Understanding the Hydropower and Potential Climate Change Impact on the Himalayan River Regimes—A Study of Local Perceptions and Responses from Himachal Pradesh, India
Abstract
:1. Introduction
2. Data and Methods
Primary Survey
3. Hydropower and Climate Change
4. Results
4.1. Basin-Wise Rainfall, Temperature, and Soil Moisture Trend
4.1.1. Basin-Wise Spatial Distributions
4.1.2. Basin-Wise Trend
4.2. Socioecological Survey
4.2.1. Spring Disappearance
4.2.2. Risk of Disasters
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rampini, C. Impacts of Hydropower Development along the Brahmaputra River in Northeast India on the Resilience of Downstream Communities to Climate Change Impacts. Ph.D. Thesis, University of California, Santa Cruz, CA, USA, 2016. [Google Scholar]
- Kumar, D.; Katoch, S.S. Dams turning devils: An insight into the public safety aspects in operational run of the river hydropower projects in western Himalayas. Renew. Sustain. Energy Rev. 2017, 67, 173–183. [Google Scholar] [CrossRef]
- Grumbine, R.E.; Pandit, M.K. Threats from India’s Himalaya dams. Science 2013, 339, 36–37. [Google Scholar] [CrossRef]
- Zarfl, C.; Lumsdon, A.E.; Berlekamp, J.; Tydecks, L.; Tockner, K. A global boom in hydropower dam construction. Aquat. Sci. 2015, 77, 161–170. [Google Scholar] [CrossRef]
- Kelly-Richards, S.; Silber-Coats, N.; Crootof, A.; Tecklin, D.; Bauer, C. Governing the transition to renewable energy: A review of impacts and policy issues in the small hydropower boom. Energy Policy 2017, 101, 101,251–264. [Google Scholar] [CrossRef]
- Winemiller, K.O.; McIntyre, P.B.; Castello, L.; Fluet-Chouinard, E.; Giarrizzo, T.; Nam, S.; Baird, I.G.; Darwall, W.; Lujan, N.K.; Harrison, I.; et al. Balancing hydropower and biodiversity in the Amazon, Congo and Mekong. Science 2016, 351, 128–129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lees, A.C.; Peres, C.A.; Fearnside, P.M.; Schneider, M.C.; Zuanon, J.A.S. Hydropower and the future of Amazonian biodiversity. Biodivers. Conserv. 2016, 25, 451–466. [Google Scholar] [CrossRef]
- Ali, S.A.; Aadhar, S.; Shah, H.L.; Mishra, V. Projected increase in hydropower production in India under climate change. Sci. Rep. 2018, 8, 12450. [Google Scholar] [CrossRef] [Green Version]
- Nilsson, C.; Reidy, C.A.; Dynesius, M.; Revenga, C. Fragmentation and Flow Regulation of the World’s Large River System. Science 2005, 308, 405–408. [Google Scholar] [CrossRef] [Green Version]
- IHA-International Hydropower Association. Activity Report; International Hydropower Association: London, UK, 2019. [Google Scholar]
- Pai, D.S.; Sridhar, L.; Rajeevan, M.; Sreejith, O.P.; Satbhai, N.S.; Mukhopadhyay, B. Analysis of the daily rainfall events over India using a new long period (1901–2010) high resolution (0.25 × 0.25) gridded rainfall data set. Clim. Dyn. 2014, 65, 1–18. [Google Scholar]
- Srivastava, A.K.; Rajeevan, M.; Kshirsagar, S.R. Development of a high resolution daily gridded temperature data set (1969–2005) for the Indian region. Atmos. Sci. Lett. 2009, 10. [Google Scholar] [CrossRef]
- Kalnay, E.M.; Kanamitsu, R.; Kistler, W.; Collins, D.; Deaven, L.; Gandin, M.; Iredell, S.; Saha, G.; White, J.; Woollen, Y.; et al. The NCEP/NCAR 40-Year Reanalysis Project. Bull. Am. Meteorol. Soc. 1996, 77, 437–471. [Google Scholar] [CrossRef] [Green Version]
- Mann, H.B. Non-parametric tests against trend. Econometrica 1945, 13, 163–171. [Google Scholar] [CrossRef]
- Sen, P.K. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Gaudard, L.; Gilli, M.; Romerio, F. Climate Change Impacts on Hydropower Management. Water Resour. Manag. 2013, 27, 5143–5156. [Google Scholar] [CrossRef] [Green Version]
- Gaudard, L.; Romerio, F.; Dalla Valle, F.; Gorret, R.; Maran, S.; Ravazzani, G.; Stoffel, M.; Volonterio, M. Climate change impacts on hydropower in the Swiss and Italian Alps. Sci. Total Environ. 2014, 493, 1211–1221. [Google Scholar] [CrossRef]
- Gaudard, L.; Avanzi, F.; De Michele, C. Seasonal aspects of the energy-water nexus: The case of a run-of-the-river hydropower plant. Appl. Energy 2018, 210, 604–612. [Google Scholar] [CrossRef]
- Pearce, F. The Dammed: Rivers, Dams, and the Coming World Water Crisis; Bodley Head: London, UK, 1992. [Google Scholar]
- Intergovernmental Panel on Climate Change. Intergovernmental Panel on Climate Change Fourth Assessment Report by Working Group III, Mitigation of Climate Change: Greenhouse Gas Emission Trends; IPCC: Geneva, Switzerland, 2007. [Google Scholar]
- IPCC-Inter-governmental Panel on Climate Change. Special Report on Renewable Energy Sources and Climate Change Mitigation; Special Report of IPCC; Cambridge University Printing Press: Cambridge, UK, 2012; Chapter 5: Hydropower. [Google Scholar]
- Golombek, R.; Kittelsen, S.A.C.; Haddeland, I. Climate change: Impacts on electricity markets inWestern Europe. Clim. Chang. 2012, 113, 357–370. [Google Scholar] [CrossRef] [Green Version]
- Sahu, N.; Yamashiki, Y.; Behera, S.; Takara, K.; Yamagata, T. Large impacts of Indo-Pacific climate modes on the extreme streamflows of Citarum River in Indonesia. J. Glob. Environ. Eng. 2012, 17, 1–8. [Google Scholar]
- Sahu, N.; Robertson, A.W.; Boer, R.; Behera, S.; DeWitt, D.G.; Takara, K.; Kumar, M.; Singh, R.B. Probablistic seasonal streamflow forecasts of the Citarum River, Indonesia, based on general circulation models.Stoch.Environ. Res. Risk Assess. 2017, 31, 1747–1758. [Google Scholar] [CrossRef]
- Sahu, N.; Singh, R.B.; Kumar, P.; Silva, R.V.D.; Behera, S.K. La Niña impacts on Austral Summer extremely high-streamflow events of the Paranaíba River in Brazil. Adv. Meteorol. 2013, 2013, 461693. [Google Scholar] [CrossRef]
- Archer, D.R.; Fowler, H.J. Spatial and temporal variations in precipitation in the Upper Indus Basin: Global teleconnections and hydrological implications. Hydrol. Earth Syst. Sci. 2004, 8, 47–61. [Google Scholar] [CrossRef] [Green Version]
- Singh, D.; Juyal, V.; Sharma, V. Consistent seasonal snow cover depth and duration variability over the Western Himalayas (WH). J. Earth Syst. Sci. 2016, 125, 1451–1461. [Google Scholar] [CrossRef] [Green Version]
- Singh, P.; Kumar, N. Effect of Orography on precipitation in the western Himalayan region. J. Hydrol. 1997, 199, 183–206. [Google Scholar] [CrossRef]
- Mir, R.A.; Jain, S.K.; Saraf, A.K.; Goswami, A. Decline in Snowfall in Response to Temperature in Satluj Basin, Western Himalaya. J. Earth Syst. Sci. 2015, 124, 365–382. [Google Scholar] [CrossRef] [Green Version]
- Majone, B.; Villa, F.; Deidda, R.; Bellin, A. Impact of climate change and water use policies on hydropower potential in the south-eastern Alpine region. Sci. Total. Environ. 2016, 543, 965–980. [Google Scholar] [CrossRef]
- Agrawala, S.; Raksakulthai, V.; Aalst, M.; Larsen, P.; Smith, J.; Reynolds, J. Development and Climate Change in Nepal: Focus on Water Resources and Hydropower; Organization for Economic Cooperation and Development: Paris, France, 2003. [Google Scholar]
- Ahlers, R.; Budds, J.; Joshi, D.; Merme, V.; Zwarteveen, M. Framing hydropower as green energy: Assessing drivers, risks and tensions in the Eastern Himalayas. Earth Syst. Dyn. 2015, 6, 195–204. [Google Scholar] [CrossRef] [Green Version]
- Jaiswal, A.K.; Bhan, S.C.; Karandikar, A.S.; Gujar, M.K. Seasonal and annual rainfall trends in Himachal Pradesh during 1951–2005. Mausam 2015, 66, 247–264. [Google Scholar]
- Guhathakurta, P.; Rajeevan, M. Trends in the Rainfall Pattern over India. Int. J. Climatol. 2008, 28, 1453–1469. [Google Scholar] [CrossRef]
- Sahu, N.; Saini, A.; Behera, S.K.; Sayama, T.; Sahu, L.; Van- Thanh- Van, N.; Takara, K. Why Apple Orchards are shifting to the Higher Altitudes of the Himalayas? PLoS ONE 2020, 15, e0235041. [Google Scholar] [CrossRef]
- Prasad, R.; Rana, S.S. Length of rainy season and climatic water balance as influenced by climate change in the sub temperate and sub tropical mid hills of Himachal Pradesh. J. Agric. Phys. 2010, 10, 44–49. [Google Scholar]
- Bhan, S.C.; Singh, M. Analysis of total precipitation and snowfall pattern over Shimla. J. Agrometeorol. 2011, 13, 141–144. [Google Scholar]
- Kripalani, R.H.; Kulkarni, A.; Sabade, S.S. Western Himalayan Snow Cover and Indian Monsoon Rainfall: A re-examination with INSAT and NCEP/NCAR Data. Theor. Appl. Climatol. 2003, 74, 1–18. [Google Scholar] [CrossRef]
- Boelens, R.; Shah, E.; Bruins, B. Contested Knowledges: Large Dams and Mega-Hydraulic Development. Water 2019, 11, 416. [Google Scholar] [CrossRef] [Green Version]
- Lutz, A.F.; Immerzeel, W.W.; Shrestha, A.B.; Bierkens, M.F.P. Consistent increase in high Asia’s runoff due to increasing glacier melt and precipitation. Nat. Clim. Chang. 2014, 4, 587. [Google Scholar] [CrossRef] [Green Version]
- Madani, K.; Lund, J.R. Estimated impacts of climate warming on California’s high-elevation hydropower. Clim. Chang. 2010, 102, 521–538. [Google Scholar] [CrossRef] [Green Version]
- Huber, A. Hydropower in the Himalayan Hazardscape: Strategic Ignorance and the Production of Unequal Risk. Water 2019, 11, 414. [Google Scholar] [CrossRef]
- Niti Aayog, Government of India. Report on Disappearance of Spring in Himachal Pradesh; NITI Aayog: New Delhi, India, 2018. [Google Scholar]
- Schwanghart, W.; Ryan, M.; Korup, O. Topographic and seismic constraints on the vulnerability of Himalayan hydropower. Geophys. Res. Lett. 2018, 45, 8985–8992. [Google Scholar] [CrossRef]
- Yan, Y.; Zhang, Y.; Huang, C. Impact of blasting vibration on soil slope stability. Electron. J. Geotech. Eng. 2014, 19, 6559–6568. [Google Scholar]
- Alfieri, L.; Perona, P.; Burlando, P. Optimal water allocation for an alpine hydropower system under changing scenarios. Water Resour. Manag. 2006, 20, 761–778. [Google Scholar] [CrossRef] [Green Version]
- Avtar, R.; Sahu, N.; Aggarwal, A.K.; Chakraborty, S.; Kharrazi, A.; Yunus, A.P.; Dou, J.; Kurniawan, T.A. Exploring Renewable Energy Resources Using Remote Sensing and GIS—A Review. Resources 2019, 8, 149. [Google Scholar] [CrossRef] [Green Version]
- Xu, Z.; Cheng, L.; Luo, P.; Liu, P.; Zhang, L.; Li, F.; Liu, L.; Wang, J. A Climatic Perspective on the Impacts of Global Warming on Water Cycle of Cold Mountainous Catchments in the Tibetan Plateau: A Case Study in YarlungZangbo River Basin. Water 2020, 12, 2338. [Google Scholar] [CrossRef]
- Dobreva, I.D.; Bishop, M.P.; Bush, A.B.G. Climate–Glacier Dynamics and Topographic Forcing in the Karakoram Himalaya: Concepts, Issues and Research Directions. Water 2017, 9, 405. [Google Scholar] [CrossRef] [Green Version]
- Mehta, V.K.; Rheinheimer, D.E.; Yates, D.; Purkey, D.R.; Viers, J.H.; Young, C.A.; Mount, J.F. Potential impacts on hydrology and hydropower production under climate warming of the Sierra Nevada. J. Water Clim. Chang. 2011, 2, 29–43. [Google Scholar] [CrossRef]
- McCully, P. Silenced Rivers: The Ecology and Politics of Large Dams; Zed Books: London, UK, 2001. [Google Scholar]
- Cernea, M. Hydropower Dams and Social Impacts: A Sociological Perspective; World Bank Group: Washington, DC, USA, 1997. [Google Scholar]
- Cherry, J.E.; Knapp, C.; Trainor, S.; Ray, A.J.; Tedesche, M.; Walker, S. Planning for climate change impacts on hydropower in the Far North. Hydrol. Earth Syst. Sci. 2017, 21, 133–151. [Google Scholar] [CrossRef] [Green Version]
- Chilkoti, V.; Bolisetti, T.; Balachandar, R. Climate change impact assessment on hydropower generation using multi-model climate ensemble. Renew. Energy 2017, 109, 510–517. [Google Scholar] [CrossRef]
- Hamlet, A.F.; Lettenmaier, D.P. Effects of climate change on hydrology and water resources in the Columbia River Basin. J. Am. Water Resour. Assoc. 1999, 35, 1597–1623. [Google Scholar] [CrossRef]
- Panda, A.; Sahu, N. Trend analysis of seasonal rainfall and temperature pattern in Kalahandi, Bolangir and Koraput districts of Odisha, India. Atmos. Sci. Lett. 2019, 20, e932. [Google Scholar] [CrossRef] [Green Version]
- Duan, W.; He, B.; Sahu, N.; Luo, P.; Nover, D.; Hu, M.; Takara, K. Spatiotemporal variability of Hokkaido’s seasonal precipitation in recent decades and connection to water vapour flux. Int. J. Climatol. 2017, 37, 3660–3673. [Google Scholar] [CrossRef]
- Hamududu, B.; Killingtveit, A. Assessing climate change impacts on global hydropower. Energies 2012, 5, 305–322. [Google Scholar] [CrossRef] [Green Version]
- Huber, A.; Gorostiza, S.; Kotsila, P.; Beltrán, M.J.; Armiero, M. Beyond “socially constructed” disasters: Re-politicizing the debate on large dams through a political ecology of risk. Capital. Nat. Soc. 2017, 28, 48–68. [Google Scholar] [CrossRef]
- Vicuna, S.; Dracup, J.A.; Dale, L. Climate change impacts on two high-elevation hydropower systems in California. Clim. Chang. 2011, 109, 151–169. [Google Scholar] [CrossRef]
- Wagner, T.; Themeßl, M.; Schüppel, A.; Gobiet, A.; Stigler, H.; Birk, S. Impacts of climate change on stream flow and hydro power generation in the Alpine region. Environ. Earth Sci. 2016, 76. [Google Scholar] [CrossRef] [Green Version]
- Molarius, R.; Keranen, J.; Schabel, J.; Wessberg, N. Creating a climate change risk assessment procedure: Hydropower plant case, Finland. Hydrol. Res. 2010, 41, 282–294. [Google Scholar] [CrossRef]
- Mukheibir, P. Potential consequences of projected climate change impacts on hydroelectricity generation. Clim. Chang. 2013, 121, 67–78. [Google Scholar] [CrossRef] [Green Version]
- Markoff, M.S.; Cullen, A.C. Impact of climate change on Pacific Northwest hydropower. Clim. Chang. 2008, 87, 451–469. [Google Scholar] [CrossRef]
- Schaefli, B.; Hingray, B.; Musy, A. Climate change and hydropower production in the Swiss Alps: Quantification of potential impacts and related modelling uncertainties. Hydrol. Earth Syst. Sci. 2007, 11, 1191–1205. [Google Scholar] [CrossRef]
- Nepal, S. Impacts of climate change on the hydrological regime of the Koshi river basin in the Himalayan region. J. Hydro Environ. Res. 2016, 10, 76–89. [Google Scholar] [CrossRef] [Green Version]
- Savelsberg, J.; Schillinger, M.; Schlecht, I.; Weigt, H. The Impact of Climate Change on Swiss Hydropower. Sustainability 2018, 10, 2541. [Google Scholar] [CrossRef] [Green Version]
- Solaun, K.; Cerdá, E. The impact of climate change on the generation of hydroelectric power-a case study in southern Spain. Energie 2017, 10, 1343. [Google Scholar] [CrossRef] [Green Version]
- Schwanghart, W.; Worni, R.; Huggel, C.; Stoffel, M.; Korup, O. Uncertainty in the Himalayan energy–water nexus: Estimating regional exposure to glacial lake outburst floods. Environ. Res. Lett. 2016, 11, 074005. [Google Scholar] [CrossRef] [Green Version]
- Shrestha, U.B.; Gautam, S.; Bawa, K.S. Widespread climate change in the Himalayas and associated changes in local ecosystems. PLoS ONE 2012, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaudhary, P.; Bawa, K.S. Local perceptions of climate change validated by scientific evidence in the Himalayas. Biol. Lett. 2011, 7, 767–770. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Momblanch, A.; Beevers, L.; Srinivasalu, P.; Kulkarni, A.; Holman, I.P. Enhancing production and flow of freshwater ecosystem services in a managed Himalayan river system under uncertain future climate. Clim. Chang. 2020, 1–19. [Google Scholar] [CrossRef]
- Singh, J.; Sahany, S.; Robock, A. Can stratospheric geoengineering alleviate global warming-induced changes in deciduous fruit cultivation? The case of Himachal Pradesh (India). Clim. Chang. 2020, 1–21. [Google Scholar] [CrossRef]
Status of HPP | No. of Plants | Installed Capacity MW (Megawatt) |
---|---|---|
Commissioned | 216 | 10,596.27 |
Under construction/Various Stages of Clearance & Investigation | 709 | 11,612.24 |
To be allotted | 30 | 1304.5 |
Disputed/Cancelled | 4 | 50.5 |
Foregone | 6 | 755.00 |
Total allotted | 965 | 27,436.00 |
River Basin | Test | Rainfall | Temperature | Soil Moisture | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Annual | JJAS | DJF | Annual | JJAS | DJF | Annual | JJAS | DJF | |||||||||||
z Stat | Slope | z Stat | Slope | z Stat | Slope | z Stat | Slope | z Stat | Slope | z Stat | Slope | z Stat | Slope | z Stat | Slope | z Stat | Slope | ||
Ravi | MKT | −2.90 | −0.77 | −2.66 | −0.65 | −0.45 | −0.04 | 3.244 | 0.010 | 2.281 * | 0.006 * | 1.636 | 0.008 | −3.04 | −0.04 | −2.58 | −0.02 | −1.98 | −0.01 |
LRM | −0.90 | −0.64 | −0.05 | 0.009 | 0.005 * | 0.009 * | −0.04 | −0.02 | 0.003 | ||||||||||
Beas | MKT | −2.38 * | −0.49 * | −2.04 * | −0.35 * | −0.25 | −0.02 | 3.27 | 0.01 | 1.93 | 0.006 | 1.31 | 0.01 | −2.62 | −0.04 | −1.53 | −0.01 | −1.47 | −0.01 |
LRM | −0.53 | −0.35 * | −0.04 | 0.01 | 0.005 | 0.01 | −0.03 | −0.01 | 0.003 | ||||||||||
Satluj | MKT | −1.32 | −0.19 | 0.69 | 0.06 | −1.24 | −0.19 | 2.90 | 0.01 | 1.90 | 0.005 | 0.96 | 0.005 | −2.79 | −0.03 | −0.71 | −0.004 | −1.58 | −0.01 |
LRM | −0.26 * | 0.04 | −0.15 | 0.01 | 0.005 | 0.01 | −0.03 | −0.005 | 0.01 | ||||||||||
Chenab | MKT | 0.09 | 0.01 | 2.50 | 0.35 | −0.97 | −0.05 | 3.16 | 0.01 | 2.25 | 0.006 | 1.54 | 0.007 | −2.73 | −0.013 | −2.73 | −0.01 | −1.10 | −0.003 |
LRM | −0.10 | 0.34 * | −0.77 | 0.01 | 0.005 | 0.009 | −0.014 | −0.01 | 0.009 | ||||||||||
Yamuna | MKT | −3.25 | −0.61 | −1.97 * | −0.32 | −1.54 | −0.06 | 2.66 | 0.007 | 1.01 | 0.002 | 0.77 | 0.004 | −0.79 | −0.004 | −0.79 | −0.004 | −1.73 | −0.007 |
LRM | −0.56 | −0.28 * | −0.11 | 0.007 | 0.003 | 0.005 | −0.005 | −0.005 | 0.001 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sahu, N.; Sayama, T.; Saini, A.; Panda, A.; Takara, K. Understanding the Hydropower and Potential Climate Change Impact on the Himalayan River Regimes—A Study of Local Perceptions and Responses from Himachal Pradesh, India. Water 2020, 12, 2739. https://doi.org/10.3390/w12102739
Sahu N, Sayama T, Saini A, Panda A, Takara K. Understanding the Hydropower and Potential Climate Change Impact on the Himalayan River Regimes—A Study of Local Perceptions and Responses from Himachal Pradesh, India. Water. 2020; 12(10):2739. https://doi.org/10.3390/w12102739
Chicago/Turabian StyleSahu, Netrananda, Takahiro Sayama, Atul Saini, Arpita Panda, and Kaoru Takara. 2020. "Understanding the Hydropower and Potential Climate Change Impact on the Himalayan River Regimes—A Study of Local Perceptions and Responses from Himachal Pradesh, India" Water 12, no. 10: 2739. https://doi.org/10.3390/w12102739
APA StyleSahu, N., Sayama, T., Saini, A., Panda, A., & Takara, K. (2020). Understanding the Hydropower and Potential Climate Change Impact on the Himalayan River Regimes—A Study of Local Perceptions and Responses from Himachal Pradesh, India. Water, 12(10), 2739. https://doi.org/10.3390/w12102739