A Novel Approach to Harmonize Vulnerability Assessment in Carbonate and Detrital Aquifers at Basin Scale
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data
2.2. DRASTIC and COP Vulnerability Maps
2.3. Validation of Vulnerability Maps
2.4. Methodology: Optimization of DRASTIC Method
- The ranges of non-continuous parameters (A, S and I) were assumed to be invariant and we classify these parameters as proposed in [9]. We modify the DRASTIC index classification (DR) and the ranges of only three numerical parameters in DRASTIC: Depth to water (D), Topography (T) and Conductivity (C). The proposed ranges are shown in Table 2. Due to the narrow variability of the data in the study area the recharge ranges were not modified.
- The number of classes and rates adopted for all parameters are as proposed in [9]. We change only the distribution of numerical data within the ranges in order to adapt them to the characteristics of the case study.
- We established a minimum range amplitude of 5 for the DRASTIC vulnerability classes.We also established certain constraints in the weights of parameters:
- Only weights between 1 to 5 are considered;
- The sum of the weights had to be 23 for each combination (as the original proposal in [9]).
- αjk is the total area of “j” vulnerability class of COP overlapping with the “k” vulnerability class of DRASTIC;
- xjk is a weight from 0 to 4 depending on the number of jumps from one vulnerability class to another.
- Ranges optimization:
- First, DRASTIC vulnerability maps are calculated modifying the ranges of parameters and the classification of the DRASTIC index. The weights of parameters are the same as proposed in [9].
- All the DRASTIC indices are evaluated through the objective functions and the results are classified intro three categories (Table 3).
- Decision trees are applied in order to find out the ranges for each parameter that gives the highest coincidence (Max(Si)) and a lowest distance (Min(di)) between vulnerability classes assigned using DRASTIC and COP.
- Weights optimization:
- In this second step, the weights of parameters are introduced as new variables to compute all the feasible combinations of weights and parameter ranges selected in the previous step. The DRASTIC index is calculated for all the combinations of weights and selected classifications in step 1.
- The new set of DRASTIC maps are evaluated by means of the objective functions.
- For each parameter, decision trees are applied again to determine the weight that yields greatest similarity between the DRASTIC and COP maps.
- n = number of classes;
- TPn = number of correctly recognized class examples in the class n;
- FPn = number of examples incorrectly assigned to the class n;
3. Results
3.1. Optimization of the DRASTIC Method
3.1.1. Ranges Optimization
- DR11, DR12, DR14, DR15 and DR16 for DRASTIC classification;
- D*, D1, D2, D3 and D4 for Depth to water;
- T* and T1 for Topography;
- C7 and C8 for Conductivity.
3.1.2. Weights Optimization
- Optimum of O.F. Min(di): di = 8.45; Si = 42.91;
- Optimum of O.F. Max(Si): di = 13.05; Si = 70.34;
3.2. Analysis of Optimum DRASTIC (O-DRASTIC)
- “Very low”: 52–107;
- “Low”: 107–130;
- “Moderate”: 130–138;
- “High”: 138–146;
- “Very high”: ≥146;
4. Discussion and Conclusions
Hypotheses, Limitations and Future Works
- The ranges of categorical non-continuous parameters (Aquifer media, Soil media and Impact of vadose zone) are not modified in this optimization procedure. We consider that the Delphi criteria proposed in [9] can be applied to establish the relative significance of each range with respect to potential pollution.
- Other algorithms and/or techniques (for example, a Random Forest algorithm) could be employed to achieve the goal in a more efficient way.
- We have not studied the whole domain of potential solutions, and a wider spectrum of parameter ranges could be tested to find other optimal solutions. Moreover, the optimization procedure provides local optimum solutions.
- Although decision trees help to reduce the dimensionality of the optimization problem, the methodology involves a large number of calculations, which might handicap extending the method to other case studies.
- The proposed methodology requires a previous validated vulnerability assessment in the study area in order to optimize the DRASTIC method.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. DRASTIC and COP Methods
Appendix A.1. DRASTIC Method
Groundwater Table Depth | ||
Original Ranges (ft) | Transformed Ranges (m) | Original Ratings |
0–5 | 0–1.5 | 10 |
5–15 | 1.5–4.6 | 9 |
15–30 | 4.6–9.1 | 7 |
30–50 | 9.1–15.2 | 5 |
50–75 | 15.1–22.9 | 3 |
75–100 | 22.9–30.5 | 2 |
>100 | >30.5 | 1 |
Net Recharge | ||
Original Ranges (inches) | Transformed Ranges (mm) | Original Ratings |
0–2 | 0–50.8 | 1 |
2–4 | 50.8–101.6 | 3 |
4–7 | 101.6–177.8 | 6 |
7–10 | 177.8–254.0 | 8 |
>10 | >254.0 | 9 |
Aquifer Media | ||
Original Ranges | Original Ranges | |
Massive shale | 2 | |
Metamorphic/Igneous | 3 | |
Weathered metamorphic/Igneous | 4 | |
Thin bedded sandstone, Limestone, Shale sequences | 6 | |
Massive sandstone | 6 | |
Massive limestone | 6 | |
Sand and gravel | 8 | |
Basalt | 9 | |
Karst limestone | 10 | |
Soil Media | ||
Original Ranges | Original Ranges | |
Thin or absent | 10 | |
Gravel | 10 | |
Sand | 9 | |
Peat | 8 | |
Shrinking and/or aggregated clay | 7 | |
Sandy loam | 6 | |
Loam | 5 | |
Silty loam | 4 | |
Clay loam | 3 | |
Muck | 2 | |
Nonshrinking and nonaggregated clay | 1 | |
Topography (% Slope) | ||
Original Ranges | Original Ranges | |
0–2 | 10 | |
2–6 | 9 | |
6–12 | 5 | |
12–18 | 3 | |
>18 | 1 | |
Impact of Vadose Zone | ||
Original Ranges | Original Ranges | |
Silt/Clay | 1 | |
Shale | 3 | |
Limestone | 6 | |
Sandstone | 6 | |
Bedded limestone, sandstone, shale | 6 | |
Sand and gravel with significant silt and clay | 6 | |
Metamorphic/Igneous | 4 | |
Sand and gravel | 8 | |
Basalt | 9 | |
Karst limestone | 10 | |
Hydraulic Conductivity | ||
Original Ranges (GPD/FT2) | Transformed Ranges (m/s) | Original Ratings |
1–100 | 4.7 × 10−7–4.7 × 10−5 | 1 |
100–300 | 4.7 × 10−5–1.4 × 10−4 | 2 |
300–700 | 1.4 × 10−4–3.3 × 10−4 | 4 |
700–1000 | 3.3 × 10−4–4.7 × 10−4 | 6 |
1000–2000 | 4.7 × 10−4–9.3 × 10−4 | 8 |
>2000 | >9.3 × 10−4 | 10 |
DRASTIC Index | Color Code |
---|---|
<79 | Violet |
80–99 | Indigo |
100–119 | Blue |
120–139 | Dark Green |
140–159 | Light Green |
160–179 | Yellow |
180–199 | Orange |
>200 | Red |
Appendix A.2. COP Method
C Factor | O Factor | p Factor | COP Index | ||||
---|---|---|---|---|---|---|---|
Ranges | Reduction of Protection | Ranges | Protection Value | Ranges | Reduction of Protection | Ranges | Vulnerability Classes |
0–0.2 | Very high | 1 | Very low | 0.4–0.5 | Very high | 0–0.5 | Very high |
0.2–0.4 | High | 2 | Low | 0.6 | High | 0.5–1 | High |
0.4–0.6 | Moderate | 2–4 | Moderate | 0.7 | Moderate | 1–2 | Moderate |
0.6–0.8 | Low | 4–8 | High | 0.8 | Low | 2–4 | Low |
0.8–1.0 | Very low | 8–15 | Very high | 0.9–1 | Very low | 4–15 | Very low |
Appendix B. Data Source and Methodology to Calculate DRASTIC and COP
Factor | Data Source | Methodology |
---|---|---|
D | Data from simulation flow model (River Basin Authority) (mean of the simulated data for each grid point from 1974 to 2015). | Spatial interpolation using IDW (Inverse Distance Weighted) of groundwater level data and reclassification into D index values. |
R | Recharge time series calculated from SACRAMENTO model. Mean recharge value in the period 1974–2015. | Estimation of the mean net recharge taking into account the different hydrology cycle variables in the period 1974–2015. |
A | Hydrogeological map of Spain 1:200,000. | Direct assignment of A index values for each hydrogeological unit delimitated. |
S | Soil Map of Spain 1:1,000,000. | Direct assignment of S index values for each soil type. |
T | Digital Terrain Model at 100 × 100 m cell size. | Calculation of the slope raster file and reclassification of values into T index values. |
I | Lithostratigraphic map of Spain 1:200,000. | Direct assignment of I index values for each lithostratigraphic unit. |
C | Flow model at 1000 × 1000 m cell size. | Spatial interpolation using IDW of conductivity data and reclassification into C index values. |
Factor | Subfactor | Data Source | Methodology |
---|---|---|---|
C | - | - | There are no catchment areas to swallow holes in these aquifers. |
Scenario 2 | Vegetation from CORINE LAND COVER and slope from Digital Terrain Model (100 × 100 m cell size) Karstic features from previous research works & fieldwork and litthostratigraphic map 1:200,000. | Carbonate lithologies with low karstification are considered as fissured formations. Limestones and dolomites with high or very high permeability are considered as scarcely developed karst. For sv factor, the vegetation cover is considered high when more than 30% of the surface is covered. Assignment of the values for the karstic features, vegetation and slope according to COP methodology. | |
O | OS—Soil | Soil Map of Spain 1:1,000,000. | Assignment of the Os values after classify the different types of soil according to the COP methodology. |
OL—Lithology | Lithostratigraphic map of Spain 1:200,000. | Classification of each lithology according to COP methodology and determination of thickness of vadose zone from 3D flow model. | |
P | PQ—Precipitation quantity | Precipitation data from SPAIN02 [73] in the grid within the Upper Guadiana Basin (mean rainfall taking into account data above 0.5 mm/day). | Reclassification of the precipitation values into the PQ subfactor values, taking into account the average rainfall in the wet years. Precipitation series from SPAIN02 between 1974 and 2015 were used to extract the mean annual precipitation for wet years. |
PI—Temporal distribution | Precipitation data from SPAIN02 (number of rainy days in the grid within the Upper Guadiana Basin). | Counting of the number of rainy days above 0.5 mm for each cell in the SPAIN02 grid. For the estimate of the rainy days per year, meteorological historical series between 1974 and 2015 from SPAIN02 were analysed. |
References
- Kazakis, N.; Voudouris, K.S. Groundwater vulnerability and pollution risk assessment of porous aquifers to nitrate: Modifying the DRASTIC method using quantitative parameters. J. Hydrol. 2015, 525, 13–25. [Google Scholar] [CrossRef]
- Kadkhodaie, F.; Moghaddam, A.A.; Barzegar, R.; Gharekhani, M.; Kadkhodaie, A. Optimizing the DRASTIC vulnerability approach to overcome the subjectivity: A case study from Shabestar plain, Iran. Arab. J. Geosci. 2019, 12, 527. [Google Scholar] [CrossRef]
- Al-Hanbali, A.; Kondoh, A. Groundwater vulnerability assessment and evaluation of human activity impact (HAI) within the Dead Sea groundwater basin, Jordan. Hydrogeol. J. 2008, 16, 499–510. [Google Scholar] [CrossRef]
- Javadi, S.; Kavehkar, N.; Mousavizadeh, M.H.; Mohammadi, K. Modification of DRASTIC model to map groundwater vulnerability to pollution using nitrate measurements in agricultural areas. J. Agric. Sci. Technol. 2011, 13, 239–249. [Google Scholar]
- Neshat, A.; Pradhan, B.; Dadras, M. Groundwater vulnerability assessment using an improved DRASTIC method in GIS. Resour. Conserv. Recycl. 2014, 86, 74–86. [Google Scholar] [CrossRef]
- Foster, S.S.D. Fundamental concepts in aquifer vulnerability, pollution risk and protection strategy. Hydrol. Resour. Proc. Inf. 1987, 38, 69–86. [Google Scholar]
- Sonnenborg, T.O.; Scharling, P.B.; Hinsby, K.; Rasmussen, E.S.; Engesgaard, P. Aquifer Vulnerability Assessment Based on Sequence Stratigraphic and 39 Ar Transport Modeling. Ground Water 2015, 54, 214–230. [Google Scholar] [CrossRef]
- Seifert, D.; Sonnenborg, T.O.; Scharling, P.; Hinsby, K. Use of alternative conceptual models to assess the impact of a buried valley on groundwater vulnerability. Hydrogeol. J. 2007, 16, 659–674. [Google Scholar] [CrossRef]
- Aller, L.; Bennett, T.; Lehr, J.H.; Petty, R.J.; Hackett, G. DRASTIC: A Standardized System for Evaluating Groundwater Potential Using Hydrogeologic Settings; EPA/600/2-85/018; U.S. Environmental Protection Agency: Washington, DC, USA, 1987.
- Vías, J.M.; Andreo, B.; Perles, M.J.; Carrasco, F.; Vadillo, I.; Jiménez, P. Proposed method for groundwater vulnerability mapping in carbonate (karstic) aquifers: The COP method. Hydrogeol. J. 2006, 14, 912–925. [Google Scholar] [CrossRef]
- Moratalla, A.; Gómez-Alday, J.; Sanz, D.; Castaño, S.; Heras, J.D.L. Evaluation of a GIS-Based Integrated Vulnerability Risk Assessment for the Mancha Oriental System (SE Spain). Water Resour. Manag. 2011, 25, 3677–3697. [Google Scholar] [CrossRef]
- Jiménez-Madrid, A.; Carrasco, F.; Martínez, C.; Gogu, R.C. DRISTPI, a new groundwater vulnerability mapping method for use in karstic and non-karstic aquifers. Q. J. Eng. Geol. Hydrogeol. 2013, 46, 245–255. [Google Scholar] [CrossRef]
- Barbulescu, A. Assessing Groundwater Vulnerability: DRASTIC and DRASTIC-Like Methods: A Review. Water 2020, 12, 1356. [Google Scholar] [CrossRef]
- Vallejos, A.; Andreu, J.M.; Sola, F.; Pulido-Bosch, A. The anthropogenic impact on Mediterranean karst aquifers: Cases of some Spanish aquifers. Environ. Earth Sci. 2015, 74, 185–198. [Google Scholar] [CrossRef]
- Goldscheider, N.; Chen, Z.; Auler, A.S.; Bakalowicz, M.; Broda, S.; Drew, D.; Hartmann, J.; Jiang, G.; Moosdorf, N.; Stevanovic, Z.; et al. Global distribution of carbonate rocks and karst water resources. Hydrogeol. J. 2020, 28, 1661–1677. [Google Scholar] [CrossRef] [Green Version]
- Ravbar, N.; Goldscheider, N. Comparative application of four methods of groundwater vulnerability mapping in a Slovene karst catchment. Hydrogeol. J. 2008, 17, 725–733. [Google Scholar] [CrossRef] [Green Version]
- Plan, L.; Decker, K.; Faber, R.; Wagreich, M.; Grasemann, B. Karst morphology and groundwater vulnerability of high alpine karst plateaus. Environ. Earth Sci. 2008, 58, 285–297. [Google Scholar] [CrossRef]
- Polemio, M.; Casarano, D.; Limoni, P.P. Karstic aquifer vulnerability assessment methods and results at a test site (Apulia, southern Italy). Nat. Hazards Earth Syst. Sci. 2009, 9, 1461–1470. [Google Scholar] [CrossRef]
- Jiménez-Madrid, A.; Martínez-Navarrete, C.; Carrasco-Cantos, F. Groundwater Risk Intensity Assessment. Application to Carbonate Aquifers of the Western Mediterranean (Southern Spain). Geodin. Acta 2010, 23, 101–111. [Google Scholar] [CrossRef]
- Marín, A.I.; Dörfliger, N.; Andreo, B. Comparative application of two methods (COP and PaPRIKa) for groundwater vulnerability mapping in Mediterranean karst aquifers (France and Spain). Environ. Earth Sci. 2011, 65, 2407–2421. [Google Scholar] [CrossRef]
- Bagherzadeh, S.; Kalantari, N.; Nobandegani, A.F.; Derakhshan, Z.; Conti, G.O.; Ferrante, M.; Malekahmadi, R. Groundwater vulnerability assessment in karstic aquifers using COP method. Environ. Sci. Pollut. Res. 2018, 25, 18960–18979. [Google Scholar] [CrossRef]
- Velázquez, D.P.; Sahuquillo, A.; Andreu, J. A two-step explicit solution of the Boussinesq equation for efficient simulation of unconfined aquifers in conjunctive-use models. Water Resour. Res. 2006, 42, 4205423. [Google Scholar] [CrossRef]
- Pulido-Velazquez, D.; Sahuquillo, A.; Andreu, J.; Pulido-Velazquez, M. A general methodology to simulate groundwater flow of unconfined aquifers with a reduced computational cost. J. Hydrol. 2007, 338, 42–56. [Google Scholar] [CrossRef]
- Llopis-Albert, C.; Pulido-Velazquez, D. Using MODFLOW code to approach transient hydraulic head with a sharp-interface solution. Hydrol. Process. 2014, 29, 2052–2064. [Google Scholar] [CrossRef]
- Pulido-Velazquez, D.; Sahuquillo, A.; Andreu, J.; Pulido-Velazquez, M. An efficient conceptual model to simulate surface water body-aquifer interaction in conjunctive use management models. Water Resour. Res. 2007, 43, 07407. [Google Scholar] [CrossRef]
- Velázquez, D.P.; Sahuquillo, A.; Andreu, J. Treatment on non-linear boundary conditions in groundwater modeling with Eigenvalue Methods. J. Hydrol. 2009, 368, 194–204. [Google Scholar] [CrossRef]
- Panagopoulos, G.P.; Antonakos, A.K.; Lambrakis, N.J. Optimization of the DRASTIC method for groundwater vulnerability assessment via the use of simple statistical methods and GIS. Hydrogeol. J. 2006, 14, 894–911. [Google Scholar] [CrossRef]
- Rózkowski, J. Evaluation of intrinsic vulnerability of an Upper Jurassic karst-fissured aquifer in the Jura Krakowska (southern Poland) to anthropogenic pollution using the DRASTIC method. Geol. Q. 2007, 51, 17–26. [Google Scholar]
- Mimi, Z.A.; Mahmoud, N.; Abu Madi, M. Modified DRASTIC assessment for intrinsic vulnerability mapping of karst aquifers: A case study. Environ. Earth Sci. 2011, 66, 447–456. [Google Scholar] [CrossRef]
- Pacheco, F.; Pires, L.; Santos, R.; Fernandes, L.S. Factor weighting in DRASTIC modeling. Sci. Total Environ. 2015, 505, 474–486. [Google Scholar] [CrossRef]
- Baalousha, H.M. Vulnerability assessment for the Gaza Strip, Palestine using DRASTIC. Environ. Earth Sci. 2006, 50, 405–414. [Google Scholar] [CrossRef]
- Hamza, S.M.; Ahsan, A.; Imteaz, M.A.; Rahman, A.; Mohammad, T.A.; Ghazali, A.H. Accomplishment and subjectivity of GIS-based DRASTIC groundwater vulnerability assessment method: A review. Environ. Earth Sci. 2014, 73, 3063–3076. [Google Scholar] [CrossRef]
- Saidi, S.; Bouri, S.; Ben Dhia, H. Groundwater vulnerability and risk mapping of the Hajeb-jelma aquifer (Central Tunisia) using a GIS-based DRASTIC model. Environ. Earth Sci. 2009, 59, 1579–1588. [Google Scholar] [CrossRef]
- Antonakos, A.; Lambrakis, N. Development and testing of three hybrid methods for the assessment of aquifer vulnerability to nitrates, based on the drastic model, an example from NE Korinthia, Greece. J. Hydrol. 2007, 333, 288–304. [Google Scholar] [CrossRef]
- Huan, H.; Wang, J.; Teng, Y. Assessment and validation of groundwater vulnerability to nitrate based on a modified DRASTIC model: A case study in Jilin City of northeast China. Sci. Total Environ. 2012, 440, 14–23. [Google Scholar] [CrossRef] [PubMed]
- Thirumalaivasan, D.; Karmegam, M.; Venugopal, K. AHP-DRASTIC: Software for specific aquifer vulnerability assessment using DRASTIC model and GIS. Environ. Model. Softw. 2003, 18, 645–656. [Google Scholar] [CrossRef]
- Hailin, Y.; Ligang, X.; Chang, Y.; Jiaxing, X. Evaluation of Groundwater Vulnerability with Improved DRASTIC Method. Procedia Environ. Sci. 2011, 10, 2690–2695. [Google Scholar] [CrossRef] [Green Version]
- Sener, E.; Davraz, A. Assessment of groundwater vulnerability based on a modified DRASTIC model, GIS and an analytic hierarchy process (AHP) method: The case of Egirdir Lake basin (Isparta, Turkey). Hydrogeol. J. 2012, 21, 701–714. [Google Scholar] [CrossRef]
- Fijani, E.; Nadiri, A.A.; Asghari-Moghaddam, A.; Tsai, F.T.-C.; Dixon, B. Optimization of DRASTIC method by supervised committee machine artificial intelligence to assess groundwater vulnerability for Maragheh–Bonab plain aquifer, Iran. J. Hydrol. 2013, 503, 89–100. [Google Scholar] [CrossRef]
- Barzegar, R.; Moghaddam, A.A.; Baghban, H. A supervised committee machine artificial intelligent for improving DRASTIC method to assess groundwater contamination risk: A case study from Tabriz plain aquifer, Iran. Stoch. Environ. Res. Risk Assess. 2015, 30, 883–899. [Google Scholar] [CrossRef]
- Jang, W.S.; Engel, B.A.; Harbor, J.; Theller, L. Aquifer Vulnerability Assessment for Sustainable Groundwater Management Using DRASTIC. Water 2017, 9, 792. [Google Scholar] [CrossRef] [Green Version]
- Nadiri, A.A.; Gharekhani, M.; Khatibi, R. Mapping Aquifer Vulnerability Indices Using Artificial Intelligence-running Multiple Frameworks (AIMF) with Supervised and Unsupervised Learning. Water Resour. Manag. 2018, 32, 3023–3040. [Google Scholar] [CrossRef]
- Dixon, B. Groundwater vulnerability mapping: A GIS and fuzzy rule based integrated tool. Appl. Geogr. 2005, 25, 327–347. [Google Scholar] [CrossRef]
- Rodriguez-Galiano, V.F.; Luque-Espinar, J.; Chica-Olmo, M.; Mendes, M. Feature selection approaches for predictive modelling of groundwater nitrate pollution: An evaluation of filters, embedded and wrapper methods. Sci. Total Environ. 2018, 624, 661–672. [Google Scholar] [CrossRef] [PubMed]
- Machiwal, D.; Jha, M.K.; Singh, V.P.; Mohan, C. Assessment and mapping of groundwater vulnerability to pollution: Current status and challenges. Earth Sci. Rev. 2018, 185, 901–927. [Google Scholar] [CrossRef]
- Fusco, F.; Allocca, V.; Coda, S.; Cusano, D.; Tufano, R.; De Vita, P. Quantitative Assessment of Specific Vulnerability to Nitrate Pollution of Shallow Alluvial Aquifers by Process-Based and Empirical Approaches. Water 2020, 12, 269. [Google Scholar] [CrossRef] [Green Version]
- Gogu, R.C.; Hallet, V.; Dassargues, A. Comparison of aquifer vulnerability assessment techniques. Application to the Nylon river basin (Belgium). Environ. Earth Sci. 2003, 44, 881–892. [Google Scholar] [CrossRef]
- Worrall, F.; Besien, T.; Kolpin, D.W. Groundwater vulnerability: Interactions of chemical and site properties. Sci. Total Environ. 2002, 299, 131–143. [Google Scholar] [CrossRef]
- Zwahlen, F. COST Action 620 Vulnerability and Risk Mapping for the Protection of Carbonate (karst) Aquifers Final Report; Office of the Official Publications of the European Communities: Brussels, Belgium, 2004; p. 297. [Google Scholar]
- Rodriguez-Galiano, V.; Mendes, M.P.; Garcia-Soldado, M.J.; Chica-Olmo, M.; Ribeiro, L.F. Predictive modeling of groundwater nitrate pollution using Random Forest and multisource variables related to intrinsic and specific vulnerability: A case study in an agricultural setting (Southern Spain). Sci. Total Environ. 2014, 189–206. [Google Scholar] [CrossRef]
- Yoo, K.; Shukla, S.K.; Ahn, J.J.; Oh, K.; Park, J. Decision tree-based data mining and rule induction for identifying hydrogeological parameters that influence groundwater pollution sensitivity. J. Clean. Prod. 2016, 122, 277–286. [Google Scholar] [CrossRef]
- Martínez-Santos, P.; Llamas, M.; Martinezalfaro, P. Vulnerability assessment of groundwater resources: A modelling-based approach to the Mancha Occidental aquifer, Spain. Environ. Model. Softw. 2008, 23, 1145–1162. [Google Scholar] [CrossRef]
- Yustres, Á.; Botti, V.; Asensio, L.; Candel-Pérez, M.; García, B. Groundwater resources in the Upper Guadiana Basin (Spain): A regional modelling analysis. Hydrogeol. J. 2013, 21, 1129–1146. [Google Scholar] [CrossRef]
- Conan, C.; De Marsily, G.; Bouraoui, F.; Bidoglio, G. A long-term hydrological modelling of the Upper Guadiana river basin (Spain). Phys. Chem. Earth Parts A/B/C 2003, 28, 193–200. [Google Scholar] [CrossRef]
- FAO. The FAO-Unesco Soil Map of the World; Legend and 9 Volumes; UNESCO: Paris, France, 1981. [Google Scholar]
- Confederación Hidrográfica del Guadiana. Actualización y Calibración del Modelo de flujo de agua Subterránea de los Acuíferos del Alto Guadiana (FLUSAG); Ref: TEC0004594, Published Report; Dirección General del Agua: Madrid, Spain, 2018; 150p. [Google Scholar]
- Ahmed, I.; Nazzal, Y.; Zaidi, F. Groundwater pollution risk mapping using modified DRASTIC model in parts of Hail region of Saudi Arabia. Environ. Eng. Res. 2017, 23, 84–91. [Google Scholar] [CrossRef] [Green Version]
- Babiker, I.S.; Mohamed, M.A.; Hiyama, T.; Kato, K. A GIS-based DRASTIC model for assessing aquifer vulnerability in Kakamigahara Heights, Gifu Prefecture, central Japan. Sci. Total Environ. 2005, 345, 127–140. [Google Scholar] [CrossRef] [PubMed]
- Stigter, T.Y.; Riberio, L.; Dill, A.M.M.C. Evaluation of an intrinsic and a specific vulnerability assessment method in comparison with groundwater salinization and nitrate contamination levels in two agricultural regions in the south of Portugal. Hydrogeol. J. 2006, 14, 79–99. [Google Scholar] [CrossRef]
- McLay, C.; Dragten, R.; Sparling, G.; Selvarajah, N. Predicting groundwater nitrate concentrations in a region of mixed agricultural land use: A comparison of three approaches. Environ. Pollut. 2001, 115, 191–204. [Google Scholar] [CrossRef]
- Mentzafou, A.; Panagopoulos, Y.; Dimitriou, E. Designing the National Network for Automatic Monitoring of Water Quality Parameters in Greece. Water 2019, 11, 1310. [Google Scholar] [CrossRef] [Green Version]
- Kass, G.V. An Exploratory Technique for Investigating Large Quantities of Categorical Data. J. R. Stat. Soc. Ser. C Appl. Stat. 1980, 29, 119. [Google Scholar] [CrossRef]
- Rokach, L.; Maimon, O. Data Mining with Decision Trees Theory and Applications; World Scientific: Toh Tuck Link, Singapore, 2007. [Google Scholar]
- Sokolova, M.; Lapalme, G. A systematic analysis of performance measures for classification tasks. Inf. Process. Manag. 2009, 45, 427–437. [Google Scholar] [CrossRef]
- Jeihouni, M.; Toomanian, A.; Mansourian, A. Decision Tree-Based Data Mining and Rule Induction for Identifying High Quality Groundwater Zones to Water Supply Management: A Novel Hybrid Use of Data Mining and GIS. Water Resour. Manag. 2019, 34, 139–154. [Google Scholar] [CrossRef] [Green Version]
- Quinlan, J. Simplifying decision trees. Int. J. Man-Mach. Stud. 1987, 27, 221–234. [Google Scholar] [CrossRef] [Green Version]
- Wheeler, D.C.; Nolan, B.T.; Flory, A.R.; Dellavalle, C.T.; Ward, M.H. Modeling groundwater nitrate concentrations in private wells in Iowa. Sci. Total Environ. 2015, 536, 481–488. [Google Scholar] [CrossRef] [PubMed]
- Bui, D.T.; Khosravi, K.; Karimi, M.; Busico, G.; Khozani, Z.S.; Nguyen, H.; Mastrocicco, M.; Tedesco, D.; Cuoco, E.; Kazakis, N. Enhancing nitrate and strontium concentration prediction in groundwater by using new data mining algorithm. Sci. Total Environ. 2020, 715, 136836. [Google Scholar] [CrossRef] [PubMed]
- Almasri, M.N. Assessment of intrinsic vulnerability to contamination for Gaza coastal aquifer, Palestine. J. Environ. Manag. 2008, 88, 577–593. [Google Scholar] [CrossRef] [PubMed]
- Hasiniaina, F.; Zhou, J.; Guoyi, L. Regional assessment of groundwater vulnerability in Tamtsag basin, Mongolia using drastic model. J. Am. Sci. 2010, 6, 65–78. [Google Scholar]
- Al Hallaq, A.H.; Abuelaish, B. Assessment of aquifer vulnerability to contamination in Khanyounis Governorate, Gaza Strip—Palestine, using the DRASTIC model within GIS environment. Arab. J. Geosci. 2011, 5, 833–847. [Google Scholar] [CrossRef]
- Dizaji, A.R.; Hosseini, S.A.; Rezaverdinejad, V.; Sharafati, A. Groundwater contamination vulnerability assessment using DRASTIC method, GSA, and uncertainty analysis. Arab. J. Geosci. 2020, 13, 1–15. [Google Scholar] [CrossRef]
- Herrera, S.; Fernández, J.; Gutiérrez, J.M. Update of the Spain02 gridded observational dataset for EURO-CORDEX evaluation: Assessing the effect of the interpolation methodology. Int. J. Clim. 2015, 36, 900–908. [Google Scholar] [CrossRef] [Green Version]
LU | Rate |
---|---|
Agro-forestry areas | 7 |
Airports | 2 |
Annual crops associated with permanent crops | 8 |
Broad-leaved forest | 2 |
Burnt areas | 2 |
Complex cultivation patterns | 8 |
Coniferous forest | 2 |
Construction sites | 2 |
Continuous urban fabric | 10 |
Discontinuous urban fabric | 10 |
Dump sites | 9 |
Fruit trees and berry plantations | 7 |
Industrial or commercial units | 8 |
Inland marshes | 1 |
Land principally occupied by agriculture, with significant areas of natural vegetation | 5 |
Mineral extraction sites | 3 |
Mixed forest | 3 |
Natural grasslands | 3 |
Non-irrigated arable land | 5 |
Olive groves | 6 |
Pastures | 5 |
Permanently irrigated land | 8 |
Road and rail networks and associated land | 2 |
Sclerophyllous vegetation | 3 |
Sparsely vegetated areas | 3 |
Sport and leisure facilities | 2 |
Transitional woodland-shrub | 2 |
Vineyards | 5 |
Water bodies | 1 |
Vulnerability | DR1 | DR2 | DR3 | DR4 | DR5 | DR6 | DR7 | DR8 | DR9 | DR10 | DR11 | DR12 | DR13 | DR14 | DR15 | DR16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Very low | <70 | <70 | <70 | <80 | <80 | <90 | <90 | <90 | <100 | <100 | <100 | <100 | <110 | <120 | <120 | <130 |
Low | 80 | 90 | 100 | 90 | 100 | 100 | 100 | 110 | 110 | 115 | 120 | 130 | 120 | 130 | 130 | 140 |
Moderate | 90 | 110 | 130 | 100 | 120 | 110 | 115 | 130 | 120 | 125 | 140 | 140 | 130 | 140 | 145 | 150 |
High | 100 | 130 | 160 | 110 | 140 | 120 | 130 | 150 | 130 | 140 | 160 | 150 | 140 | 150 | 160 | 160 |
Very high | >100 | >130 | >160 | >110 | >140 | >120 | >130 | >150 | >130 | >140 | >160 | >150 | >140 | >150 | >160 | >160 |
D (m) rate | D * | D1 | D2 | D3 | D4 | D5 | D6 | D7 | D8 | D9 | D10 | D11 | D12 | D13 | D14 | D15 |
10 | 1.5 | 5 | 5 | 10 | 10 | 13 | 15 | 15 | 20 | 20 | 25 | 25 | 30 | 30 | 30 | 35 |
9 | 5 | 10 | 10 | 15 | 20 | 21 | 20 | 30 | 25 | 40 | 30 | 50 | 35 | 55 | 60 | 70 |
7 | 10 | 15 | 20 | 20 | 30 | 30 | 25 | 45 | 30 | 60 | 35 | 75 | 40 | 80 | 90 | 105 |
5 | 15 | 20 | 40 | 25 | 40 | 37 | 30 | 60 | 35 | 80 | 40 | 100 | 45 | 100 | 120 | 140 |
3 | 23 | 25 | 80 | 30 | 50 | 54 | 35 | 75 | 40 | 100 | 45 | 125 | 50 | 127 | 150 | 175 |
2 | 30 | 30 | 160 | 35 | 60 | 88 | 40 | 90 | 45 | 120 | 50 | 150 | 55 | 160 | 180 | 210 |
1 | >30 | >30 | >160 | >35 | >60 | >88 | >40 | >90 | >45 | >120 | >50 | >150 | >55 | >160 | >180 | >210 |
T (%) rate | T * | T1 | T2 | T3 | T4 | |||||||||||
10 | 2 | 1 | <3 | 4 | 9 | |||||||||||
9 | 6 | 2 | 7 | 8 | 18 | |||||||||||
5 | 12 | 4 | 14 | 12 | 27 | |||||||||||
3 | 18 | 8 | 22 | 20 | 36 | |||||||||||
1 | >18 | >8 | >22 | >20 | >36 | |||||||||||
C (m/day) | C * | C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 | |||||||
1 | 0.04–4 | ≤0.1 | ≤2 | ≤2 | ≤3 | ≤3 | ≤5 | ≤6 | ≤15 | |||||||
2 | 4–12 | 3 | 5 | 6 | 6 | 12 | 12 | 15 | 30 | |||||||
4 | 12–28 | 6 | 12 | 15 | 15 | 25 | 25 | 30 | 45 | |||||||
6 | 28–40 | 15 | 25 | 30 | 30 | 40 | 40 | 75 | 60 | |||||||
8 | 40–80 | 30 | 40 | 40 | 75 | 80 | 80 | 80 | 75 | |||||||
10 | >80 | >30 | >40 | >40 | >75 | >80 | >80 | >80 | >75 |
Objective Function | Value | Class |
---|---|---|
Si (spatial coincidence) | <30% | 1 |
30–50% | 2 | |
>50% | 3 | |
di (distance) | <30% | 1 |
30–50% | 2 | |
>50% | 3 |
DRASTIC Parameters | D | R | A | S | T | I | C |
---|---|---|---|---|---|---|---|
W (original DRASTIC) | 5 | 4 | 3 | 2 | 1 | 5 | 3 |
W (O-DRASTIC) | 1 | 5 | 5 | 5 | 1 | 5 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baena-Ruiz, L.; Pulido-Velazquez, D. A Novel Approach to Harmonize Vulnerability Assessment in Carbonate and Detrital Aquifers at Basin Scale. Water 2020, 12, 2971. https://doi.org/10.3390/w12112971
Baena-Ruiz L, Pulido-Velazquez D. A Novel Approach to Harmonize Vulnerability Assessment in Carbonate and Detrital Aquifers at Basin Scale. Water. 2020; 12(11):2971. https://doi.org/10.3390/w12112971
Chicago/Turabian StyleBaena-Ruiz, Leticia, and David Pulido-Velazquez. 2020. "A Novel Approach to Harmonize Vulnerability Assessment in Carbonate and Detrital Aquifers at Basin Scale" Water 12, no. 11: 2971. https://doi.org/10.3390/w12112971
APA StyleBaena-Ruiz, L., & Pulido-Velazquez, D. (2020). A Novel Approach to Harmonize Vulnerability Assessment in Carbonate and Detrital Aquifers at Basin Scale. Water, 12(11), 2971. https://doi.org/10.3390/w12112971