholar] [CrossRef]
- O’Driscoll, M.; Clinton, S.; Jefferson, A.; Manda, A.; McMillan, S. Urbanization effects on watershed hydrology and in-stream processes in the southern United States. Water 2010, 2, 605–648. [Google Scholar] [CrossRef]
- Ferreira, C.S.S.; Walsh, R.P.D.; Nunes, J.P.C.; Steenhuis, T.S.; Nunes, M.; de Lima, J.L.M.P.; Coelho, C.O.A.; Ferreira, A.J.D. Impact of urban development on streamflow regime of a Portuguese peri-urban Mediterranean catchment. J. Soils Sediments 2016, 16, 2580–2593. [Google Scholar] [CrossRef]
- Walling, D.E.; Webb, B.W. Sediment availability and the prediction of storm-period sediment yields. In Recent Developments in the Explanation and Prediction of Erosion and Sediment Yield; Walling, D.E., Ed.; IAHS Publ. No. 137: Wallingford, UK, 1982; pp. 327–337. [Google Scholar]
- Walling, D.E.; Owens, P.N.; Carter, J.; Leeks, G.J.L.; Lewis, S.; Meharg, A.A.; Wright, J. Storage of sediment-associated nutrients and contaminants in river channel and flood plain systems. Appl. Geochem. 2003, 18, 195–220. [Google Scholar] [CrossRef]
- Hatt, B.; Fletcher, T.; Walsh, C.; Taylor, S. The influence of urban density and drainage infrastructure on the concentrations and loads of pollutants in small streams. J. Environ. Manag. 2004, 34, 112–124. [Google Scholar] [CrossRef]
- Chadwick, M.A.; Dobberfuhl, D.R.; Benke, A.C.; Huryn, A.D.; Suberkropp, K.; Thiele, J.E. Urbanization affects stream ecosystem function by altering hydrology, chemistry, and biotic richness. Ecol. Appl. 2006, 16, 1796–1807. [Google Scholar] [CrossRef]
- Taylor, K. Urban environments. In Environmental Sedimentology; Perry, C., Taylor, K., Eds.; Wiley-Blackwell: Oxford, UK, 2006; pp. 190–222. [Google Scholar]
- Ferreira, C.S.S.; Walsh, R.P.D.; Blake, W.H.; Kikuchi, R.; Ferreira, A.J.D. Temporal dynamics of sediment sources in an urbanizing Mediterranean catchment. Land Degrad. Dev. 2017, 28, 2354–2369. [Google Scholar] [CrossRef]
- Kemper, J.T.; Miller, A.J.; Welty, C. Spatial and temporal patterns of suspended sediment transport in nested urban watersheds. Geomorphology 2019, 336, 95–106. [Google Scholar] [CrossRef]
- Trimble, S.W. Contribution of stream channel erosion to sediment yield from an urbanizing watershed. Science 1997, 278, 1442–1444. [Google Scholar] [CrossRef] [Green Version]
- Nelson, E.J.; Booth, D.B. Sediment sources in an urbanizing, mixed land-use watershed. J. Hydrol. 2002, 264, 51–68. [Google Scholar] [CrossRef]
- Taylor, K.G.; Owens, P.N. Sediments in urban river basins: A review of sediment–contaminant dynamics in an environmental system conditioned by human activities. J. Soil. Sediment. 2009, 9, 281–303. [Google Scholar] [CrossRef]
- Müller, A.; Österlund, H.; Marsalek, J.; Viklander, M. The pollution conveyed by urban runoff: A review of sources. Sci. Total Environ. 2020, 709, 136125. [Google Scholar] [CrossRef]
- Williams, G.P. Sediment concentration versus water discharge during single hydrologic events in rivers. J. Hydrol. 1989, 111, 89–106. [Google Scholar] [CrossRef]
- Kostrzewski, A.; Stach, A.; Zwoliński, Z. Transport of suspended load in the Parseta River during the flash flood of June 1988, Poland. Geogr. Pol. 1994, 63, 63–73. [Google Scholar]
- Lenzi, M.A.; Marchi, L. Suspended sediment load during floods in a small stream of the Dolomites (northeastern Italy). Catena 2000, 39, 267–282. [Google Scholar] [CrossRef]
- Alexandrov, Y.; Laronne, J.B.; Reid, I. Intra-event and interseasonal behaviour of suspended sediment in flash floods of the semi-arid northern Negev, Israel. Geomorphology 2007, 85, 85–97. [Google Scholar] [CrossRef]
- Hsu, P.C.; Chen, C.N.; Tasi, C.T. Real-time prediction of the peak suspended sediment concentration and sediment yield of the Lao-Nung River during storms. Int. J. Sediment. Res. 2011, 26, 163–180. [Google Scholar] [CrossRef]
- Zumr, D.; Dostál, T.; Devátý, J.; Valenta, P.; Rosendorf, P.; Eder, A.; Strauss, P. Experimental determination of the flood wave transformation and the sediment resuspension in a small regulated stream in an agricultural catchment. Hydrol. Earth Syst. Sci. 2017, 21, 5681–5691. [Google Scholar] [CrossRef] [Green Version]
- Haddadchi, A.; Hicks, M. Understanding the effect of catchment characteristics on suspended sediment dynamics during flood events. Hydrol. Process. 2020, 34, 1558–1574. [Google Scholar] [CrossRef]
- Krajewski, A.; Gładecki, J.; Banasik, K. Transport of suspended sediment during flood events in a small urban catchment. Acta Sci. Pol. Form. Circumiectus 2018, 17, 119–127. [Google Scholar] [CrossRef]
- Ferreira, C.S.S.; Walsh, R.P.D.; Kalantari, Z.; Ferreira, A.J.D. Impact of land-use changes on spatiotemporal suspended sediment dynamics within a peri-urban catchment. Water 2020, 12, 665. [Google Scholar] [CrossRef] [Green Version]
- Rossi, L.; Krejci, V.; Rauch, W.; Kreikenbaum, S.; Fankhauser, R.; Gujer, W. Stochastic modeling of total suspended solids (TSS) in urban areas during rain events. Water Res. 2005, 39, 4188–4196. [Google Scholar] [CrossRef]
- Mulliss, R.M.; Revitt, D.M.; Shutes, R.B. The impacts of urban discharges on the hydrology and water quality of an urban watercourse. Sci. Total Environ. 1996, 189–190, 385–390. [Google Scholar] [CrossRef]
- Metadier, M.; Bertrand-Krajewski, J.L. The use of long-term on-line turbidity measurements for the calculation of urban stormwater pollutant concentrations, loads, pollutographs and intra-event fluxes. Water Res. 2012, 46, 6836–6856. [Google Scholar] [CrossRef]
- Gong, Y.; Liang, X.; Li, X.; Li, J.; Fang, X.; Song, R. Influence of rainfall characteristics on total suspended solids in urban runoff: A case study in Beijing, China. Water 2016, 8, 278. [Google Scholar] [CrossRef] [Green Version]
- Hannouche, A.; Joannis, C.; Chebbo, G. Assessment of total suspended solids (TSS) event load and its uncertainties in combined sewer system from continuous turbidity measurements. Urban. Water J. 2017, 14, 789–796. [Google Scholar] [CrossRef]
- Bąk, Ł.; Szeląg, B.; Górski, J.; Górska, K. The impact of catchment characteristics and weather conditions on heavy metal concentrations in stormwater—Data mining approach. Appl. Sci. 2019, 9, 2210. [Google Scholar] [CrossRef] [Green Version]
- Becouze-Lareure, C.; Dembélé, A.; Coquery, M.; Cren-Olivé, C.; Bertrand-Krajewski, J.L. Assessment of 34 dissolved and particulate organic and metallic micropollutants discharged at the outlet of two contrasted urban catchments. Sci. Total Environ. 2019, 651, 1810–1818. [Google Scholar] [CrossRef] [PubMed]
- Akan, A.O.; Houghtalen, R.J. Urban. Hydrology, Hydraulics and Stormwater Quality: Engineering Applications and Computer Modeling; John Wiley and Sons Inc.: Hoboken, NJ, USA, 2003. [Google Scholar]
- Fuchs, S.; Keiler, M.; Ortlepp, R.; Schinke, R.; Papathoma-Köhle, M. Recent advances in vulnerability assessment for the built environment exposed to torrential hazards: Challenges and the way forward. J. Hydrol. 2019, 575, 587–595. [Google Scholar] [CrossRef]
- Local Data Bank, Territorial Division. Head Office of Geodesy and Cartography, Warsaw. Available online: https://bdl.stat.gov.pl/BDL (accessed on 20 April 2020).
- Ciupa, T. The Impact of Land Use Runoff and Fluvial Transport in Small River Catchments: Based on the Sufraganiec and Silnica Rivers (Kielce, Poland); Jan Kochanowski University of Humanities and Sciences: Kielce, Poland, 2009. [Google Scholar]
- Ciupa, T.; Suligowski, R.; Ciupa, S. Hydrological issues in the environment protection programme of the city of Kielce. Studia Miej. 2017, 28, 167–182. [Google Scholar] [CrossRef]
- Walling, D.E. Solute variations in small catchment streams: Some comments. Trans. Inst. Br. Geogr. 1974, 64, 141–147. [Google Scholar] [CrossRef]
- Collins, M.B. Sediment yield studies of headwater catchments in Sussex, S.E. England. Earth Surf. Proc. Land. 1981, 6, 517–539. [Google Scholar] [CrossRef]
- Van Sickle, D. The effects of urban development on storm runoff. Tex. Eng. 1962, 32, 12. [Google Scholar]
- Wei, Z.; Simin, L.; Fengbing, T. Characterization of urban runoff pollution between dissolved and particulate phases. Sci. World J. 2013, 2013, 964737. [Google Scholar] [CrossRef] [Green Version]
- Tramblay, Y.; Saint-Hilaire, A.; Ouarda, T.B.M.J.; Moatar, F.; Hecht, B. Estimation of local extreme suspended sediment concentrations in California Rivers. Sci. Total Environ. 2010, 408, 4221–4229. [Google Scholar] [CrossRef] [Green Version]
- Old, G.H.; Leeks, G.J.L.; Packman, J.C.; Smith, B.P.G.; Lewis, S.; Hewitt, E.J.; Holmes, M.; Young, A. The impact of a convectional summer rainfall event on river flow and fine sediment transport in a highly urbanized catchment: Bradford, West Yorkshire. Sci. Total Environ. 2003, 314–316, 495–512. [Google Scholar] [CrossRef]
- Zeiger, S.; Hubbart, J.A. Quantifying suspended sediment flux in a mixed-land-use urbanizing watershed using a nested-scale study design. Sci. Total Environ. 2016, 542, 315–323. [Google Scholar] [CrossRef] [PubMed]
- Russell, K.; Vietz, G.; Fletcher, T. Global sediment yields from urban and urbanizing watersheds. Earth Sci. Rev. 2017, 168, 73–80. [Google Scholar] [CrossRef]
- Goodwin, T.H.; Young, A.R.; Holmes, M.G.; Old, G.H.; Hewitt, N.; Leeks, G.J.; Packman, J.C.; Smith, B.P. The temporal and spatial variability of sediment transport and yields within the Bradford Beck catchment, West Yorkshire. Sci. Total Environ. 2003, 314–316, 475–494. [Google Scholar] [CrossRef]
- Bello, A.A.D.; Hashim, N.B.; Haniffah, R.M. Impact of urbanization on the sediment yield in tropical watershed using temporal land-use changes and a GIS based model. J. Water Land Dev. 2017, 34, 33–45. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.H.; Bang, K.W.; Ketchum, L.H.; Choe, J.S.; Yu, M.J. First flush analysis of urban storm runoff. Sci. Total Environ. 2002, 293, 163–175. [Google Scholar] [CrossRef]
- Soller, J.; Stephenson, J.; Olivieri, K.; Downing, J.; Olivieri, A.W. Evaluation of seasonal scale first flush pollutant loading and implications for urban runoff management. J. Environ. Manag. 2005, 76, 309–318. [Google Scholar] [CrossRef]
- Hudak, P.F.; Banks, K.E. Compositions of first flush and composite storm water runoff in small urban and rural watersheds, north-central Texas. Urban. Water J. 2006, 3, 43–49. [Google Scholar] [CrossRef]
- Michalczyk, Z.; Chmiel, S.; Głowacki, S.; Siwek, K.; Sposób, J. Surface runoff in the urbanized catchment of Głęboka street in Lublin in the summer season of 2011. Teka 2012, 9, 107–115. [Google Scholar]
- Wałek, G. The Influence of Roads on Surface Runoff Formation in the Urbanized Area on the Example of Silnica River Catchment in Kielce; Jan Kochanowski University: Kielce, Poland, 2019. [Google Scholar]
Characteristic | Silnica Sub-Catchment Outlet | ||||
---|---|---|---|---|---|
Dabrowa | Piaski | Jesionowa | Pakosz | Bialogon | |
Surface area (km2) | 9.2 | 15.5 | 17.9 | 42.6 | 49.4 |
Mean catchment slope (‰) | 64.5 | 59.0 | 58.8 | 52.0 | 53.2 |
River kilometre (km) | 13.8 | 9.3 | 8.2 | 3.6 | 0.2 |
Channel slope (‰) | 14.9 | 11.7 | 10.7 | 8.4 | 7.4 |
Forests (%) | 72.9 | 51.2 | 44.9 | 29.6 | 32.7 |
Impervious surfaces (%) | 4.6 | 12.7 | 17.4 | 30.2 | 27.5 |
Other land use forms (%) | 22.5 | 36.1 | 37.7 | 40.2 | 39.8 |
Road density (km·km−2) | 4.8 | 6.1 | 7.1 | 12.7 | 11.8 |
Canal density (covered and uncovered) (km·km−2) | 1.2 | 1.6 | 2.0 | 5.0 | 4.7 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ciupa, T.; Suligowski, R. Impact of the City on the Rapid Increase in the Runoff and Transport of Suspended and Dissolved Solids During Rainfall—The Example of the Silnica River (Kielce, Poland). Water 2020, 12, 2693. https://doi.org/10.3390/w12102693
Ciupa T, Suligowski R. Impact of the City on the Rapid Increase in the Runoff and Transport of Suspended and Dissolved Solids During Rainfall—The Example of the Silnica River (Kielce, Poland). Water. 2020; 12(10):2693. https://doi.org/10.3390/w12102693
Chicago/Turabian StyleCiupa, Tadeusz, and Roman Suligowski. 2020. "Impact of the City on the Rapid Increase in the Runoff and Transport of Suspended and Dissolved Solids During Rainfall—The Example of the Silnica River (Kielce, Poland)" Water 12, no. 10: 2693. https://doi.org/10.3390/w12102693
APA StyleCiupa, T., & Suligowski, R. (2020). Impact of the City on the Rapid Increase in the Runoff and Transport of Suspended and Dissolved Solids During Rainfall—The Example of the Silnica River (Kielce, Poland). Water, 12(10), 2693. https://doi.org/10.3390/w12102693