Hydrogeology of Volcanic Highlands Affects Prioritization of Land Management Practices
Abstract
:1. Introduction
2. Materials and Methods
2.1. Gomit Watershed
2.2. Land and Water Management (LWM) Practices
2.3. Method of Data Collection and Analysis
3. Results
3.1. Rainfall
3.2. Infiltration and Rainfall Intensity
3.3. Geology
3.4. Perched Groundwater Level
3.5. Discharge at the Two Outlets
3.6. Sediment Concentration and Yield
3.6.1. Sediment Concentration
3.6.2. Sediment Yield
4. Discussion
4.1. Interaction of Geology And Hydrology
4.1.1. Interaction of Geology with Direct Runoff and Baseflow
4.1.2. Relationship between Geology and Perched Groundwater
4.1.3. Interaction of Groundwater and Baseflow
4.1.4. Regional Ethiopian Highlands—The Interaction of Geology and Annual Discharge
4.1.5. Global Context—The Interaction of Geology and Annual Discharge
4.2. Sediment—Discharge Interaction
4.2.1. Gomit Watershed
4.2.2. Regional Ethiopian Context
4.3. Land and Water Management Practices
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Characteristics | Forested | Agricultural | Entire Watershed |
---|---|---|---|
Major soils (%) | |||
Alisols | 10 | 0.5 | 6 |
Ferralsols | - | 8 | 3 |
Leptosols | 49 | 16 | 34 |
Luvisols | 39 | 44 | 41 |
Nitosols | - | 26 | 12 |
Regosols | 0.6 | - | 0.3 |
Vertisols | 2 | 6 | 4 |
Slope class (%) | |||
Flat | 0.5 | 2 | 1 |
Gentle | 4 | 27 | 12 |
Moderately steep | 9 | 32 | 17 |
Steep | 32 | 28 | 30 |
Hilly | 35 | 10 | 26 |
Mountainous | 20 | 2 | 13 |
Piezometer | Easting | Northing | Altitude, m | Well Depth, cm | Land Use | Remark |
---|---|---|---|---|---|---|
P1 | 1,338,242 | 379,614.2 | 1971.8 | 436 | Crop land | |
P2 | 1,338,290 | 379,807.6 | 1983.3 | 436 | Grass land | |
P3 | 1,338,317 | 380,021.8 | 2015.3 | 224 | Bush and grass land | |
P4 | 1,338,327 | 379,534.8 | 1976.3 | 466 | Crop land | Water, stream bank |
P5 | 1,338,536 | 379,722.9 | 1992.7 | 328 | Grazing land | Found groundwater |
P6 | 1,338,620 | 379,929.1 | 1995.3 | 220 | Grassland | Between cultivation |
P7 | 1,338,728 | 379,528.7 | 1993.6 | 503.9 | Crop land | Found ground water |
P8 | 1,338,872 | 379,618.2 | 1999.7 | 130 | Crop land | |
P9 | 1,338,995 | 379,673.9 | 2011.4 | 313 | Crop land | |
P10 | 1,338,683 | 379,428.6 | 1987.2 | 368.5 | Grass and crop land | |
P11 | 1,338,766 | 379,258.5 | 2000.9 | 120 | Crop land | |
P12 | 1,338,811 | 379,159.6 | 2008.3 | 233 | Grass and crop land | |
P13 | 1,339,326 | 379,742.4 | 2021.8 | 421 | Grass land | |
P14 | 1,339,487 | 379,924.7 | 2026.3 | 112.2 | Crop land | |
P15 | 1339566 | 380,018.2 | 2041.7 | 232.5 | Crop land | |
P16 | 1,340,096 | 379,741.9 | 2046.0 | 225 | Crop land | Water, stream bank |
P17 | 1,340,139 | 379,661.6 | 2056.9 | 273.2 | Crop land | |
P18 | 1,340,258 | 379,526.7 | 2070.1 | 150 | Crop land | Near stream bank |
P19 | 1,339,683 | 379,808.5 | 2029.0 | 346 | Grass and crop land | |
P20 | 1,339,823 | 379,930 | 2056.6 | 359 | Grass and crop land | |
P21 | 1,339,909 | 380,044.6 | 2062.1 | 159 | Grass and crop land | |
P22 | 1,339,262 | 379,675 | 2022.0 | 155 | Grazing land | Near stream bank |
P23 | 1,339,285 | 379,694 | 2022.0 | 243 | Crop land | Near stream bank |
Watershed | Area (ha) | Annual Rainfall (mm a−1) | Runoff Coefficient (%) | Source |
---|---|---|---|---|
Gumara | 135,100 | 1460 | 60 | Dessie et al. [24], Gebrehiwot et al. [106] |
Rib | 130,800 | 1460 | 23 | |
Gilgel Abay | 359,800 | 1562 | 80 | |
Megech | 63,100 | 1170 | 40 | |
Dirma | 16,300 | 1200 | 40 | Dessie et al. [24] |
Gibera | 2300 | 1460 | 60 | |
Gelda | 21,700 | 1500 | 50 | |
Beles | 352,000 | 971 | 32 | Gebrehiwot et al. [106] |
Koga | 266 | 1562 | 37 | |
Maybar | 477 | 1417 | 30 | Bayabil et al. [14] |
Anjeni | 113 | 1675 | 42 | Bayabil et al. [14] |
Andit Tid | 113 | 1467 | 49 | |
Debre Mawi | 95 | 1240 | 22 | Dagnew et al. [102] |
Birr | 300 | 1355 | 79 | Gebrehiwot et al. [106] |
May Zeg Zeg | 200 | 762 | 1.6 | Nyssen et al. [48] |
Tikur-Wuha | 500 | 1602 | 21 | Akale et al. [107] |
Guale | 190 | 1561 | 31 | |
Birr | 192 | 1225 | 63 | Ayele et al. [103] |
Gomit | 359 | 987 | 11 | This study |
166 | 987 | 3.3 |
Basin/Region | Country | Area (ha) | Total Rainfall (mm) | Runoff (% Rainfall) | Source |
---|---|---|---|---|---|
Ribeirinha | Portugal | 0.35 | 1787 | 0.4 | Fontes et al. [98] |
Granja | Portugal | 0.18 | 2313 | 0.9 | Fontes et al. [98] |
Canary Islands | Spain | 0.02 | 69 | 2.3 | Guerra et al. [108] |
Zhurucay M1 | Ecuador | 20 | 1300 | 56 | Mosquera et al. [11] |
Zhurucay M2 | Ecuador | 38 | 1300 | 55 | Mosquera et al. [11] |
Zhurucay M3 | Ecuador | 38 | 1293 | 65 | Mosquera et al. [11] |
Zhurucay M4 | Ecuador | 65 | 1294 | 62 | Mosquera et al. [11] |
Zhurucay M5 | Ecuador | 140 | 1267 | 60 | Mosquera et al. [11] |
Zhurucay M6 | Ecuador | 328 | 1254 | 63 | Mosquera et al. [11] |
Zhurucay M7 | Ecuador | 753 | 1277 | 68 | Mosquera et al. [11] |
Chillán | Chile | 21,000 | - | 36.3 | Muñoz et al. [3] |
Renegado | Chile | 12,700 | - | 32.5 | Muñoz et al. [3] |
Diguillín | Chile | 20,700 | - | 44.8 | Muñoz et al. [3] |
Ways | USA | 116 | 314 | 8.8 | Ochoa et al. [97] |
Jensen | USA | 96 | 314 | 2.9 | Ochoa et al. [97] |
Reventazón Forest | Costa Rica | 6.1 | 3826 | 2.1 | Toohey et al. [109] |
Reventazón Coffee | Costa Rica | 4.5 | 3826 | 3.0 | Toohey et al. [109] |
Reventazón Sugar cane | Costa Rica | 1.9 | 3826 | 6.8 | Toohey et al. [109] |
Reventazón Pasture | Costa Rica | 1.2 | 3826 | 1.3 | Toohey et al. [109] |
References
- Beniston, M. Climatic change in mountain regions: A review of possible impacts. In Climate Variability and Change in High Elevation Regions: Past, Present & Future; Springer: Berlin/Heidelberg, Germany, 2003; pp. 5–31. [Google Scholar]
- Marques, J.E.; Marques, J.M.; Chaminé, H.I.; Carreira, P.M.; Fonseca, P.E.; Santos, F.A.M.; Moura, R.; Samper, J.; Pisani, B.; Teixeira, J. Conceptualizing a mountain hydrogeologic system by using an integrated groundwater assessment (Serra da Estrela, Central Portugal): A review. Geosci. J. 2013, 17, 371–386. [Google Scholar] [CrossRef]
- Muñoz, E.; Arumí, J.L.; Wagener, T.; Oyarzún, R.; Parra, V. Unraveling complex hydrogeological processes in Andean basins in south-central Chile: An integrated assessment to understand hydrological dissimilarity. Hydrol. Process. 2016, 30, 4934–4943. [Google Scholar] [CrossRef]
- Viviroli, D.; Dürr, H.H.; Messerli, B.; Meybeck, M.; Weingartner, R. Mountains of the world, water towers for humanity: Typology, mapping, and global significance. Water Resour. Res. 2007, 43, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Easton, Z.M.; Awulachew, S.B.; Steenhuis, T.S.; Habte, S.A.; Zemadim, B.; Seleshi, Y.; Bashar, K.E. Hydrological processes in the Blue Nile. In The Nile River Basin: Water, Agriculture, Governance and Livelihoods; Awulachew, S.B., Smakhtin, V., Molden, D., Peden, D., Eds.; Routledge: New York, NY, USA, 2012; pp. 84–111. [Google Scholar]
- Kundzewicz, Z.; Kraemer, D. Striving towards assessment of mountain water resources. In Ecohydrology of High Mountain Areas, Proceedings of the International Conference on Ecohydrology of High Mountain Areas, Katmandu, Nepal, 24–28 March 1996; ICIMOD: Katmandu, Nepal, 1996; pp. 24–28. [Google Scholar]
- Harpham, K. Taming the Tumalo: A Damned Dam Repurposed for Recharge. Master’s Thesis, Oregon State University, Corvallis, OR, USA, 2016. [Google Scholar]
- Tague, C.; Grant, G.E. A geological framework for interpreting the low-flow regimes of Cascade streams, Willamette River Basin, Oregon. Water Resour. Res. 2004, 40, 1–9. [Google Scholar] [CrossRef]
- Muñoz-Villers, L.E.; McDonnell, J.J. Runoff generation in a steep, tropical montane cloud forest catchment on permeable volcanic substrate. Water Resour. Res. 2012, 48, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Iwagami, S.; Tsujimura, M.; Onda, Y.; Shimada, J.; Tanaka, T. Role of bedrock groundwater in the rainfall–runoff process in a small headwater catchment underlain by volcanic rock. Hydrol. Process. 2010, 24, 2771–2783. [Google Scholar] [CrossRef]
- Mosquera, G.M.; Lazo, P.X.; Célleri, R.; Wilcox, B.P.; Crespo, P. Runoff from tropical alpine grasslands increases with areal extent of wetlands. Catena 2015, 125, 120–128. [Google Scholar] [CrossRef]
- Mosquera, G.M.; Crespo, P.; Breuer, L.; Feyen, J.; Windhorst, D. Water transport and tracer mixing in volcanic ash soils at a tropical hillslope: A wet layered sloping sponge. Hydrol. Process. 2020. [Google Scholar] [CrossRef] [Green Version]
- Alemie, T.C.; Tilahun, S.A.; Ochoa-Tocachi, B.F.; Schmitter, P.; Buytaert, W.; Parlange, J.Y.; Steenhuis, T.S. Predicting shallow groundwater tables for sloping highland aquifers. Water Resour. Res. 2019, 55, 11088–11100. [Google Scholar] [CrossRef]
- Bayabil, H.K.; Tilahun, S.A.; Collick, A.S.; Yitaferu, B.; Steenhuis, T.S. Are runoff processes ecologically or topographically driven in the (sub) humid Ethiopian Highlands? The case of the Maybar watershed. Ecohydrology 2010, 3, 457–466. [Google Scholar] [CrossRef] [Green Version]
- Guzman, C.D.; Tilahun, S.A.; Dagnew, D.C.; Zimale, F.A.; Zegeye, A.D.; Boll, J.; Parlange, J.-Y.; Steenhuis, T.S. Spatio-temporal patterns of groundwater depths and soil nutrients in a small watershed in the Ethiopian Highlands: Topographic and land-use controls. J. Hydrol. 2017, 555, 420–434. [Google Scholar] [CrossRef]
- Tilahun, S.A.; Yilak, D.L.; Schmitter, P.; Zimale, F.A.; Langan, S.; Barron, J.; Parlange, J.Y.; Steenhuis, T.S. Establishing irrigation potential of a hillside aquifer in the African highlands. Hydrol. Process. 2020, 34, 1741–1753. [Google Scholar] [CrossRef] [Green Version]
- Caballero, L.A.; Easton, Z.M.; Richards, B.K.; Steenhuis, T.S. Evaluating the bio-hydrological impact of a cloud forest in Central America using a semi-distributed water balance model. J. Hydrol. Hydromech. 2013, 61, 9–22. [Google Scholar] [CrossRef] [Green Version]
- Langman, J.B.; Ellis, A.S. Geochemical indicators of interbasin groundwater flow within the southern Rio Grande Valley, southwestern USA. Environ. Earth Sci. 2013, 68, 1285–1303. [Google Scholar] [CrossRef]
- Parra, V.; Arumí, J.L.; Muñoz, E. Identifying a Suitable Model for Low-Flow Simulation in Watersheds of South-Central Chile: A Study Based on a Sensitivity Analysis. Water 2019, 11, 1506. [Google Scholar] [CrossRef] [Green Version]
- Arumí, J.L.; Muñoz, E.; Oyarzún, R. Andean Mountain Groundwater, Drinking Water Sources, and Vulnerability: A Case Study in Central Chile. In Groundwaters; IntechOpen Limited: London, UK, 2019. [Google Scholar] [CrossRef] [Green Version]
- Montgomery, E.L.; Rosko, M.J.; Castro, S.O.; Keller, B.R.; Bevacqua, P.S. Interbasin underflow between closed Altiplano basins in Chile. Groundwater 2003, 41, 523–531. [Google Scholar] [CrossRef]
- Zanon, C.; Genereux, D.P.; Oberbauer, S.F. Use of a watershed hydrologic model to estimate interbasin groundwater flow in a Costa Rican rainforest. Hydrol. Process. 2014, 28, 3670–3680. [Google Scholar] [CrossRef]
- Genereux, D.P.; Jordan, M. Interbasin groundwater flow and groundwater interaction with surface water in a lowland rainforest, Costa Rica: A review. J. Hydrol. 2006, 320, 385–399. [Google Scholar] [CrossRef]
- Dessie, M.; Verhoest, N.E.; Admasu, T.; Pauwels, V.R.; Poesen, J.; Adgo, E.; Deckers, J.; Nyssen, J. Effects of the floodplain on river discharge into Lake Tana (Ethiopia). J. Hydrol. 2014, 519, 699–710. [Google Scholar] [CrossRef]
- Razack, M.; Furi, W.; Fanta, L.; Shiferaw, A.J. Water Resource Assessment of a Complex Volcanic System Under Semi-Arid Climate Using Numerical Modeling: The Borena Basin in Southern Ethiopia. Water 2020, 12, 276. [Google Scholar] [CrossRef] [Green Version]
- Tebebu, T.Y.; Bayabil, H.K.; Stoof, C.R.; Giri, S.K.; Gessess, A.A.; Tilahun, S.A.; Steenhuis, T.S. Characterization of degraded soils in the humid Ethiopian Highlands. Land Degrad. Dev. 2017, 28, 1891–1901. [Google Scholar] [CrossRef] [Green Version]
- Tebebu, T.Y.; Bayabil, H.K.; Steenhuis, T.S. Can Degraded Soils be Improved by Ripping Through the Hardpan and Liming? A Field Experiment in the Humid Ethiopian Highlands. Land Degrad. Dev. 2020. [Google Scholar] [CrossRef]
- Zimale, F.A.; Tilahun, S.A.; Tebebu, T.Y.; Guzman, C.D.; Hoang, L.; Schneiderman, E.M.; Langendoen, E.J.; Steenhuis, T.S. Improving watershed management practices in humid regions. Hydrol. Process. 2017, 31, 3294–3301. [Google Scholar] [CrossRef]
- Taddese, G. Land degradation: A challenge to Ethiopia. Environ. Manag. 2001, 27, 815–824. [Google Scholar] [CrossRef]
- Mekuria, W.; Veldkamp, E.; Haile, M.; Nyssen, J.; Muys, B.; Gebrehiwot, K. Effectiveness of exclosures to restore degraded soils as a result of overgrazing in Tigray, Ethiopia. J. Arid Environ. 2007, 69, 270–284. [Google Scholar] [CrossRef]
- Dagnew, D.C.; Guzman, C.D.; Zegeye, A.D.; Tibebu, T.Y.; Getaneh, M.; Abate, S.; Zemale, F.A.; Ayana, E.K.; Tilahun, S.A.; Steenhuis, T.S. Impact of conservation practices on runoff and soil loss in the sub-humid Ethiopian Highlands: The Debre Mawi watershed. J. Hydrol. Hydromech. 2015, 63, 210–219. [Google Scholar] [CrossRef] [Green Version]
- Tadesse, L.; Suryabhagavan, K.; Sridhar, G.; Legesse, G.J. Land use and land cover changes and Soil erosion in Yezat Watershed, North Western Ethiopia. Int. Soil Water Conserv. Res. 2017, 5, 85–94. [Google Scholar] [CrossRef] [Green Version]
- Mekuria, W.; Wondie, M.; Amare, T.; Wubet, A.; Feyisa, T.; Yitaferu, B. Restoration of degraded landscapes for ecosystem services in North-Western Ethiopia. Heliyon 2018, 4, 1–25. [Google Scholar] [CrossRef] [Green Version]
- Hurni, H.; Pimentel, D. Land degradation, famine, and land resource scenarios in Ethiopia. World Soil Eros. Conserv. 1993, 27–61. [Google Scholar] [CrossRef]
- Yitbarek, T.W.; Belliethathan, S.; Stringer, L.C. The onsite cost of gully erosion and cost-benefit of gully rehabilitation: A case study in Ethiopia. Land Degrad. Dev. 2012, 23, 157–166. [Google Scholar] [CrossRef]
- Teshome, A.; Rolker, D.; de Graaff, J. Financial viability of soil and water conservation technologies in northwestern Ethiopian Highlands. Appl. Geogr. 2013, 37, 139–149. [Google Scholar] [CrossRef]
- Haregeweyn, N.; Tsunekawa, A.; Nyssen, J.; Poesen, J.; Tsubo, M.; Meshesha, D.T.; Schütt, B.; Adgo, E.; Tegegne, F. Soil erosion and conservation in Ethiopia A review. Prog. Phys. Geogr. Earth Environ. 2015, 39, 750–774. [Google Scholar] [CrossRef] [Green Version]
- Mengistu, D.; Bewket, W.; Lal, R. Conservation Effects on Soil Quality and Climate Change Adaptability of Ethiopian Watersheds. Land Degrad. Dev. 2015, 27, 1603–1621. [Google Scholar] [CrossRef]
- Shiferaw, B.; Holden, S. Poverty, resource scarcity, and incentives for soil and water conservation: Analysis of interactions with a bio-economic model. In Proceedings of the 25th International Conference of Agricultural Economists, Durban, South Africa, 16–22 August 2003. [Google Scholar]
- Welle, S.; Chantawarangul, K.; Nontananandh, S.; Jantawat, S. Effectiveness of grass strips as barrier against runoff and soil loss in Jijiga area, northern part of Somali region, Ethiopia. Witthayasan Kasetsat Witthayasat 2006, 40, 549–558. [Google Scholar]
- Araya, T.; Cornelis, W.; Nyssen, J.; Govaerts, B.; Bauer, H.; Gebreegziabher, T.; Oicha, T.; Raes, D.; Sayre, K.D.; Haile, M. Effects of conservation agriculture on runoff, soil loss and crop yield under rainfed conditions in Tigray, Northern Ethiopia. Soil Use Manag. 2011, 27, 404–414. [Google Scholar] [CrossRef]
- Araya, T.; Cornelis, W.M.; Nyssen, J.; Govaerts, B.; Getnet, F.; Bauer, H.; Amare, K.; Raes, D.; Haile, M.; Deckers, J. Medium-term effects of conservation agriculture based cropping systems for sustainable soil and water management and crop productivity in the Ethiopian Highlands. Field Crops Res. 2012, 132, 53–62. [Google Scholar] [CrossRef]
- Bewket, W.; Sterk, G. Farmers’ participation in soil and water conservation activities in the Chemoga watershed, Blue Nile basin, Ethiopia. Land Degrad. Dev. 2002, 13, 189–200. [Google Scholar] [CrossRef]
- Taye, G.; Poesen, J.; Deckers, J.; Tekka, D.; Haregeweyn, N.; van Wesemael, B.; Nyssen, J. The effect of soil and water conservation treatments on rainfall-runoff response and soil losses in the Northern Ethiopian Highlands: The case of May Leiba catchment. In Excursion Guide: Post-Conference Excursion: Geomorphological Hazards, Land Degradation and Resilience in the North Ethiopian Highlands; Ethiopian Association of Geomorphologists (EAG): Addis Ababa, Ethiopia, 2011; pp. 86–92. [Google Scholar]
- Alemu, W.G.; Amare, T.; Yitaferu, B.; Selassie, Y.G.; Wolfgramm, B.; Hurni, H. Impacts of soil and water conservation on land suitability to crops: The case of Anjeni Watershed, Northwest Ethiopia. J. Agric. Sci. 2013, 5, 95. [Google Scholar] [CrossRef] [Green Version]
- Adimassu, Z.; Mekonnen, K.; Yirga, C.; Kessler, A. Effect of soil bunds on runoff, soil and nutrient losses, and crop yield in the central highlands of Ethiopia. Land Degrad. Dev. 2014, 25, 554–564. [Google Scholar] [CrossRef]
- Nyssen, J.; Clymans, W.; Poesen, J.; Vandecasteele, I.; De Baets, S.; Haregeweyn, N.; Naudts, J.; Hadera, A.; Moeyersons, J.; Haile, M. How soil conservation affects the catchment sediment budget—A comprehensive study in the north Ethiopian Highlands. Earth Surface Process. Landf. 2009, 34, 1216–1233. [Google Scholar] [CrossRef]
- Nyssen, J.; Clymans, W.; Descheemaeker, K.; Poesen, J.; Vandecasteele, I.; Vanmaercke, M.; Zenebe, A.; Camp, M.V.; Haile, M.; Haregeweyn, N.; et al. Impact of soil and water conservation measures on catchment hydrological response—A case in north Ethiopia. Hydrol. Process. 2010, 24, 1880–1895. [Google Scholar] [CrossRef] [Green Version]
- Gebrernichael, D.; Nyssen, J.; Poesen, J.; Deckers, J.; Haile, M.; Govers, G.; Moeyersons, J. Effectiveness of stone bunds in controlling soil erosion on cropland in the Tigray Highlands, northern Ethiopia. Soil Use Manag. 2005, 21, 287–297. [Google Scholar] [CrossRef]
- Descheemaeker, K.; Nyssen, J.; Poesen, J.; Raes, D.; Haile, M.; Muys, B.; Deckers, S. Runoff on slopes with restoring vegetation: A case study from the Tigray Highlands, Ethiopia. J. Hydrol. 2006, 331, 219–241. [Google Scholar] [CrossRef]
- Girmay, G.; Singh, B.; Nyssen, J.; Borrosen, T. Runoff and sediment-associated nutrient losses under different land uses in Tigray, Northern Ethiopia. J. Hydrol. 2009, 376, 70–80. [Google Scholar] [CrossRef]
- Hurni, H. Degradation and conservation of the resources in the Ethiopian Highlands. Mt. Res. Dev. 1988, 123–130. [Google Scholar] [CrossRef]
- Nyssen, J.; Poesen, J.; Moeyersons, J.; Deckers, J.; Haile, M.; Lang, A. Human impact on the environment in the Ethiopian and Eritrean highlands—A state of the art. Earth-Sci. Rev. 2004, 64, 273–320. [Google Scholar] [CrossRef]
- Bewket, W.; Sterk, G. Dynamics in land cover and its effect on stream flow in the Chemoga watershed, Blue Nile basin, Ethiopia. Hydrol. Process. Int. J. 2005, 19, 445–458. [Google Scholar] [CrossRef]
- Gebresamuel, G.; Singh, B.R.; Dick, Ø. Land-use changes and their impacts on soil degradation and surface runoff of two catchments of Northern Ethiopia. Acta Agric. Scand. Sect. B Soil Plant Sci. 2010, 60, 211–226. [Google Scholar] [CrossRef]
- Taye, G.; Poesen, J.; Wesemael, B.V.; Vanmaercke, M.; Teka, D.; Deckers, J.; Goosse, T.; Maetens, W.; Nyssen, J.; Hallet, V. Effects of land use, slope gradient, and soil and water conservation structures on runoff and soil loss in semi-arid Northern Ethiopia. Phys. Geogr. 2013, 34, 236–259. [Google Scholar] [CrossRef] [Green Version]
- Engda, T.A.; Bayabil, H.K.; Legesse, E.S.; Ayana, E.K.; Tilahun, S.A.; Collick, A.S.; Easton, Z.M.; Rimmer, A.; Awulachew, S.B.; Steenhuis, T.S. Watershed hydrology of the (semi) humid Ethiopian Highlands. In Nile River Basin; Springer: Berlin/Heidelberg, Germany, 2011; pp. 145–162. [Google Scholar] [CrossRef]
- Tilahun, S.A.; Ayana, E.K.; Guzman, C.D.; Dagnew, D.C.; Zegeye, A.D.; Tebebu, T.Y.; Yitaferu, B.; Steenhuis, T.S. Revisiting storm runoff processes in the upper Blue Nile basin: The Debre Mawi watershed. Catena 2016, 143, 47–56. [Google Scholar] [CrossRef] [Green Version]
- Di Paola, G. The Ethiopian Rift Valley (between 7 00′ and 8 40′ lat. north). Bull. Volcanol. 1972, 36, 517–560. [Google Scholar] [CrossRef]
- Woldegabriel, G.; Aronson, J.L.; Walter, R.C. Geology, geochronology, and rift basin development in the central sector of the Main Ethiopia Rift. Geol. Soc. Am. Bull. 1990, 102, 439–458. [Google Scholar] [CrossRef]
- Tebebu, T.Y.; Steenhuis, T.S.; Dagnew, D.C.; Guzman, C.D.; Bayabil, H.K.; Zegeye, A.D.; Collick, A.S.; Langan, S.; MacAlister, C.; Langendoen, E.J. Improving efficacy of landscape interventions in the (sub) humid Ethiopian Highlands by improved understanding of runoff processes. Front. Earth Sci. 2015, 3, 49. [Google Scholar] [CrossRef] [Green Version]
- Steenhuis, T.; Enkamil, M.; Asmare, D.; Tilahun, S.; Yitaferu, B.; Worqlul, A.; Zemadin, B.; MacAlister, C.; Baker, T.; Langan, S. Evaluation of rain water management practices for sediment load reduction in the (semi) humid Blue Nile basin. In Rainwater Management for Resilient Livelihoods in Ethiopia, Proceedings of the Nile Basin Development Challenge Science Meeting, Addis Ababa, 9–10 July 2013; Mekuria, W., Ed.; NBDC Technical Report 5; International Livestock Research Institute: Nairobi, Kenya, 2013. [Google Scholar]
- Abate, M.; Nyssen, J.; Moges, M.M.; Enku, T.; Zimale, F.A.; Tilahun, S.A.; Adgo, E.; Steenhuis, T. Long-Term Landscape Changes in the Lake Tana Basin as Evidenced by Delta Development and Floodplain Aggradation in Ethiopia. Land Degrad. Dev. 2017, 28, 1820–1830. [Google Scholar] [CrossRef]
- Tebebu, T.Y.; Abiy, A.Z.; Dahlke, H.E.; Zegeye, A.D.; Easton, Z.M.; Tilahun, S.A.; Collick, A.S.; Kidnau, S.; Moges, S.; Dadgari, F.; et al. Surface and subsurface flow effects on permanent gully formation and upland erosion near Lake Tana in the northern Highlands of Ethiopia. Hydrol. Earth Syst. Sci. 2010, 14, 2207–2217. [Google Scholar] [CrossRef] [Green Version]
- Bayabil, H.K.; Yiftaru, B.; Steenhuis, T.S. Shift from transport limited to supply limited sediment concentrations with the progression of monsoon rains in the Upper Blue Nile Basin. Earth Surface Process. Landf. 2017, 42, 1317–1328. [Google Scholar] [CrossRef]
- Steiner, K.G. Causes of Soil Degradation and Development Approaches to Sustainable soil Management; Margraf Verlag: Weikersheim, Germany, 1996. [Google Scholar]
- Adem, A.A.; Aynalem, D.W.; Tilahun, S.A.; Steenhuis, T.S. Predicting Reference Evaporation for the Ethiopian Highlands. J. Water Resour. Prot. 2017, 9, 1244–1269. [Google Scholar] [CrossRef] [Green Version]
- Hofmann, C.; Courtillot, V.; Feraud, G.; Rochette, P.; Yirgu, G.; Ketefo, E.; Pik, R. Timing of the Ethiopian flood basalt event and implications for plume birth and global change. Nature 1997, 389, 838–841. [Google Scholar] [CrossRef]
- Ukstins, I.A.; Renne, P.R.; Wolfenden, E.; Baker, J.; Ayalew, D.; Menzies, M. Matching conjugate volcanic rifted margins: 40Ar/39Ar chrono-stratigraphy of pre-and syn-rift bimodal flood volcanism in Ethiopia and Yemen. Earth Planet. Sci. Lett. 2002, 198, 289–306. [Google Scholar] [CrossRef]
- Ayalew, D.; Barbey, P.; Marty, B.; Reisberg, L.; Yirgu, G.; Pik, R. Source, genesis, and timing of giant ignimbrite deposits associated with Ethiopian continental flood basalts. Geochim. Cosmochim. Acta 2002, 66, 1429–1448. [Google Scholar] [CrossRef]
- Wolfenden, E.; Ebinger, C.; Yirgu, G.; Deino, A.; Ayalew, D. Evolution of the northern Main Ethiopian rift: Birth of a triple junction. Earth Planet. Sci. Lett. 2004, 224, 213–228. [Google Scholar] [CrossRef]
- Jepsen, D.; Athearn, M. Land and Water Resources of the Blue Nile River Basin, Appendix II-Geology; US Department of Interior/Ethiopia’s Water Resources Department: Addis Ababa, Ethiopia, 1964; Volume 221. [Google Scholar]
- Pik, R.; Marty, B.; Carignan, J.; Lavé, J. Stability of the Upper Nile drainage network (Ethiopia) deduced from (U–Th)/He thermochronometry: Implications for uplift and erosion of the Afar plume dome. Earth Planet. Sci. Lett. 2003, 215, 73–88. [Google Scholar] [CrossRef]
- Pik, R.; Deniel, C.; Coulon, C.; Yirgu, G.; Hofmann, C.; Ayalew, D. The northwestern Ethiopian Plateau flood basalts: Classification and spatial distribution of magma types. J. Volcanol. Geotherm. Res. 1998, 81, 91–111. [Google Scholar] [CrossRef]
- Abbate, E.; Albianelli, A.; Azzaroli, A.; Benvenuti, M.; Tesfamariam, B.; Bruni, P.; Cipriani, N.; Clarke, R.J.; Ficcarelli, G.; Macchiarelli, R. A one-million-year-old Homo cranium from the Danakil (Afar) Depression of Eritrea. Nature 1998, 393, 458–460. [Google Scholar] [CrossRef]
- Fantaye, S.M. Integrated Hydrological and Hydrogeological System Analysis of the Lake Tana Basin, Northwestern Ethiopia. Ph.D. Thesis, Addis Ababa University, Addis Ababa, Ethiopia, 2015. [Google Scholar]
- Kebede, S.; Hailu, A.; Crane, E.Ó.; Dochartaigh, B.É.; Bellwood-Howard, I. Africa Groundwater Atlas: Hydrogeology of Ethiopia. British Geological Survey. Available online: http://earthwise.bgs.ac.uk/index.php/Hydrogeology_of_Ethiopia (accessed on 28 August 2019).
- Chorowicz, J.; Collet, B.; Bonavia, F.; Mohr, P.; Parrot, J.; Korme, T. The Tana basin, Ethiopia: Intra-plateau uplift, rifting and subsidence. Tectonophysics 1998, 295, 351–367. [Google Scholar] [CrossRef]
- Bense, V.; Gleeson, T.; Loveless, S.; Bour, O.; Scibek, J. Fault zone hydrogeology. Earth-Sci. Rev. 2013, 127, 171–192. [Google Scholar] [CrossRef]
- Abdullah, A.; Akhir, J.M.; Abdullah, I. Automatic mapping of lineaments using shaded relief images derived from digital elevation model (DEMs) in the Maran—Sungi Lembing area, Malaysia. Electron. J. Geotech. Eng. 2010, 15, 949–958. [Google Scholar]
- MoWE. Geological Map of the Tana Sub-Basin, Detailed Groundwater Investigations & Monitoring in Tana and Beles Sub-Basins; Final Stage 1 Report—Part 3: Geological and Geomorphological Survey, Sogreah Consultants and Geomatrix PLC; Ministry of Water and Energy (MoWE): Addis Ababa, Ethiopia, 2011.
- Salui, C.L. Methodological Validation for Automated Lineament Extraction by LINE Method in PCI Geomatica and MATLAB based Hough Transformation. J. Geol. Soc. India 2018, 92, 321–328. [Google Scholar] [CrossRef]
- Nathan, R.; McMahon, T. Evaluation of automated techniques for base flow and recession analyses. Water Resour. Res. 1990, 26, 1465–1473. [Google Scholar] [CrossRef]
- Lyne, V.; Hollick, M. Stochastic time-variable rainfall-runoff modelling. In Engineering Management Conference 1979, Melbourne, 21-22 March 1979; Institution of Engineers: Barton, Australia, 1979; pp. 89–93. [Google Scholar]
- Arnold, J.; Allen, P.; Muttiah, R.; Bernhardt, G. Automated base flow separation and recession analysis techniques. Groundwater 1995, 33, 1010–1018. [Google Scholar] [CrossRef]
- Arnold, J.G.; Allen, P.M. Automated methods for estimating baseflow and ground water recharge from streamflow records 1. J. Am. Water Resour. Assoc. 1999, 35, 411–424. [Google Scholar] [CrossRef]
- Partington, D.; Brunner, P.; Simmons, C.; Werner, A.; Therrien, R.; Maier, H.; Dandy, G. Evaluation of outputs from automated baseflow separation methods against simulated baseflow from a physically based, surface water-groundwater flow model. J. Hydrol. 2012, 458, 28–39. [Google Scholar] [CrossRef] [Green Version]
- Mohr, P.; Rogers, A.S. Gravity traverses in Ethiopia (second interim report). Bull. Geophys. Obs. Addis Ababa 1966, 9, 7–58. [Google Scholar]
- Guzman, C.; Tilahun, S.; Zegeye, A.; Steenhuis, T. Suspended sediment concentration–discharge relationships in the (sub-) humid Ethiopian Highlands. Hydrol. Earth Syst. Sci. 2013, 17, 1067–1077. [Google Scholar] [CrossRef] [Green Version]
- Mhiret, D.A.; Dagnew, D.C.; Alemie, T.C.; Guzman, C.D.; Tilahun, S.A.; Zaitchik, B.F.; Steenhuis, T.S. Impact of Soil Conservation and Eucalyptus on Hydrology and Soil Loss in the Ethiopian Highlands. Water 2019, 11, 2299. [Google Scholar] [CrossRef] [Green Version]
- Scibek, J.; Gleeson, T.; McKenzie, J. The biases and trends in fault zone hydrogeology conceptual models: Global compilation and categorical data analysis. Geofluids 2016, 16, 782–798. [Google Scholar] [CrossRef]
- Tilahun, S.; Guzman, C.; Zegeye, A.; Engda, T.; Collick, A.; Rimmer, A.; Steenhuis, T. An efficient semi-distributed hillslope erosion model for the subhumid Ethiopian Highlands. Hydrol. Earth Syst. Sci. 2013, 17, 1051–1063. [Google Scholar] [CrossRef] [Green Version]
- Kahsay, K.D.; Pingale, S.M.; Hatiye, S.D. Impact of climate change on groundwater recharge and base flow in the sub-catchment of Tekeze basin, Ethiopia. Groundw. Sustain. Dev. 2018, 6, 121–133. [Google Scholar] [CrossRef]
- Abiy, A.Z.; Melesse, A.M.; Behabtu, Y.M.; Abebe, B. Groundwater Vulnerability Analysis of the Tana Sub-basin: An Application of DRASTIC Index Method. In Landscape Dynamics, Soils and Hydrological Processes in Varied Climates; Springer: Berlin/Heidelberg, Germany, 2016; pp. 435–461. [Google Scholar]
- Nigate, F.; Ayenew, T.; Belete, W.; Walraevens, K. Overview of the Hydrogeology and Groundwater Occurrence in the Lake Tana Basin, Upper Blue Nile River Basin. In Social and Ecological System Dynamics; Springer: Berlin/Heidelberg, Germany, 2017; pp. 77–91. [Google Scholar]
- Kebede, S. Groundwater as strategic resource. In Groundwater in Ethiopia; Springer: Berlin/Heidelberg, Germany, 2013; pp. 247–264. [Google Scholar]
- Ochoa, C.G.; Caruso, P.; Ray, G.; Deboodt, T.; Jarvis, W.T.; Guldan, S.J. Ecohydrologic connections in semiarid watershed systems of central Oregon USA. Water 2018, 10, 181. [Google Scholar] [CrossRef] [Green Version]
- Fontes, J.; Pereira, L.; Smith, R. Runoff and erosion in volcanic soils of Azores: Simulation with OPUS. Catena 2004, 56, 199–212. [Google Scholar] [CrossRef]
- Zegeye, A.D.; Langendoen, E.J.; Stoof, C.R.; Tilahun, S.A.; Dagnew, D.C.; Zimale, F.A.; Guzman, C.D.; Yitaferu, B.; Steenhuis, T.S. Morphological dynamics of gully systems in the sub-humid Ethiopian Highlands: The Debre Mawi watershed. Soils 2016, 2, 443–458. [Google Scholar] [CrossRef] [Green Version]
- Guzman, C.D.; Zimale, F.A.; Tebebu, T.Y.; Bayabil, H.K.; Tilahun, S.A.; Yitaferu, B.; Rientjes, T.H.M.; Steenhuis, T.S. Modeling discharge and sediment concentrations after landscape interventions in a humid monsoon climate: The Anjeni watershed in the highlands of Ethiopia. Hydrol. Process. 2017, 31, 1239–1257. [Google Scholar] [CrossRef]
- Steenhuis, T.; Easton, Z.; Awulachew, S.B.; Ahmed, A.; Bashar, K.; Adgo, E.; Selassie, Y.; Tilahun, S. The Nile Basin sediment loss and degradation, with emphasis on the Blue Nile. In The Nile River Basin—Water, Agriculture, Governance and Livelihoods; Awulachew, S.B., Smakhtin, V., Molden, D., Peden, D., Eds.; Earthscan from Routledge: London, UK, 2012; pp. 112–132. [Google Scholar]
- Zimale, F.A.; Moges, M.A.; Alemu, M.L.; Ayana, E.K.; Demissie, S.S.; Tilahun, S.A.; Steenhuis, T.S. Hydromechanics. Budgeting suspended sediment fluxes in tropical monsoonal watersheds with limited data: The Lake Tana basin. J. Hydrol. Hydromech. 2018, 66, 65–78. [Google Scholar] [CrossRef] [Green Version]
- Dagnew, D.C.; Guzman, C.D.; Zegeye, A.D.; Akal, A.T.; Moges, M.A.; Tebebu, T.Y.; Mekuria, W.; Ayana, E.K.; Tilahun, S.A.; Steenhuis, T.S. Sediment Loss Patterns in the Sub-Humid Ethiopian Highlands. Land Degrad. Dev. 2017, 28, 1795–1805. [Google Scholar] [CrossRef]
- Ayele, G.K.; Addisie, M.B.; Langendoen, E.J.; Tegegne, N.H.; Tilahun, S.A.; Moges, M.A.; Nicholson, C.F.; Steenhuis, T.S. Evaluating erosion control practices in an actively gullying watershed in the highlands of Ethiopia. Earth Surface Process. Landf. 2018, 43, 2835–2843. [Google Scholar] [CrossRef]
- WLRC. Long-Term Agro-Climate and Hydro-Sediment Observatory Report: Case of Maybar Micro-Watershed, Awash River Basin, Ethiopia; Water and Land Resources Centre (WLRC): Addis Ababa, Ethiopia, 2016. [Google Scholar]
- Gebrehiwot, S.G.; Ilstedt, U.; Gärdenäs, A.; Bishop, K. Hydrological characterization of watersheds in the Blue Nile Basin, Ethiopia. Hydrol. Earth Syst. Sci. 2011, 15, 11–20. [Google Scholar] [CrossRef] [Green Version]
- Akale, A.T.; Dagnew, D.C.; Belete, M.A.; Tilahun, S.A.; Mekuria, W.; Steenhuis, T.S. Impact of soil depth and topography on the effectiveness of conservation practices on discharge and soil loss in the Ethiopian Highlands. Land 2017, 6, 78. [Google Scholar] [CrossRef] [Green Version]
- Guerra, J.; Arbelo, C.; Armas, C.; Mora, J.; Rodríguezt, A. Water erosion rates and mechanisms in andosols and volcanic aridisols in two contrasting bioclimatic regions (Canary Islands, Spain). In Proceedings of the ISCO 2004 13th International Soil Conservation Organization Conference, Sharing Solutions, Brisbane, Australia, 4–8 July 2004. [Google Scholar]
- Toohey, R.C.; Boll, J.; Brooks, E.S.; Jones, J.R. Effects of land use on soil properties and hydrological processes at the point, plot, and catchment scale in volcanic soils near Turrialba, Costa Rica. Geoderma 2018, 315, 138–148. [Google Scholar] [CrossRef]
Land Water Management Practices | Forested | Agricultural | Entire Watershed | |
---|---|---|---|---|
Area (ha) | - | 196 | 163 | 359 |
Longest flow path (km) | - | 2.9 | 2.4 | 4.8 |
Elevation range (m asl) | - | 2013–2612 | 1974–2159 | 1974–2612 |
Arc weir (no.) | Locally adapted type of conservation structure | 0 | 9 | 9 |
Gabion check dam (no.) | - | 15 | 27 | 42 |
Bush and shrubland (%) | None | 19 | 7 | 15 |
Bush and shrubland (%) | Enclosures | 51 | 5 | 35 |
Bush and shrubland (%) | Contains infiltration furrows and stone bunds | 7 | 7 | 7 |
Cultivated land (%) | 7 | 3 | 5 | |
Cultivated land (%) | Contain infiltration furrows, stone, and soil bunds | 4 | 42 | 17 |
Farm and village (%) | None | - | 14 | 5 |
Grazing land (%) | None | 0.3 | 8 | 3 |
Eucalyptus (%) | None | - | 3 | 1 |
Natural forest (%) | Enclosures | 11 | - | 7 |
Town village (%) | None | - | 11 | 4 |
Land Use | Bottom Slope | Mid Slope | Upslope | |||
---|---|---|---|---|---|---|
IR (mm h−1) | PE % | IR (mm h−1) | PE % | IR (mm h−1) | PE % | |
Bush and shrub land | 132 | 0.6 | 156 | 0.2 | 204 | 0.1 |
Cultivated (Bean) | 156 | 0.2 | 288 | 0.0 | 432 | 0.0 |
Cultivated (Finger millet) | 120 | 0.8 | 216 | 0.0 | 336 | 0.0 |
Cultivated (Maize) | 144 | 0.4 | 468 | 0.0 | 468 | 0.0 |
Cultivated (Teff) | 24 | 17.5 | 108 | 1.1 | 60 | 4.3 |
Grazing land | 12 | 34.7 | 72 | 3.1 | 120 | 0.8 |
Mean | 98 | 9.0 | 218 | 0.7 | 270 | 0.9 |
Median | 126 | 0.7 | 186 | 0.1 | 270 | 0.1 |
Watershed. | Year | Rainfall mm a−1 | Direct Runoff mm a−1 | Baseflow mm a−1 | Total Runoff mm a−1 | Rainfall-Runoff Ratio % |
---|---|---|---|---|---|---|
Forested | 2015 | 894 | 11 | 2 | 13 | 2 |
2016 | 988 | 32 | 21 | 53 | 5 | |
2017 | 1042 | 25 | 8 | 33 | 3 | |
Mean | 975 | 23 | 10 | 33 | 3 | |
St. Dev. * | 75 | 11 | 10 | 20 | 2 | |
Agricultural | 2015 | 894 | 43 | 17 | 60 | 8 |
2016 | 988 | 54 | 66 | 120 | 12 | |
2017 | 1042 | 23 | 117 | 140 | 13 | |
Mean | 975 | 40 | 67 | 107 | 11 | |
St. Dev. | 75 | 16 | 50 | 42 | 3 | |
Entire | 2015 | 894 | 24 | 9 | 33 | 4 |
2016 | 988 | 40 | 40 | 80 | 8 | |
2017 | 1042 | 57 | 22 | 79 | 8 | |
Mean | 975 | 40 | 24 | 64 | 7 | |
St. Dev. | 75 | 17 | 16 | 27 | 2 |
Month | Sediment Yield (Mg ha−1) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Entire Watershed | Forested Part | Agricultural Part | |||||||
2015 | 2016 | 2017 | 2015 | 2016 | 2017 | 2015 | 2016 | 2017 | |
March | - | - | 0.002 | - | - | 0.01 | - | - | 0.003 |
April | - | - | 0.04 | - | - | 0.10 | - | - | 0.04 |
May | - | 0.13 | 0.26 | - | 0.01 | 0.11 | - | 0.28 | 1.00 |
June | 0.002 | 0.67 | 0.32 | - | 0.38 | 0.20 | - | 1.02 | 0.34 |
July | 2.13 | 6.12 | 0.94 | 0.12 | 1.39 | 0.78 | 4.53 | 11.8 | 1.97 |
August | 0.33 | 0.6 | 0.38 | 0.14 | 0.65 | 0.20 | 0.55 | 0.55 | 0.53 |
September | 0.14 | 0.05 | 0.32 | 0.7 | 0.09 | 0.24 | 0.53 | 0.02 | 0.06 |
October | - | - | 0.01 | - | - | 0.07 | - | - | 0.07 |
Total | 2.6 | 7.6 | 2.3 | 1.0 | 2.5 | 1.7 | 5.6 | 13.7 | 4.0 |
Basin/Watershed | Area (ha) | Mean Annual Sediment Yield (Mg ha−1a−1) | Daily Average Sediment Concentration (g L−1) | Source |
---|---|---|---|---|
Blue Nile | 17,600,000 | 7 | 3.8 | Steenhuis et al. [101] |
Gilgel Abay | 166,500 | 35.4 | 1.8 | Zimale et al. [102] |
Gumara | 128,100 | 49.4 | 3.3 | |
Rib | 128,900 | 24.6 | 4.8 | |
Megech | 50,000 | 12.2 | 0.77 | |
Debre Mawi | 95 | 62.1 ͼ | 12.9 ͼ | Dagnew et al. [31], Dagnew et al. [103] |
11.6 ͼͼ | 10.9 ͼͼ | |||
Ene-Chilala-1 | 76 | 7.6 ͼ | 1.7 ͼ | Ayele et al. [104] |
2.1 ͼͼ | 1 ͼͼ | |||
Ene-Chilala-2 | 146 | 19.5 ͼ | 2.5 ͼ | |
3 ͼͼ | 0.9 ͼ ͼ | |||
Ene-Chilala-3 | 192 | 135.6 ͼ | 8.2 ͼ | |
18.3 ͼͼ | 4 ͼͼ | |||
Maybar | 113 | 10.3 | - | WLRC [105] |
Anjeni | 108 | 57.2 ͼ | - | Guzman et al. [99] |
6.3 ͼͼ | ||||
Andit Tid | 477 | 5.2 | - | Guzman et al. [89] |
May Zeg-Zeg | 187 | 14.3 ͼ | - | Nyssen et al. [47] |
9 ͼͼ | ||||
Gomit (entire) | 369 | 4.2 | 13.6 | This study |
Gomit (Forested) | 196 | 1.7 | 14.4 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adem, A.A.; Addis, G.G.; Aynalem, D.W.; Tilahun, S.A.; Mekuria, W.; Azeze, M.; Steenhuis, T.S. Hydrogeology of Volcanic Highlands Affects Prioritization of Land Management Practices. Water 2020, 12, 2702. https://doi.org/10.3390/w12102702
Adem AA, Addis GG, Aynalem DW, Tilahun SA, Mekuria W, Azeze M, Steenhuis TS. Hydrogeology of Volcanic Highlands Affects Prioritization of Land Management Practices. Water. 2020; 12(10):2702. https://doi.org/10.3390/w12102702
Chicago/Turabian StyleAdem, Anwar A., Gashaw G. Addis, Dessalew W. Aynalem, Seifu A. Tilahun, Wolde Mekuria, Mulugeta Azeze, and Tammo S. Steenhuis. 2020. "Hydrogeology of Volcanic Highlands Affects Prioritization of Land Management Practices" Water 12, no. 10: 2702. https://doi.org/10.3390/w12102702
APA StyleAdem, A. A., Addis, G. G., Aynalem, D. W., Tilahun, S. A., Mekuria, W., Azeze, M., & Steenhuis, T. S. (2020). Hydrogeology of Volcanic Highlands Affects Prioritization of Land Management Practices. Water, 12(10), 2702. https://doi.org/10.3390/w12102702