Assessing the Groundwater Quality in the Liwa Area, the United Arab Emirates
Abstract
:1. Introduction
2. Study Area and Methods
2.1. Study Area
2.2. Experimental Study
2.3. Methodology
- ⮚
- Determine the variability of the water parameters at different locations
- ⮚
- Study of the similarity of the series collected at different sites
- ⮚
- Perform data clustering
- (1)
- Firstly, the number of clusters, k, is selected.
- (2)
- The clusters’ centroids are initialized and the distances between the data points and the cluster centers are computed. Each point is assigned to the cluster that minimizes the distances from it to the clusters’ centers.
- (3)
- The new clusters’ centers are determined, the procedure restarts from (2) and runs until no data point can be reassigned to another cluster. Then, stop.
- ⮚
- ⮚
- Assessing the suitability of water for drinking
- (1)
- choose the water parameters used in the computation;
- (2)
- compute the quality rating (qi) for each parameter by:
- (3)
- Compute the weight of each water parameter, i, by:
- (4)
- Compute the WQI by:
- (5)
- Classify the water quality based on the interval in which the value is contained. The classes and the corresponding intervals are A (Excellent)—(0,25], B (Good)—(25,50], C (Poor)—(50,75], D (Very poor)—(76,100], and E (unsuitable) > 1000 [80].
- (6)
- Compare the values of WQI for the samples contained in different clusters.
3. Results and Discussion
- The numbers of the samples (columns 1 and 6);
- WQI 1—water quality index computed using EC, TDS, Na+, K+, Cl−, NO3−, SO42−, HCO3−, Ca2+, Mg2+, Cd, Cr, Cu, Mn, Ni, Pb, Zn data series;
- WQI 2—water quality index computed using all, but Cr, Mn, Zn;
- Cat 1 and Cat 2 represent the quality class of water corresponding to WQI 1 and WQI 2.
- for the samples from the first cluster, 70.6% (88.2%)—excellent, 29.41% (11.8%)—good;
- for the samples from the second cluster, 25% (25%)—excellent, 25% (25%)—good, 50% (50%)—poor;
- for the samples from the third cluster, 70% (70%)—excellent, 25% (25%)—good, 5% (5%)—poor.
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- World Wildlife Fund. Available online: https://www.worldwildlife.org/initiatives/fresh-water (accessed on 19 August 2020).
- Bărbulescu, A.; Barbeş, L. Assessment of surface water quality Techirghiol Lake using statistical analysis. Rev. Chim. Bucharest 2013, 64, 868–874. [Google Scholar]
- Abbasnia, A.; Yousefi, N.; Mahvi, A.H.; Nabizadeh, R.; Radfard, M.; Yousefi, M.; Alimohammadi, M. Evaluation of groundwater quality using water quality index and its suitability for assessing water for drinking and irrigation purposes: Case study of Sistan and Baluchistan province (Iran). Hum. Ecol. Risk Assess. 2019, 25, 988–1005. [Google Scholar] [CrossRef]
- Assaf, H.; Saadeh, M. Assessing water quality management options in the Upper Litani Basin, Lebanon, using an integrated GIS-based decision support system. Environ. Modell. Softw. 2008, 23, 1327–1337. [Google Scholar] [CrossRef]
- Bărbulescu, A.; Barbeş, L. Assessing the Danube River water quality by statistical methods. Environ. Earth Sci. 2020, 79, 122. [Google Scholar] [CrossRef]
- Bărbulescu, A.; Barbeş, L.; Dani, A. Statistical analysis of the quality indicators of the Danube River (in Romania). In Frontiers in Water-Energy-Nexus—Nature-Based Solutions, Advanced Technologies and Best Practices for Environmental Sustainability, Advances in Science, Technology & Innovation (IEREK Interdisciplinary Series for Sustainable Development); Naddeo, V., Balakrishnan, M., Choo, K.H., Eds.; Springer: Cham, Switzerland, 2020; pp. 277–279. [Google Scholar] [CrossRef]
- Bărbulescu, A.; Dani, A. Statistical analysis of the water quality of the major rivers in India. Rom. Rep. Phys. 2019, 71, 716. [Google Scholar]
- Bhat, S.A.; Meraj, G.; Yaseen, S.; Pandit, A.K. Statistical Assessment of Water Quality Parameters for Pollution Source Identification in Sukhnag Stream: An Inflow Stream of Lake Wular (Ramsar Site), Kashmir Himalaya. J. Ecosyst. 2014, 898054. [Google Scholar] [CrossRef]
- Chounlamany, V.; Tanchuling, M.A.; Inoue, T. Spatial and temporal variation of water quality of a segment of Marikina River using multivariate statistical methods. Water Sci. Technol. 2017, 76, 1510–1522. [Google Scholar] [CrossRef]
- Dani, A.; Bărbulescu, A. Statistical Analysis of the Water Quality of the Major Rivers in India. In Frontiers in Water-Energy-Nexus—Nature-Based Solutions, Advanced Technologies and Best Practices for Environmental Sustainability, Advances in Science, Technology & Innovation (IEREK Interdisciplinary Series for Sustainable Development); Naddeo, V., Balakrishnan, M., Choo, K.H., Eds.; Springer: Cham, Switzerland, 2020; pp. 281–283. [Google Scholar] [CrossRef]
- Misaghi, F.; Delgosha, F.; Razzaghmanesh, M.; Myers, B. Introducing a water quality index for assessing water for irrigation purposes: A case study of the Ghezel Ozan River. Sci. Total Environ. 2017, 689, 109–116. [Google Scholar] [CrossRef]
- Don-Pedro, K.N.; Oyewo, E.O.; Otitoloju, A.A. Trend of heavy metal concentration in Lagos Lagoon ecosystem, Nigeria. West Afr. J. Appl. Ecol. 2004, 5, 103–114. [Google Scholar] [CrossRef]
- Cox, B.A. A review of currently available in-stream water-quality models and their applicability for simulating dissolved oxygen in lowland rivers. Sci. Total Environ. 2003, 314–316, 335–377. [Google Scholar] [CrossRef]
- Bharti, N.; Katyal, D. Water Quality Indices Used for Surface Water Vulnerability Assessment. Int. J. Environ. Sci. 2011, 2, 154–173. Available online: https://ssrn.com/abstract=2160726 (accessed on 10 August 2020).
- Bora, M.; Goswami, D.C. Water quality assessment in terms of water quality index (WQI): Case study of the Kolong River, Assam, India. Appl. Water Sci. 2017, 7, 3125–3135. [Google Scholar] [CrossRef] [Green Version]
- Canadian Council of Ministers of the Environment 2001. CCME WATER QUALITY INDEX 1.0 User’s Manual. Available online: Ceqg-rcqe.ccme.ca/download/en/138 (accessed on 15 August 2020).
- Iticescu, C.; Georgescu, L.P.; Murariu, G.; Topa, C.; Timofti, M.; Pintilie, V.; Arseni, M. Lower Danube Water Quality Quantified through WQI and Multivariate Analysis. Water 2019, 11, 1305. [Google Scholar] [CrossRef] [Green Version]
- Paun, I.; Chiriac, F.L.; Marin, N.M.; Cruceru, L.V.; Pascu, L.; Lehr, C.B.; Ene, C. Water quality index, a useful tool for evaluation of Danube River raw water. Rev. Chim. Buchar. 2017, 68, 1732–1739. [Google Scholar] [CrossRef]
- Radu, V.M.; Ivanov, A.A.; Ionescu, P.; Gyorgy, D.; Diacu, E. Overall assessment of water quality on lower Danube River using multi-parametric quality index. Rev. Chim. Buchar. 2016, 67, 391–395. [Google Scholar]
- Ioele, G.; De Luca, M.; Grande, F.; Durante, G.; Trozzo, R.; Crupi, C.; Ragno, G. Assessment of Surface Water Quality Using Multivariate Analysis: Case Study of the Crati River, Italy. Water 2020, 12, 2214. [Google Scholar] [CrossRef]
- Gad, M.; Elsayed, S.; Moghanm, F.S.; Almarshadi, M.H.; Alshammari, A.S.; Khedher, K.; Eid, E.M.; Hussein, H. Combining Water Quality Indices and Multivariate Modeling to Assess Surface Water Quality in the Northern Nile Delta, Egypt. Water 2020, 12, 2142. [Google Scholar] [CrossRef]
- Margat, J. Ground Water Vulnerability to Contamination; Bases de la Cartographie, Doc. 68 SGC198 HYD. BRGM: Orleans, France, 1968. (In French) [Google Scholar]
- National Research Council. Ground Water Vulnerability Assessment: Contamination Potential under Conditions of Uncertainty; National Research Council National Academy Press: Washington, DC, USA, 1993; Available online: https://www.nap.edu/read/2050/chapter/3#17 (accessed on 10 August 2020).
- Hirata, R.; Bertolo, R. Groundwater vulnerability in different climatic zones. In Encyclopedia of Life Support Systems (EOLSS), Groundwater—Vol. II; EOLSS Publications: Paris, France, 2009; Available online: https://www.eolss.net/Sample-Chapters/C07/E2-09-04-06.pdf (accessed on 20 May 2020).
- Adams, B.; Foster, S.S.D. Land-surface zoning for groundwater protection. Water Environ. J. 1992, 6, 312–319. [Google Scholar] [CrossRef]
- Gogu, R.C.; Pandele, A.; Ionita, A.; Ionescu, C. Groundwater vulnerability analysis using a low-cost Geographical Information System. In Proceedings of the MIS/UDMS Conference WELL-GIS WORKSHOP’s Environmental Information Systems for Regional and Municipal Planning, Prague, Czech Republic, 20 November 1996; pp. 35–49. [Google Scholar]
- Gogu, R.C.; Dassargues, A. Current trends and future challenges in groundwater vulnerability assessment using overlay and index methods. Environ. Geol. 2000, 39, 549–559. [Google Scholar] [CrossRef]
- Aller, L.; Bennet, T.; Lehr, J.H.; Petty, R.J. DRASTIC: Standardized System for Evaluating Ground Water Pollution Potential using Hydrogeologic Settings; Office of Research Development, US EPA: Ada, OK, USA, 1985.
- Van Stempvoort, D.L.; Evert, L.W. Aquifer vulnerability index: A GIS compatible method for groundwater vulnerability mapping. Can. Water Resour. J. 1993, 18, 25–37. [Google Scholar] [CrossRef] [Green Version]
- Ray, I.A.; O’dell, P.W. DIVERSITY: A new method for evaluating sensitivity of groundwater to contamination. Environ. Geol. 1993, 22, 344–352. [Google Scholar] [CrossRef]
- Foster, S.S.D. Fundamental concepts in aquifer vulnerability, pollution risk and protection strategy. Hydrol. Resour. Proc. Inf. 1987, 38, 69–86. [Google Scholar]
- Civita, M.; De Regibus, C. Sperimentazione di alcune metodologie per la valutazione della vulnerabilità degli aquiferi. Q. Geol. Appl. Pitagora Bologna 1995, 3, 63–71. [Google Scholar]
- Civita, M. Le Carte Della Vulnerabilita Degli Acquiferi all Inquinamento: Teoria e Pratica; Pitagora Editrice: Bologna, Italy, 1994; pp. 325–333. [Google Scholar]
- Civita, M.; De Maio, M. SINTACS. Un Sistema Parametrico per la Valutazione e la Cartografia Della Vulnerabilita’ Degli Acquiferi All’inquinamento. Metodologia and Automatizzazione; Pitagora: Bologna, Italy, 1997. [Google Scholar]
- Civita, M.; de Maio, M. SINTACS R5-Valutazione e Cartografia Automatica Della Vulnerabilità Degli Acquiferi All’inquinamento con il Sistema Parametrico; Pitagora: Bologna, Italy, 2000; pp. 226–232. [Google Scholar]
- Civita, M. The combined approach when assessing and mapping groundwater vulnerability to contamination. J. Water Resour. Prot. 2010, 2, 14–28. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Merkel, B.J.; Li, Y.; Ye, H.; Fu, S.; Ihm, D. Vulnerability of groundwater in Quaternary aquifers to organic contaminants: A case study in Wuhan City, China. Environ. Geol. 2007, 53, 479–484. [Google Scholar] [CrossRef]
- Chenini, I.; Zghibi, A.; Kouzana, L. Hydrogeological investigations and groundwater vulnerability assessment and mapping for groundwater resource protection and management: State of the art and a case study. J. Afr. Earth Sci. 2015, 109, 11–26. [Google Scholar] [CrossRef]
- Zhou, J.; Li, G.; Liu, F.; Wang, Y.; Guo, X. DRAV model and its application in assessing groundwater vulnerability in arid area: A case study of pore phreatic water in Tarim Basin, Xinjiang, Northwest China. Environ. Earth Sci. 2010, 60, 1055–1063. [Google Scholar] [CrossRef]
- Alam, F.; Umar, R.; Ahmad, S.; Dar, A.F. A new model (DRASTIC-LU) for evaluating groundwater vulnerability in parts of Central Ganga plain, India. Arab. J. Geosci. 2012, 7, 927–937. [Google Scholar] [CrossRef]
- Khan, M.M.A.; Umar, R.; Lateh, H. Assessment of aquifer vulnerability in parts of Indo Gangetic plain, India. Int. J. Phys. Sci. 2010, 5, 1711–1720. [Google Scholar]
- Secunda, S.; Collin, M.; Melloul, A.J. Groundwater Vulnerability Assessment Using a Composite Model Combining DRASTIC with Extensive Land Use in Israel’s Sharon Region. J. Environ. Manag. 1998, 54, 39–57. [Google Scholar] [CrossRef]
- Noori, R.; Ghahremanzadeh, H.; Kløve, B.; Adamowski, F.J.; Baghvand, A. Modified-DRASTIC, modified-SINTACS and SI methods for groundwater vulnerability assessment in the southern Tehran aquifer. J. Environ. Sci. Health 2019, 54, 89–91. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Srivastav, S.K.; Kumar, S.; Chakrapani, G.J. A modified-DRASTIC model (DRASTICA) for assessment of groundwater vulnerability to pollution in an urbanized environment in Lucknow, India. Environ. Earth Sci. 2015, 74, 5475–5490. [Google Scholar] [CrossRef]
- Amadi, N.; Olasehinde, P.I.; Nwankwoala, H.O.; Dan-Hassan, M.A.; Okoye, N.O. Aquifer vulnerability studies using DRASTICA Model. Int. J. Eng. Sci. Invent. 2014, 3, 1–10. [Google Scholar]
- Bărbulescu, A. Assessing the groundwater vulnerability: DRASTIC method and its versions: A review. Water 2020, 12, 1356. [Google Scholar] [CrossRef]
- Andreo, B.; Ravbar, N.; Vias, J.M. Source vulnerability mapping, in carbonate (karst) aquifers by extension of the COP method: Application to pilot sites. Hydrogeol. J. 2009, 17, 749–758. [Google Scholar] [CrossRef]
- Doerfliger, N.; Jeannin, P.Y.; Zwahlen, F. Water vulnerability assessment in karst environments: A new method of defining protection areas using a multi-attribute approach and GIS tools (EPIK method). Environ. Geol. 1999, 39, 165–176. [Google Scholar] [CrossRef] [Green Version]
- Malik, P.; Svasta, J. REKS: An alternative method of Karst groundwater vulnerability estimation. In Proceedings of the XXIX Congress of the International Association of Hydrogeologists, Bratislava, Slovakia, 6–10 September 1999; pp. 79–85. [Google Scholar] [CrossRef]
- Pételet-Giraud, E.; Dörfliger, N.; Crochet, P. RISKE: Méthode d’évaluation multicritère de la 1. vulnérabilité des aquifers karstiques. Application aux systèmes des Fontanilles et Cent-Fonts (Hérault, Sud de la France). Hydrogéology 2000, 4, 71–88. [Google Scholar]
- Plagnes, V.; Théry, S.; Fontaine, L.; Bakalowicz, M.; Dörfliger, N. Karst vulnerability mapping: Improvement of the RISKE method. In Proceedings of the KARST 2005, Water Resources and Environmental Problems in Karst, Belgrade, Serbia, 14–19 September 2005. [Google Scholar]
- Kavouri, K.; Plagnes, V.; Tremoulet, J.; Dörfliger, N.; Rejiba, F.; Marchet, P. PaPRIKa: A method for estimating karst resource and source vulnerability—Application to the Ouysse karst system (southwest France). Hydrogeol. J. 2011, 19, 339–353. [Google Scholar] [CrossRef]
- Goldscheider, N. Karst groundwater vulnerability mapping: Application of a new method in the Swabian Alb, Germany. Hydrogeol. J. 2005, 13, 555–564. [Google Scholar] [CrossRef]
- Al-Katheeri, E.S.; Howari, F.M.; Murad, A.A. Hydrogeochemistry and pollution assessmentof quaternary–tertiary aquifer in the Liwa area, United Arab Emirates. Environ. Earth Sci. 2009, 59, 581–592. [Google Scholar] [CrossRef]
- Oroji, B.; Karimi, Z.F. Application of DRASTIC model and GIS for evaluation of aquifer vulnerability: A case study of Asadabad, Hamadan (western Iran). Geosci. J. 2018, 22, 843–855. [Google Scholar] [CrossRef]
- Beyene, G.; Aberra, D.; Fufa, F. Evaluation of the suitability of groundwater for drinking and irrigation purposes in Jimma Zone of Oromia, Ethiopia. Groundw. Sus. Dev. 2019, 9, 100216. [Google Scholar] [CrossRef]
- Nazzal, Y.; Ahmed, I.; Al-Arifi, N.S.N.; Ghrefat, H.; Zaidi, F.K.; El-Waheidi, M.M.; Batayneh, A.; Zumlot, T. A pragmatic approach to study the groundwater quality suitability for domestic and agricultural usage, Saq aquifer, northwest of Saudi Arabia. Environ. Monit. Assess. 2014, 186, 4655–4667. [Google Scholar] [CrossRef] [PubMed]
- Nazzal, Y.; Howari, F.M.; Iqbal, J.; Ahmed, I.; Orm, N.B.; Yousef, A. Investigating aquifer vulnerability and pollution risk employing modified DRASTIC model and GIS techniques in Liwa area, United Arab Emirates. Groundw. Sus. Dev. 2019, 3, 567–578. [Google Scholar] [CrossRef]
- Zaidi, F.K.; Jafri, M.K.; Naeem, M.; Ahmed, I. Reverse ion exchange as a major process controlling the groundwater chemistry in an arid environment: A case study from northwestern Saudi Arabia. Environ. Monit. Assess. 2015, 187, 607. [Google Scholar] [CrossRef]
- Verma, P.; Singh, P.K.; Sinha, R.R.; Tiwari, A.K. Assessment of groundwater quality status by using water quality index (WQI) and geographic information system (GIS) approaches: A case study of the Bokaro district, India. Appl. Water Sci. 2020, 10, 27. [Google Scholar] [CrossRef] [Green Version]
- Bodrud-Doza, M. Delineation of trace metals contamination in groundwater using geostatistical techniques: A study on Dhaka City of Bangladesh. Groundw. Sustain. Dev. 2019, 9, 100212. [Google Scholar] [CrossRef]
- Iqbal, J.; Nazzal, Y.; Howari, F.; Xavier, C.; Yousef, A. Hydrochemical processes determining the groundwater quality for irrigation use in an arid environment: The case of Liwa Aquifer, Abu Dhabi, United Arab Emirates. Groundw. Sustain. Dev. 2018, 7, 212–219. [Google Scholar] [CrossRef]
- GTZ/DCO/ADNOC. Status Report Phases for Groundwater Assessment Project Abu Dhabi, United Arab Emirates, Vol. I-1: Exploration, 21st ed.; ADNOC: Abu Dhabi, UAE, 2005. [Google Scholar]
- Federation, Water Environmental, and American Public Health Association. Standard Methods for the Examination of Water and Wastewater, 21st ed.; American Public Health Association/American Water Works Association/Water Environment Federation: Washington, DC, USA, 2005. [Google Scholar]
- Kruskal, W.H.; Wallis, A. Use of ranks in one-criterion variance analysis. J. Am. Stat. Assoc. 1952, 47, 583–621. [Google Scholar] [CrossRef]
- Dunn, O.J. Multiple comparisons using rank sums. Technometrics 1964, 6, 241–252. [Google Scholar] [CrossRef]
- Hartigan, J.A.; Wong, M.A. A K-Means Clustering Algorithm. J. R. Stat. Soc. C 1979, 28, 100–108. [Google Scholar]
- Everitt, B.S.; Landau, S.; Leese, M.; Stahl, D. Cluster Analysis, 5th ed.; Wiley Series in Probability and Statistics: Chichester, UK, 2011. [Google Scholar]
- Bărbulescu, A.; Nazzal, Y.; Howari, F. Statistical analysis and estimation of the regional trend of aerosol size over the Arabian Gulf Region during 2002–2016. Sci. Rep. 2018, 8, 9571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hansen, P.; Nagai, E. Analysis of Global k-means, an Incremental Heuristic for Minimum Sum of Squares Clustering. J. Classif. 2005, 22, 287–310. [Google Scholar] [CrossRef]
- Kassambara, A. Practical Guide to Cluster Analysis in R. Unsupervised Machine Learning. STHDA. Available online: http://www.sthda.com (accessed on 27 July 2020).
- Charrad, M.; Ghazzali, N.; Boiteau, V.; Niknafs, A. Package ‘NbClust’. NbClust: An R Package for Determining the Relevant Number of Clusters in a Data Set. J. Stat. Softw. 2014, 61, 1–36. Available online: http://www.jstatsoft.org/v61/i06/ (accessed on 27 July 2020). [CrossRef] [Green Version]
- Abdi, H.; Williams, L.J. Principal Component Analysis. WIRES Comput. Stat. 2010, 2, 433–459. [Google Scholar] [CrossRef]
- Jolliffe, I.T. Principal Component Analysis; Springer: New York, NY, USA, 2002. [Google Scholar]
- Jolliffe, I.T.; Cadima, J. Principal component analysis: A review and recent developments. Philos. Trans. R. Soc. A 2016, 374, 20150202. [Google Scholar] [CrossRef] [PubMed]
- Kaiser, H.F. The varimax criterion for analytic rotation in factor analysis. Psychometrika 1958, 23, 187–200. [Google Scholar] [CrossRef]
- Kolsi, S.H.; Bouri, S.; Hachicha, W.; Dhia, H.B. Implementation and evaluation of multivariate analysis for groundwater hydrochemistry assessment in arid environments: A case study of Hajeb Elyoun–Jelma, Central Tunisia. Environ. Earth Sci. 2013, 70, 2215–2224. [Google Scholar] [CrossRef]
- Hu, S.; Luo, T.; Jing, C. Principal component analysis of fluoride geochemistry of groundwater in Shanxi and Inner Mongolia, China. J. Geochem. Explor. 2012, 135, 124–129. [Google Scholar] [CrossRef]
- Kassambara, A. Practical Guide to Principal Component Methods in R, STHDA. Available online: https://www.datanovia.com/en/product/practical-guide-to-principal-component-methods-in-r/ (accessed on 23 March 2020).
- Tyagi, S.; Singh, P.; Sharma, B.; Singh, R. Assessment of Water Quality for Drinking Purpose in District Pauri of Uttarakhand, India. Appl. Ecol. Environ. Sci. 2014, 2, 94–99. Available online: http://pubs.sciepub.com/aees/2/4/2 (accessed on 18 June 2020). [CrossRef] [Green Version]
- Tiwari, T.N.; Mishra, M. A preliminary assignment of water quality index to major Indian rivers. Indian J. Environ. Prot. 1985, 5, 276–279. [Google Scholar]
- Behmanesh, A.; Feizabadi, Y. Water quality index of Babolrood River in Mazandaran, Iran. Int. J. Agr. Crop Sci. 2013, 5, 2285–2292. [Google Scholar]
- WHO. Guidelines for Drinking-Water Quality, 4th Edition, Incorporating the 1st Addendum. 2017. Available online: https://www.who.int/water_sanitation_health/publications/drinking-water-quality-guidelines-4-including-1st-addendum/en/ (accessed on 25 March 2020).
- Saber, M.; Abdelshafy, M.; El-Ameen, M.; Faragallah, A.; Abd-Alla, M.H. Hydrochemical and bacteriological analyses of groundwater and its suitability for drinking and agricultural uses at Manfalut district, Assuit, Egypt. Arab. J. Geosci. 2014, 7, 4593–4613. [Google Scholar] [CrossRef]
- Ziani, D.; Abderrahmane, B.; Boumazbeur, A.; Benaabidate, L. Water quality assessment for drinking and irrigation using major ions chemistry in the semiarid region: Case of Djacer spring, Algeria. Asian J. Earth Sci. 2017, 10, 9–21. [Google Scholar] [CrossRef]
- Fianko, J.R.; Osae, S.; Adomako, D.; Achel, D.G. Relationship between land use and groundwater quality in six districts in the eastern region of Ghana. Environ. Monit. Assess. 2009, 153, 139–146. [Google Scholar] [CrossRef] [Green Version]
Sample No. | Coordinates | Sample No. | Coordinates | Sample No. | Coordinates | |||
---|---|---|---|---|---|---|---|---|
North | East | North | East | North | East | |||
1 | 23.05.07 | 53.59.44 | 15 | 23.04.21 | 54.02.56 | 29 | 23.09.21 | 53.46.27 |
2 | 23.05.09 | 53.59.49 | 16 | 23.07.32 | 53.59.21 | 30 | 23.08.39 | 53.45.33 |
3 | 23.05.10 | 53.59.55 | 17 | 23.07.23 | 53.59.20 | 31 | 23.09.34 | 53.47.13 |
4 | 23.05.15 | 53.59.29 | 18 | 23.08.00 | 53.59.52 | 32 | 23.09.37 | 53.47.15 |
5 | 23.05.05 | 53.59.31 | 19 | 23.08.02 | 53.59.58 | 33 | 23.09.31 | 53.47.17 |
6 | 23.05.54 | 54.01.05 | 20 | 23.07.45 | 53.54.44 | 34 | 23.06.36 | 53.44.10 |
7 | 23.05.52 | 54.01.00 | 21 | 23.08.12 | 53.47.14 | 35 | 23.06.33 | 53.44.09 |
8 | 23.07.05 | 54.02.07 | 22 | 23.08.08 | 53.46.38 | 36 | 23.06.31 | 53.43.27 |
9 | 23.06.33 | 54.01.11 | 23 | 23.08.13 | 53.46.38 | 37 | 23.06.38 | 53.43.24 |
10 | 23.06.18 | 54.00.33 | 24 | 23.08.01 | 53.46.39 | 38 | 23.06.33 | 53.43.10 |
11 | 23.06.25 | 54.00.38 | 25 | 23.07.58 | 53.45.51 | 39 | 23.06.55 | 53.40.42 |
12 | 23.07.28 | 54.00.53 | 26 | 23.08.18 | 53.45.48 | 40 | 23.07.24 | 53.40.47 |
13 | 23.06.39 | 54.59.45 | 27 | 23.08.18 | 53.45.56 | 41 | 23.05.10 | 53.38.49 |
14 | 23.03.39 | 54.03.30 | 28 | 23.08.44 | 53.45.38 |
Minimum | Maximum | Average | Standard Deviation | Variation Coefficient (cv) | |
---|---|---|---|---|---|
pH | 6.1900 | 7.190 | 6.519 | 0.256 | 0.039 |
EC (μS/cm) | 328.0000 | 3003.000 | 1478.488 | 648.574 | 0.439 |
TDS (mg/L) | 136.0000 | 1565.000 | 863.049 | 354.590 | 0.411 |
Na+ (mg/L) | 638.1750 | 5302.039 | 2923.174 | 1044.109 | 0.357 |
K+ (mg/L) | 2.7043 | 17.203 | 8.964 | 3.121 | 0.348 |
Cl− (mg/L) | 827.0140 | 9628.939 | 5670.833 | 2258.713 | 0.398 |
NO3− (mg/L) | 0.4259 | 2.486 | 1.410 | 0.550 | 0.390 |
SO42− (mg/L) | 4.1290 | 45.794 | 23.570 | 9.142 | 0.388 |
CO32− (mg/L) | 14.4000 | 108.000 | 57.712 | 27.473 | 0.476 |
HCO3− (mg/L) | 14.6400 | 236.680 | 87.546 | 48.842 | 0.558 |
Ca2+ (mg/L) | 104.2060 | 1244.785 | 705.423 | 269.035 | 0.381 |
Mg2+ (mg/L) | 21.5390 | 672.509 | 316.744 | 148.690 | 0.469 |
Cd (mg/L) | 0.0001 | 0.002 | 0.001 | 0.000 | 0.762 |
Cr (mg/L) | 0.0005 | 0.023 | 0.015 | 0.005 | 0.362 |
Cu (mg/L) | 0.0009 | 0.004 | 0.002 | 0.001 | 0.433 |
Mn (mg/L) | 0.0001 | 0.011 | 0.002 | 0.003 | 1.242 |
Ni (mg/L) | 0.0005 | 0.004 | 0.002 | 0.001 | 0.563 |
Pb (mg/L) | 0.0013 | 0.012 | 0.005 | 0.003 | 0.500 |
Zn (mg/L) | 0.0004 | 0.052 | 0.005 | 0.010 | 2.135 |
1; 21, 26, 27, 41 | 15; 21, 26, 27, 40, 41 | 29; - |
2; 7, 9, 11 | 16; 21, 26, 27, 40, 41 | 30; 34 |
3; 7, 9, 11, 26 | 17; 21, 26, 27, 40, 41 | 31; - |
4; 26, 27 | 18; 34, 35 | 32; 34 |
5; 18, 19, 21, 23, 25–27, 29, 30, 32, 33, 40, 41 | 19; 34 | 33; 34, 35 |
6; 12, 18, 19, 21–33, 40, 41 | 20; 21, 26, 27 | 34; 40, 41 |
7; 12, 18–33, 37, 38, 39, 40, 41 | 21; 34–37,39 | 35; 40, 41 |
8; 18, 21, 26, 27, 30, 32, 33, 40, 41 | 22; - | 36; - |
9; 12, 18, 19, 21–33, 40, 41 | 23; 34 | 37; - |
10; 18, 21, 23, 25–27, 30, 32, 33, 40, 41 | 24; - | 38; - |
11; 12, 18, 19, 21–33, 40, 41 | 25; 34 | 39; - |
12; - | 26; 34–39 | 40; - |
13; 21, 26, 27, 30, 32, 33, 40, 41 | 27; 34–37, 39 | 41; - |
14; 18, 19, 21, 23, 25–27, 30, 32, 33, 40, 41 | 28; - |
PC1 | PC2 | PC3 | PC4 | PC5 | PC6 | PC7 | PC8 | PC9 | |
---|---|---|---|---|---|---|---|---|---|
Standard deviation | 2.6936 | 1.6215 | 1.2924 | 1.1733 | 1.0402 | 0.9941 | 0.9708 | 0.8309 | 0.7715 |
Proportion of variance | 0.3819 | 0.1384 | 0.0879 | 0.0725 | 0.0569 | 0.0520 | 0.0496 | 0.0363 | 0.0313 |
Cumulative proportion | 0.3819 | 0.5203 | 0.6082 | 0.6806 | 0.7376 | 0.7896 | 0.8392 | 0.8755 | 0.9068 |
Sample | WQI 1 | Cat.1 | WQI 2 | Cat.2 | Sample | WQI 1 | Cat.1 | WQI 2 | Cat.2 |
---|---|---|---|---|---|---|---|---|---|
1 | 25.995 | B | 24.265 | A | 22 | 20.898 | A | 19.847 | A |
2 | 23.836 | A | 22.684 | A | 23 | 16.522 | A | 15.279 | A |
3 | 16.664 | A | 15.238 | A | 24 | 27.103 | B | 27.100 | B |
4 | 12.816 | A | 11.439 | A | 25 | 10.362 | A | 8.967 | A |
5 | 24.164 | A | 22.925 | A | 26 | 19.748 | A | 18.646 | A |
6 | 23.103 | A | 21.307 | A | 27 | 22.450 | A | 21.223 | A |
7 | 44.773 | B | 43.864 | B | 28 | 28.860 | B | 27.075 | B |
8 | 72.656 | C | 71.075 | C | 29 | 19.501 | A | 17.781 | A |
9 | 67.319 | C | 65.891 | C | 30 | 21.255 | A | 19.899 | A |
10 | 23.720 | A | 21.728 | A | 31 | 13.307 | A | 13.258 | A |
11 | 54.921 | C | 53.764 | C | 32 | 14.913 | A | 13.572 | A |
12 | 20.767 | A | 19.192 | A | 33 | 29.131 | B | 27.998 | B |
13 | 14.999 | A | 13.624 | A | 34 | 8.269 | A | 6.828 | A |
14 | 25.705 | B | 24.789 | A | 35 | 21.114 | A | 19.518 | A |
15 | 20.140 | A | 19.049 | A | 36 | 16.156 | A | 14.178 | A |
16 | 26.387 | B | 24.518 | A | 37 | 18.241 | A | 17.317 | A |
17 | 27.083 | B | 25.365 | B | 38 | 26.526 | B | 25.752 | B |
18 | 25.893 | B | 25.114 | B | 39 | 21.232 | A | 20.416 | A |
19 | 22.725 | A | 21.858 | A | 40 | 18.153 | A | 17.069 | A |
20 | 35.357 | B | 35.103 | B | 41 | 8.896 | A | 7.117 | A |
21 | 15.046 | A | 14.821 | A |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barbulescu, A.; Nazzal, Y.; Howari, F. Assessing the Groundwater Quality in the Liwa Area, the United Arab Emirates. Water 2020, 12, 2816. https://doi.org/10.3390/w12102816
Barbulescu A, Nazzal Y, Howari F. Assessing the Groundwater Quality in the Liwa Area, the United Arab Emirates. Water. 2020; 12(10):2816. https://doi.org/10.3390/w12102816
Chicago/Turabian StyleBarbulescu, Alina, Yousef Nazzal, and Fares Howari. 2020. "Assessing the Groundwater Quality in the Liwa Area, the United Arab Emirates" Water 12, no. 10: 2816. https://doi.org/10.3390/w12102816
APA StyleBarbulescu, A., Nazzal, Y., & Howari, F. (2020). Assessing the Groundwater Quality in the Liwa Area, the United Arab Emirates. Water, 12(10), 2816. https://doi.org/10.3390/w12102816